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ABSTRACT

Enterprise Java (J2EE) applications present significant challenges for horizontal

scaling due to their large code and dataset sizes, as well as the clustering models of

application servers. Our work targets a potential reimplementation of the way Enter-

prise Java applications are clustered. We propose three dynamic analyses, motivated

by a new design for a clustered enterprise application framework, which allow better

understanding of existing applications and provide support for migrating such appli-

cations to a possible future implementation of this design. The first dynamic analysis

traces the flow of primary keys, which uniquely identify certain objects within the

business tier of a J2EE application. It identifies the entry points of such data to

the business tier, which provides crucial information for the migration of the appli-

cation towards the new clustered design. We propose an algorithm to achieve this

identification and implement the approach through bytecode instrumentation. Our

experimental results indicate that the analysis has practical overhead and achieves

excellent precision. The second dynamic analysis identifies the entry points of query

parameters to the business tier of a J2EE application, as well as certain relationships

in which this data participates. This is achieved through a number of enhancements

to the algorithm for the first dynamic analysis. The analysis implementation exhibits

reasonable overhead and achieves high-precision identification of the entry points of
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query parameters, as shown by our experimental studies. The third dynamic anal-

ysis identifies instances of the Data Transfer Object (DTO) design pattern within

a J2EE application. It provides helpful information for the first dynamic analysis,

and could be used as a preprocessing step to improve its precision and overhead. In

addition, DTO identification is useful for a number of other tasks related to program

comprehension, performance optimization, and software evolution. The algorithm

investigates the lifecycle of certain objects within the business tier of a J2EE appli-

cation, and matches that lifecycle against a state transition diagram that describes

the behavior of a DTO. The algorithm was implemented through the Java Virtual

Machine Tool Interface (JVMTI). Experimental results indicate that the analysis can

identify the majority of DTO instances while exhibiting manageable overhead.

This work is a step towards a new design for clustered enterprise applications. The

proposed dynamic analyses solve some key problems for a potential future implemen-

tation of services that provide replication at the object level in enterprise application

servers. Such services will solve the significant problem of horizontal scalability in

Enterprise Java applications.
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CHAPTER 1

INTRODUCTION

Modern enterprise object-oriented applications present significant challenges for

both horizontal and vertical scaling due to their large code and dataset sizes, as well

as their clustering and distribution models. Horizontal scaling is the ability to con-

nect multiple hardware or software entities, such as servers, so that they work as

a single logical unit. Vertical scaling is the ability to increase capacity by adding

resources to an existing entity (e.g., by replacing the CPU with a faster one). The

enterprise clustering models do not necessarily utilize the horizontal scaling capabili-

ties of redundant physical or virtual machines; rather, they are devised to target other

desirable properties of enterprise applications such as high availability and decreased

probability of data loss.

Our work targets a potential reimplementation of the way enterprise applications

are clustered. Its main goal is the introduction of horizontal scalability at the object

level without sacrificing other desirable properties that are already enabled by current

designs (e.g., high availability and redundancy). To that end, we outline a new

design of a clustered enterprise application framework. The main focus of our work

are three dynamic analyses motivated by this design. These analyses allow better

understanding of existing enterprise applications and provide support for migrating
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such applications to a possible future implementation of the design, e.g., as a service

within a Java Enterprise application server.

1.1 Enterprise Java and Scalability

The Java platform, Enterprise Edition (J2EE), is the current leader among enter-

prise computing platforms. It sets the standard against which all others are compared

and represents the current state of the art. The memory footprint of J2EE applica-

tions typically consists of a large number of sparsely-connected object clusters, where

each cluster consists of a few hundreds of densely-connected application-specific ob-

jects intermixed with application server helper objects.

J2EE applications are implemented through the use of isolated functional areas,

called tiers. Typical tiers are the client tier, the middle (business) tier, and the data

tier. The middle tier is the one of most significance, since the business logic of the

application is situated there, together with the memory footprint of the object graph;

therefore, it holds the most potential benefits if optimized correctly.

J2EE applications are deployed on top of a J2EE server. J2EE servers, or applica-

tion servers, provide standard services to the middle tier in a multi-tiered enterprise

application, as well as the underlying functionality to enable such services to work

together with enterprise applications. One service that is provided at this level is

clustering.

Clustering allows administrators to run a single enterprise application on several

parallel J2EE servers. The processing load is distributed across the cluster nodes ac-

cording to a pre-defined policy, while the memory footprint is shared across all nodes.

The memory footprint of an application deployed on an application server consists of

2



a mix of application-specific objects and supporting server objects. In a typical clus-

tered environment the application-specific objects are replicated on all cluster nodes.

This cluster design allows for various crucial services that an application server must

provide, such as reliability, hot swapping of physical machines, reduction of response

time, etc., but also results in an impossibility to provide for horizontal scalability at

the memory level, which sets hard limits for the total memory consumption of an

enterprise application. The mechanics of the clustering service also typically cause

network congestion within the cluster, especially with large clusters. These problems

are presented in more detail in Chapter 2. This chapter also provides a description

of our proposal to solve them through a new clustering design.

All current clustering designs utilize partitioning at the class level. Our proposal

relies on the fact that it is possible to partition the memory footprint of a typical J2EE

application efficiently at the object level. Such partitioning allows distributing the

object graph of an enterprise application over multiple physical or virtual machines,

alleviating the issues mentioned previously. Each object belongs to one machine and

communicates with other objects either locally, if those objects reside on the same

machine, or over the network.

An additional service is essential for the implementation of this new design: one

that serves as a bridge between client tiers and the middle tier of a J2EE application,

examining client requests and forwarding them to the middle tier machines holding

the appropriate data. This service requires intimate knowledge of the inner workings

of the currently hosted J2EE application to forward requests properly, and is in

effect an object-level lookup service. Building such a service presents a number of

challenges. Specifically, implementations of this service will rely on comprehending
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certain aspects of the data flow within enterprise applications. As a step towards

building such a service, we propose three dynamic analyses for understanding critical

aspects of J2EE applications. The output of these analyses will be used by a J2EE

server administrator to configure the additional service with respect to a specific J2EE

application.

1.2 Primary Key Identification and Flow

The first dynamic analysis traces the flow of primary keys within an application’s

middle tier. It identifies the entry points of primary keys or parts of primary keys

to that tier, which provides crucial information for the migration of the application

towards the conceptual clustered design briefly outlined in the previous section. The

next paragraphs summarize this analysis at a high level, while Chapter 3 describes it

in greater detail.

A primary key is a piece of data that uniquely identifies an object in the middle

tier of a J2EE application. Primary keys are often passed from the client tier to

the middle tier, either directly or, in case of composite keys, as separate parts to be

assembled within the middle tier. Primary keys are then typically passed from the

middle tier to the data tier. The object related to the primary key in question is

either fetched from the data tier, or a reference to it in the local memory space (local

to the middle tier) is returned if the object is already present there. This object is

then used to execute the business logic of the application and service the original

request from the client tier.

To function correctly, the object-level lookup service must be aware of the flow of

primary keys between the client and the middle tier. A primary key is a crucial piece
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of information in that context, because it uniquely identifies the middle tier physical

machine where the object is present, and respectively where the client tier request

must be redirected.

The analysis investigates the data flow of certain objects and primitive values

within the middle tier of an application, and finds the data that are used as primary

keys, as well as their entry points to the middle tier. As described previously, this

information will be used by an administrator to configure the object-level lookup

service for the particular application.

Chapter 3 describes several versions of the analysis algorithm. Its simplest version

proceeds as follows:

• Whenever a remote call, coming from a client tier, is made against an entry ob-

ject to the middle tier, intercept the input parameters to the call and remember

information that uniquely identifies them in a data structure that we will refer

to as a value flow graph (VFG).

• Whenever an assignment with the participation of the value of such a parameter

happens within the middle tier, intercept the left-hand side of that assignment,

and create an association between the memory location standing in that left-

hand side and the origin of the value in the VFG.

• Whenever a call is made from the middle tier to the data tier with the par-

ticipation of a primary key, look up the memory location holding the primary

key value in the VFG. Follow the association link and output the origin of the

primary key, which is its entry point to the middle tier.
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In addition, another version of the analysis was designed. This version outputs

the propagation path of a primary key within the middle tier of an application. This

information improves program comprehension and can be used for debugging, testing,

and maintenance purposes.

The analysis was implemented in Java through the use of bytecode instrumenta-

tion with the help of the Soot framework [65]. It was evaluated on three separate

J2EE applications, running on the JBoss application server [31]. The largest and

most complicated one was a real-world Enterprise Java application — the J2EE Cer-

tificate Authority (EJBCA) [22]. The two smaller applications were Duke’s Bank [21]

and Pet Store [30]. The entire experimental setup was deployed on Sun’s Java 6 Java

Virtual Machine (JVM).

We implemented two separate versions of the algorithm. The first version instru-

ments an enterprise application to call hooks to the VFG in an online mode (i.e.,

while the application is running). The second version is offline: it instruments an

enterprise application to output all relevant data to a file, which is then read and

processed after the application has completed its test run.

Our experimental evaluation measured the total number of primary keys passed

from the middle tier to the data tier, and the number of such keys that our analysis

was able to match with requests incoming from a client tier. The analysis matched

approximately 93% of all primary keys passed from the middle tier to the data tier

when run with EJBCA’s own test suite, and 100% with the two smaller applications.

We measured the run-time overhead of the analysis (both online version and offline

version) and the time to process the execution trace (offline version only). The run-

time overhead was 279% for the online version, and 150% for the offline version when

6



run on EJBCA. The overheads for the two smaller applications were similar. The

time to process the trace for the offline analysis was 15 minutes and 33 seconds for

EJBCA, and approximately 1 minute per trace for the smaller applications. Note that

this analysis, as well as the other two analyses described below, will typically have to

be executed only once per J2EE application because of the specifics of the intended

use (see Section 2.4), as opposed to being continuously run in the background for the

lifetime of an application. Thus, the analysis cost of 2.8× slowdown is practical and

quite reasonable.

In summary, we have designed and implemented a dynamic analysis that identifies

the entry points of primary keys to the middle tier of an J2EE application. Our ex-

perimental evaluation indicates that the analysis has practical overhead and achieves

excellent precision. These results contribute towards the object-level lookup service

described previously by identifying a major portion of the data that must be looked

up so that client requests are routed to the correct middle tier machine.

1.3 Query Data Relationship Identification

The remaining portion of the data that must be looked up consists of parameters

to queries, which the middle tier executes against the data tier. The second dynamic

analysis we propose identifies such data as well as certain frequently-occurring rela-

tionships in which this data participates. Chapter 4 describes the analysis in detail,

while the next paragraphs outline it at a high level.

The middle tier of a J2EE application has the capability of retrieving objects from

the database not only on the basis of their primary keys, but also based on other

parameters they contain (e.g., retrieve a Student object with a particular name, as
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opposed to retrieving a Student object with a particular social security number). This

functionality is made available by a query language built specifically for J2EE. Queries

in that language resemble standard Structured Query Language (SQL) queries, and

typically need specific parameters to fetch objects.

The object-level lookup service must be aware of such parameters that pass be-

tween the client and the middle tier. Another crucial piece of information the object-

level lookup service needs in this scenario is the possible relationships in which those

parameters participate, so that it can recreate the queries and return the addresses

of all machines containing related objects.

The dynamic analysis investigates the flow of certain query-related objects and

primitive values within the middle tier of an enterprise application, similarly to the

analysis of primary keys. An important difference is a pre-processing step to this anal-

ysis, which statically parses all queries present in an enterprise application’s source

code, extracts certain relationships among the parameters present in those queries,

and provides that information to the dynamic analysis. As with the previous analysis,

an extension was designed to identify the propagation path of a query parameter.

The analysis was implemented with the same tools as the previous one, and was

run on the same benchmarks. The implementation language was Java, and the byte-

code instrumentation framework was Soot. The three J2EE applications (EJBCA,

Duke’s Bank, and Pet Store) were run on JBoss using Sun’s Java 6 JVM.

We measured the total number of queries invoked, and the number of such queries

our analysis was able to fully match with requests incoming from a client tier. The

analysis matched 96% of all queries with EJBCA’s test suite, and 100% when tested
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on the two smaller applications. The approach also handled the most common rela-

tionships present in J2EE queries. Those accounted for 87% of all queries in EJBCA

and 100% of all queries in the two smaller applications. The run-time overhead of

the analysis was 293%.

In summary, we have designed and implemented a dynamic analysis that identifies

the entry points of query parameters to the middle tier of an J2EE application, as

well as commonly-used relationships in which those parameters participate within the

queries. These results add to those of the previous dynamic analysis, and contribute

information necessary for the implementation of an object-level lookup service.

1.4 Data Transfer Object Identification

The third dynamic analysis we propose identifies instances of the Data Transfer

Object (DTO) design pattern at the boundary between the client and the middle

tiers of an enterprise application. It provides helpful information for the first dynamic

analysis described above, and may be used as a pre-processing step to it to improve

its precision and overhead. In addition, DTO identification is useful for a number

of other tasks related to program comprehension, performance optimization, and

software evolution.

DTO is a design pattern common in enterprise systems. An object that is an

instance of the DTO pattern encapsulates a set of values, allowing remote clients to

request and receive an entire value set with a single remote call. It is generally used

to alleviate network overhead within a distributed system. In the context of J2EE

applications, DTOs are commonly used as composite primary keys, which are primary

keys of complex, application-defined types. Identifying such objects and their types
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is a helpful pre-processing step to the dynamic analysis of primary keys, which may

utilize that information to track only certain non-standard types of parameters.

The analysis investigates the lifecycle of certain objects living at the boundary

between the middle and the client tier of a J2EE application, and matches it against

a state transition diagram that describes the behavior of a DTO. It was implemented

in C, and interfaces with the JVM that runs the J2EE server and application through

the Java 6 version of the JVM Tool Interface (JVMTI). The implementation was

evaluated on EJBCA, running on JBoss, on the Java 6 JVM. It identified 10 out

of a total of 11 DTO instances, with one false positive and one false negative. The

run-time overhead of the analysis was 263%.

In summary, this dynamic analysis identifies instances of the DTO pattern within

a J2EE application. The overhead of the analysis is practical, and the achieved

precision is high. This analysis can be used as a pre-processing step to the first

dynamic analysis described earlier. This work first appeared in [50].

1.5 Outline

The rest of this dissertation is organized as follows. Chapter 2 provides back-

ground information about J2EE and the scalability problems it poses, as well as a

proposed alternative distributed design that contributes towards solving these prob-

lems. Chapter 3 presents the first dynamic analysis, which identifies the entry points

of primary keys to the middle tier. A description of the second dynamic analysis,

which identifies query parameters and some of their relationships, is introduced in

Chapter 4. Chapter 5 explains the third dynamic analysis, which identifies instances

of the DTO design pattern within a J2EE application. Related work is discussed
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in Chapter 6. Finally, Chapter 7 concludes by summarizing the dissertation and

discussing possible directions for future research.
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CHAPTER 2

BACKGROUND AND PROBLEM OVERVIEW

2.1 Overview of Enterprise Java Applications

The Java platform, Enterprise Edition (J2EE), provides an API and run-time en-

vironment for developing and running large-scale, multi-tiered, scalable, reliable, and

secure network applications. A shorthand name for such applications is “enterprise

applications,” so called because they are designed to solve the problems usually en-

countered by large enterprises. Enterprise applications are not only useful for large

corporations, agencies, and governments. The benefits of an enterprise application

are helpful, even essential, for individual developers and small organizations in an

increasingly networked world.

The features that make enterprise applications powerful, such as security and

reliability, often make them complex. The J2EE platform is designed to reduce the

complexity of enterprise application development by providing an architectural model,

an API, and a run-time environment that allows developers to concentrate on func-

tionality. J2EE is a multi-tiered, component-based architecture.
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2.1.1 J2EE Tiers

In a multi-tiered application, the functionality of the application is separated into

isolated functional areas, called tiers. Typically, multi-tiered applications have a

client tier, a middle tier, and a data tier. The client tier consists of a client program

that makes requests to the middle tier. The middle tier’s components handle client

requests and process application data, storing it in a permanent data store in the

data tier. J2EE application development concentrates on the middle tier.

The client tier consists of application clients that access a J2EE server. The server

processes the requests that a client makes, and returns a response back to the client.

Clients can be web browsers, stand-alone applications, or other servers, and they

usually run on a different physical machine from the J2EE server.

The middle tier contains a business tier, and often also contains a web tier. The

web tier consists of components that handle the interaction between HTTP-based

clients and the business tier. It contains control flow information related to web

pages. Typical clients that utilize an enterprise application’s web tier, if it exists, are

web browsers. The business tier consists of components that provide the business logic

for an application. In a properly designed enterprise system, the core functionality

exists in the business tier components. This is the most important tier in a J2EE

application, and it presents the most interesting research problems to solve. Crucial

components here are Enterprise JavaBeans (EJBs).

The enterprise information systems (EIS) tier consists of database servers, enter-

prise resource planning systems, and other legacy data sources, such as mainframes.

These resources typically are located on a separate physical machine than the J2EE

server, and are accessed by components on the business tier.
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2.1.2 Application Servers and Containers

A J2EE server implements the J2EE platform APIs and provides the standard

J2EE services. J2EE servers are sometimes called application servers. They host

several application component types that correspond to the middle tier in a multi-

tiered application. The J2EE server provides services to these components in the

form of a container.

A J2EE container is the interface between a component and the lower-level func-

tionality provided by the J2EE platform to support that component. The function-

ality of the container is defined by the J2EE platform, and is different for each com-

ponent type. The J2EE server allows the different component types to work together

to provide functionality in an enterprise application.

Two important structural segments of an application server are a web container,

corresponding to the web tier, and an EJB container, corresponding to the busi-

ness tier. The web container is the interface between web components and the web

server. A web component can be a servlet, a JSP page, or a JavaServer Faces page.

The container manages the component’s lifecycle, dispatches requests to application

components, and provides interfaces to context data, such as information about the

current request. The EJB container is the interface between enterprise beans, which

provide the business logic in a J2EE application, and the J2EE server. The EJB

container runs on the J2EE server and manages the execution of an application’s

enterprise beans.

The business tier of a J2EE application is built out of several EJB component

types. Stateless and stateful session beans are carriers of most of the application

business logic, e.g., updating a shopping cart. These are the components to which
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Figure 2.1: A simple J2EE deployment scenario

clients (e.g., web tier objects) connect. Entity beans, on the other hand, carry most

of the state of the business tier, and usually are mirror images of database rows. In

simplistic terms, session beans can be viewed as operators, while entity beans are

the operands to those operators. The database schema is created (usually automat-

ically) based on a well-defined object-relational mapping extracted from the entity

beans. Thus an application programmer may focus on the business logic of the ap-

plication and its object design, as opposed to dealing with extraneous activities such

as persisting the object data. Other EJB types exist as well, but they are of less

importance.

2.1.3 A Simple Deployment Scenario and Use Case

Figure 2.1 represents a very simplistic design for the deployment of a J2EE ar-

chitectural stack. The core of the system runs on physical machine 2. A single Java
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Virtual Machine (JVM) is running in an OS process. The J2EE application server

is running within that JVM, together with the general utility libraries that JDK

provides. The application server hosts the middle layer of the enterprise application,

which in this case has a web tier as well as the obligatory business tier. Consequently,

both the web container and the EJB container of the application server are in use.

The web tier and the EJB tier communicate with one another through local calls, as

they are running in the same JVM.

Physical machine 3 holds the data tier. It is running a relational database man-

agement system, which provides persistent storage for the data of the enterprise

application. Components from the business tier transfer information to and from the

data tier through a driver compliant with the Java DataBase Connectivity (JDBC)

standard.

Physical machine 1 executes the client tier; there are usually many of these client

machines. It is running a web browser, which connects to the web tier of the enterprise

application through HTTP and presents information to the user. It could also be

running a standalone desktop client, which connects directly to the business tier

through RMI (Remote Method Invocation) calls.

A typical use case utilizing all tiers of the enterprise application, as presented in

Figure 2.1, would be the following:

• The user directs her web browser, running on her client machine (physical ma-

chine 1), to the address of the web server that is a part of the web container

of the enterprise application. The browser connects to the web tier through

HTTP and retrieves a login page that requires a username and a password.
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• The user enters her username and password, and clicks the “Submit” button.

The browser sends the data to the web tier.

• The web tier locates a component in the EJB tier that provides user authen-

tication. (As discussed later, this EJB component is typically a session bean.)

The web tier makes a local call to that component, and sends it the user data.

• The EJB component retrieves the user data for the username it has just been

provided from the database running on physical machine 3. As discussed later,

this user data is typically represented by an entity bean which is a Java image of

the database data, constructed on the basis of object-relational mapping. The

EJB component then compares the password that the web tier provided to the

one that the database contains.

• Assuming the password is correct, the EJB component returns a corresponding

value to the caller from the web tier. The EJB component also sets a logged-in

flag for the user by modifying the state of the entity bean.

• Now that the web tier knows the user is authenticated, it forwards the user

request to a welcome page within the same web tier.

• The welcome page needs information about any items saved in the shopping cart

of the user in previous sessions. The welcome page locates the corresponding

EJB component (e.g., another session bean) and calls it.

• The EJB component retrieves the user’s shopping cart from the database and

presents the items it contains to the welcome page. This shopping cart data
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Figure 2.2: A clustered J2EE deployment scenario

itself is represented as an entity bean in the EJB container; this bean is different

from, but related to the entity bean representing the user data.

• The welcome page populates itself with the data it just retrieved, and is sent

to the user’s browser as a response to the login request it sent initially.

• The web browser presents the welcome page to the user.

2.1.4 Deployment on a Simple Cluster

A more realistic deployment scenario is depicted in Figure 2.2. Physical machine

1 represents the client tier, with a web browser running. Physical machine 4 stands

for the data tier, and contains a relational database management system. Physical

machines 2 and 3 are deployed in a very simple J2EE cluster. The two cluster nodes

are identical to each other, with each of them running a copy of the enterprise appli-

cation in an application server. Each cluster node is running both the web tier and
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the business tier of the application, and is effectively identical to physical machine 2

in Figure 2.1.

Clustering allows administrators to run an enterprise application on several par-

allel J2EE servers. Each of the J2EE servers is called a cluster node. The load is

distributed across the nodes, so that even if one fails, the application is still acces-

sible via the others. Clustering is crucial for J2EE, as it allows for high availability,

redundancy, and horizontal scalability in terms of processing power.

In the scenario in Figure 2.2, both cluster nodes run a complete version of the

middle tier of the enterprise application. Thus all calls between the web tier and the

business tier are still local. A simple hardware load balancer is deployed between the

client tier and the cluster hosting the middle tier. The load balancer is aware of the

availability and the load of all cluster nodes, and routes client requests according to

a pre-defined policy. A typical policy is to route requests to the cluster node that is

least loaded and still available. Other policies, such as round-robin, are also common.

In a clustered server environment, distributed state management is a key service

the cluster must provide. For instance, the session state of the web tier must be

synchronized among all instances of session objects across all nodes, so that the client

application reaches the same session state no matter which node serves the HTTP

request. If a user puts an item in her shopping cart by pressing a button on a web

page in the presentation layer, the same shopping cart containing that item should

be available for the user to see and manipulate at any later point. State is automati-

cally replicated by the clustering services, which are a part of each application server

running in the cluster, according to a replication policy set by the administrators.
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State must be synchronized at two levels: web tier and business tier. The state

of the business tier is a complex mesh of EJB objects, and its replication among

cluster nodes will be described later. The state of the web tier is contained in a

few objects corresponding to a simple HTTP session, and its replication is relatively

simple to execute. The information identifying a user (a user ID of some sort), as

well as the user’s current position in the control flow of the web tier, are propagated

to all cluster nodes. They in turn locate and populate their corresponding session

objects with it, instantiating new objects as necessary. Some administrators even

deploy HTTP session-aware hardware load balancers, which route client requests to

the web tier of the cluster node associated with that client. In that case, web tier state

replication is unnecessary, because client sessions at the web tier level are typically

self-contained and unrelated to each other. State replication of the business tier,

however, is unavoidable because of the complexity typical of the business logic of

enterprise applications.

An obvious problem with session-aware load balancers is the loss of high availabil-

ity and redundancy at the web tier level. If a cluster node fails, user sessions associated

with that node are lost. The business state of the objects associated with those users

still exists and is persisted, but users have no way of accessing it unless they re-

authenticate and start a new session. For these reasons, typically session-aware load

balancers are deployed in conjunction with master-slave replication schemes for the

web tier, where session state is synchronized with a backup server for each application

server. If the front-end application server fails, the backup one is ready to take over

its responsibilities.

Here is a short use case for the scenario presented in Figure 2.2:
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• The user directs her browser to the address of the application. That address is

resolved to the IP address of the load balancer.

• The load balancer forwards the request to one of the two cluster nodes. Suppose

that is Node 1.

• Node 1 starts a new web session for the user. The generated unique user iden-

tifier is immediately propagated to Node 2, which starts a new web session

corresponding to that identifier.

• The web tier of Node 1 is able to respond to the user request without invoking

business tier functionality. It presents a login screen to the user’s browser.

• The user fills in her username and password, and clicks the “Submit” button.

• The user’s browser starts a new HTTP request, containing the username and

password. The load balancer takes that request and routes it to one of the two

cluster nodes. Suppose that is Node 2.

• The web tier of Node 2 locates the correct user session for that user. It then

connects locally to the business tier, and forwards the received data for further

processing.

• The business tier object responsible for user authentication takes the username

and password, retrieves an EJB object (i.e., entity bean) that corresponds to the

user data from the database, and matches the password. Suppose the password

is correct.
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• Now that the business tier of Node 2 contains an EJB object unique to a user

(i.e., it carries state), this object is replicated to Node 1. The details of this

replication will be described later.

• The business tier of Node 2 returns from the local call the web tier made against

it, announcing successful authentication.

• The web tier sets a flag in the user session that states the user has logged in.

The session state changes, and that change is propagated to the user session

object in Node 1.

• The web tier returns a welcome page to the user’s browser.

2.1.5 Completely Distributed Deployment

Figure 2.3 presents a completely distributed deployment scenario. The web tier

and the business (EJB) tier are no longer co-located. Instead, each of them is deployed

in its own cluster of physical machines – cluster 1 and cluster 2, respectively. Physical

machine 1 is the client machine, running a web browser that connects to the web tier

of the enterprise application. Physical machines 2 and 3 are the participants of cluster

1. Each of the two physical machines is running an application server on top of a

JVM, but the EJB containers of those servers are inactive. Therefore, each of the

two machines in cluster 1 is only hosting a copy of the web tier of the enterprise

application. Physical machines 4 and 5 participate in cluster 2. Each of them is

running an application server on top of a JVM, with only the EJB containers being

active, together with their corresponding services. Physical machine 6 represents the

data tier, and is running a relational database management system.
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Figure 2.3: A complex J2EE deployment scenario

In this scenario the web tier and the business tier are no longer co-located. This

leads to the additional complication that the web tier can only make remote calls to

the business tier. Besides, there must exist a software or hardware system between the

two clusters that routes those remote calls as necessary. In this case, the administrator

has decided to utilize a client service that the application server provides, called

intelligent proxy, instead of deploying yet another hardware load balancer. The web

tier machines are natural choices for intelligent proxy deployment, as they effectively

are clients to the business tier, and the administrator has complete control over them.

What is more, RMI-aware hardware load balancers are exotic and expensive, while

ordinary IP-based load balancers at this level would require yet additional services,

for example distributed JNDI (Java Naming and Directory Interface).
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The intelligent proxy is also called a client-side interceptor. It is a stub object,

which is generated by the server, that implements the business interface of the service.

The client obtains (i.e., looks up and downloads) such a stub from the server, and then

makes local method calls against it in the RMI tradition. The call is automatically

routed across the network and invoked against service objects managed in the server,

i.e., the business tier. In a clustering environment such as the one described in

Figure 2.3, the server-generated stub object is also an interceptor that understands

how to route calls to nodes in cluster 2. The stub object figures out how to find the

appropriate server node, marshal call parameters, unmarshal call results, and return

the results to the caller client.

The stub interceptors have updated knowledge about the cluster. For instance,

they know the IP addresses of all available server nodes, the algorithm to distribute

load across nodes, and how to failover the request if the target node is not available.

With every service request, the server node updates the stub interceptor with the

latest changes in the cluster. For example, if a node drops out of the cluster, each

of the client stub interceptors is updated with the new configuration the next time it

connects to any active node in the cluster. All manipulations on the service stub are

transparent to the client, i.e., the web tier.

Distributed state management at the level of the web tier, i.e., distributed session

management, is handled by cluster 1 as described previously. Distributed state man-

agement at the level of the business tier is realized within cluster 2. State-carrying

EJB objects are persisted to the database whenever necessary (this is a feature that

is not exclusive to the sophisticated scenario being described, but is common among

J2EE applications, regardless of the deployment scenario). The clustering services of
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the EJB container, which every application server in cluster 2 is running, automati-

cally synchronize the state of the business tier by announcing changes to local objects

and persisting those objects, thus allowing all other nodes within the cluster to load

the updated objects from the database and replace their stale local copies.

In a clustered business tier environment, the persistence service run by all ap-

plication servers is typically upgraded to a distributed caching environment. Each

application server has a local cache that is transparent to the application. The cache

contains local copies of all state-carrying objects within the business tier, including

entity beans and stateful session beans. The local cache also persists the objects

to the database whenever necessary, usually according to some policy or flag. For

example, when a session expires, the cache persists the entity bean that represents

the shopping cart of that session, and then removes the entity bean from memory.

Whenever the application changes its state, the local cache announces that change to

the other members of the distributed cache (i.e., the other local caches in the cluster),

which then update their state. Thus the cache serves two purposes simultaneously:

• It alleviates the network load by keeping local copies of objects, and making

round trips to the database only when necessary.

• It replicates the state of its objects by understanding the object-relational map-

ping and communicating state changes to the other local caches without making

round trips to the database.

A typical use case for the deployment scenario in Figure 2.3 is the following:
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• The user directs her browser to the address of the application, which is resolved

to the IP address of the load balancer. The load balancer routes the request to

a node in the web tier cluster. Suppose that is Node 1, i.e., physical machine 2.

• Node 1 starts a new web session for the user. That session is propagated to

Node 2. Node 1 returns the call, presenting a login screen to the user’s browser.

• The user fills in her username and password, and clicks the “Submit” button.

• The browser makes a new HTTP request to the application. The load balancer

forwards that request to Node 2 in Cluster 1. The web tier copy, running on

physical machine 3, locates the user session.

• The web tier within physical machine 3 makes a local call to a session bean re-

sponsible for user authentication. That local call is intercepted by the intelligent

proxy running in the web component of the application server.

• The intelligent proxy chooses an available and lightly loaded node within Cluster

2. Suppose that is Node 1 on physical machine 4.

• The intelligent proxy forwards the request, together with its parameters (user-

name and password), to a remote session bean running as part of the business

tier of the application on physical machine 4.

• The session bean makes a local call against the persistence mechanism, locating

an entity bean object matching the username. That entity bean does not yet

exist, because this is the first call for that username. The persistence mech-

anism, which is merged with the distributed cache, automatically connects to

the database, retrieves the user data, creates an entity bean matching that user
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data, and returns a reference to that entity bean to the session bean. The

distributed cache keeps the local copy of the entity bean.

• The local cache announces the change of its state to the cluster. All other

members of the distributed cache (the local cache on physical machine 5) update

their state to match the change by contacting the local cache of physical machine

4, and retrieving the change.

• The session bean on physical machine 4 matches the password that came as a

request parameter to the password contained in the entity bean object for the

username. Suppose the match is exact.

• The session bean returns from the call, announcing that the authentication is

successful.

• The web tier sets a flag in the user session that states the user has logged in.

The session state changes, and the change is propagated to all other nodes in

Cluster 1.

• The web tier returns a welcome page to the user’s browser.

2.2 Challenges for Scalability

J2EE is undoubtedly a major contributor to the quick contemporary pace of en-

terprise application development. The J2EE specification describes various services

in painstaking detail, and application servers implement those services as efficiently as

possible. As a result, there is strict division of labor between application developers

and server administrators. Developers are allowed to focus on the business logic of the
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application and leave “glue” logic and unrelated concerns such as logging, persistence,

security, caching, etc. to the services run by the application server. Server adminis-

trators, on the other hand, are charged with finding the optimal deployment scenario

for a particular application, and configuring the respective application servers.

Despite the obvious advantages that J2EE provides, however, there is still signif-

icant room for improvement, especially in terms of horizontal scalability.

2.2.1 Horizontal Scalability

Horizontal scalability is one of the key goals underlying the progress of J2EE.

Horizontal scalability is the ability to connect multiple hardware or software entities,

such as servers, so that they work as a single logical unit. On the other hand, vertical

scalability is the ability to increase capacity by adding resources to an existing entity.

When discussing the benefits of scalability, usually near-linear scalability is implied,

where the increase in beneficial metrics is ideally linearly dependent upon the number

of additional entities. For example, to achieve linear vertical scalability in terms of

processing power, an application would run twice as fast if the server CPU is upgraded

to one that is twice as fast as the old one.

Vertical scalability is generally easy to achieve. Unfortunately, there are strict

limits to its usefulness, determined by the available hardware. Horizontal scalability

has a number of advantages to vertical scalability. First and foremost, it is potentially

unbounded by hardware limits, because an administrator theoretically can always

introduce additional physical machines in a cluster. Also, a horizontally scaled system

has redundancy built in, allowing for high-availability server solutions. Therefore,
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horizontal scalability in a stateful environment is an ideal, yet elusive, goal that

many distributed architectures have tried to solve with varying success.

2.2.2 J2EE Horizontal Scalability

J2EE provides horizontal scalability by means of its clustering services. The dis-

tributed caching service provided by the EJB container, in particular, is key to its

popularity as a distributed environment. There are scenarios, however, when J2EE

does not scale very well horizontally, if at all.

Memory Scalability

From the examples discussed previously it has become clear that J2EE resembles

a shared memory architecture built at the software (middleware) level. The state of

a distributed enterprise application is propagated to all nodes within a cluster, no

matter whether it is web tier state or business tier state. The memory footprint of all

application servers within a cluster is effectively identical, barring slight configuration

and hardware discrepancies (good administrators typically deploy physically identical

machines as nodes in a cluster). It can be concluded that J2EE scales horizontally

in terms of processing power only. Memory in a J2EE application is not horizontally

scalable at all, linearly or otherwise.

Java Virtual Machines are notorious for their large memory consumption. J2EE

application servers add several levels of indirection, typically implemented through

the use of Java reflection and Java 5 annotations, between the JVM and the enterprise

application. What is more, application servers usually run tens of services that are

transparent to an application developer, but take their toll on the hardware. The
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memory footprint of an application server running by itself, without any applications

deployed, can easily exceed 512MB in a clustered environment.

There are also hardware-related memory limits. The obvious example is the 4GB

limit of 32-bit architectures, which are still predominantly deployed in cluster con-

figurations because of their low cost and general availability. The operating system

reserves a portion of these 4GB for its kernel, and uses another portion for its services.

That exacerbates the memory issue for enterprise applications. In total, the memory

available to a Java enterprise application very rarely exceeds 3GB in contemporary

deployment scenarios. If an application requires a larger amount of memory, no J2EE

deployment can alleviate the issue as of the current state of art.

Network Scalability

Another significant area for improvement is network congestion in J2EE clusters.

Because of the hard requirements for consistency typical for distributed environments

and the corresponding algorithms (e.g., two- or three-phase locking), the number of

maintenance RMI calls within a J2EE cluster generally exceeds the number of RMI

calls that actually transfer data.

An additional problem pertinent to J2EE cluster deployments is the topology of

the cluster. Many administrators use fully-connected clusters as the simplest and

best choice, achieving state consistency throughout the cluster in the fastest possible

way, as opposed to a hierarchical topology. This choice introduces an additional issue,

however. In a fully-connected cluster the number of network messages rises quadrat-

ically with the number of nodes, which introduces a limit on the size of a cluster.

In fact such a limit exists with any cluster topology, but with hierarchical topologies

(e.g., star topology) it is reached more slowly. Consequently, J2EE applications do
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not achieve near-linear horizontal scalability, especially when the cluster size increases

beyond a practical limit.

2.3 Object-Level Lookup Service

J2EE applications cannot feasibly achieve horizontal scalability, especially in terms

of memory. One solution to that problem that is relatively simple to understand,

but very complex to design and implement, is to horizontally partition the memory

footprint of an enterprise application at the object level.

Figure 2.4 represents a new design for distributing enterprise applications. The

EJB tier is no longer a cluster. Rather, it consists of independent physical machines,

each of them connected to an independent relational database management system.

Each machine in the EJB tier is running the full enterprise application in terms of

code, however it is only able to manipulate a subset of the total enterprise application

data. Respectively, the database to which an EJB tier machine is connected contains

the same subset. This design requires the deployment of several novel services that

do not exist in contemporary systems.

The object lookup service bridges the gap between the web tier and the EJB

tier. The current state of the art uses local or clustered Java Naming and Directory

Interface (JNDI) services to bridge that gap. However, JNDI is only able to serve

requests at the class level. If a client is to target different EJB tier machines, running

the same application code, but manipulating different data, a JNDI tree is insufficient

for lookups.

A possible use case for the scenario in Figure 2.4 is the following:
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Figure 2.4: Proposed application architecture

• A user directs her browser to the web interface of the application. The load

balancer routes the client request to an available machine in the web tier cluster.

Suppose that is physical machine 2. That machine starts a new session for the

user, propagates the session to all nodes within the web tier cluster, and returns

a login page to the user.

• The user types in her username and password and clicks the “Submit” button.

The corresponding client request is routed by the load balancer to an available

machine in the web tier cluster. Suppose that is physical machine 3. That

machine propagates the client request to a remote point within the EJB tier via

the web tier proxy.

• The proxy investigates the client request and the data it carries. It then makes

a lookup request against the object-level lookup service. That request carries
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information regarding the session bean method the client request is targeted at,

as well as the values of the input parameters to that method.

• The object-level lookup service returns the address of the EJB tier machine that

contains the state corresponding to the client request. That state corresponds

to a user account and other information, specific to the application. Suppose

that machine is physical machine 4.

• The web tier proxy of physical machine 3 makes a remote call to the session

bean running on physical machine 4, and propagates the client request.

• The session bean running on physical machine 4 executes login functionality

against the data it received. It locates the user account, validates the username

and password it received from the client tier, and responds positively to the login

request. Note that if the request was incorrectly routed to physical machine 5, it

would have been impossible to authenticate the user, because physical machine

5 contains no state regarding that user.

• Physical machine 3 sets a logged-in flag in the user session. That state is

propagated to every machine in the web tier cluster. Physical machine 3 then

presents the user with a welcome page.

• Any future requests relevant to that user’s web tier session will be automatically

routed by the proxy to physical machine 4, without any further interactions with

the object lookup service.
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The scenario depicted in Figure 2.4 looks complicated from a configuration point

of view, and one might assume that deploying multiple applications on such an archi-

tecture simultaneously might pose problems. However, it is useful to remember that

in real-world deployment scenarios there is a single J2EE application deployed and

running on the entire architecture. This deployment choice eradicates any potential

conflicts related to configuring the architecture to run multiple applications.

In addition, the proposed object level lookup service might seem a potential bot-

tleneck. There are well-known solutions to this problem, however, and one needs to

look no further than current implementations of JNDI. The fundamental difference

between JNDI and the proposed service is the contents of the respective dictionary:

JNDI responds to lookups at the class level, while the proposed service does so at the

object level. They are similar from a deployment point of view, however, and it is

conceivable that scalable implementations of this service will be easy to create based

on existing JNDI designs.

Finally, Figure 2.4 shows no connection whatsoever between physical machine 4

and physical machine 5. This choice was made for simplicity of presentation. In a

real-world scenario it will still be necessary to replicate some objects within the EJB

tier, namely stateful session beans and a small subset of the entity beans: those that

must serve as bridges between partitions of the data space.

2.4 Motivation for Proposed Dynamic Analyses

As mentioned previously, there is a strict division of roles in the J2EE culture.

The one unifying interface is the J2EE specification that all participants must adhere

to. The roles are:
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• Application server developer. Participants in this role must build a framework

that conforms to the J2EE specification and provides the services described in

it. They are not interested in the particular scenarios in which the framework

is going to be used afterward.

• J2EE application developer. Participants in this role build applications within

the framework provided by the application server, assuming that everything

promised by the J2EE specification is delivered. They are not interested in how

the application server delivers that functionality, and are allowed to focus on

the specific needs of their application.

• J2EE administrator. Participants in this role are charged with configuring an

application server, so that it is an efficient container for a particular J2EE ap-

plication. To that end, they must be aware of various specifics of the respective

J2EE application (and, commonly, of the specific application server used in

their organization), without having participated in its coding or having had

any input in it.

The lookup service described above is a potential service provided by an applica-

tion server that does not exist in the J2EE specification, but alleviates some inherent

issues in the implementation of such servers. A general version of that service should

be provided by application server developers as part of the application server. It is

the job of J2EE administrators to later configure that service with the specific in-

formation it needs from the J2EE application deployed on it. J2EE administrators

cannot influence the way the J2EE application is built. Our work targets extracting

the necessary information from an already existing J2EE application, built according
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to the specification, so that it becomes possible to migrate or deploy that application

on the object-level lookup service.

A lookup service needs data against which lookups are made. Assuming that

the mapping between data partitions and EJB tier machines is available, any lookup

request coming from a client needs to provide data that identifies the partition of

that data. Consequently, an intelligent client proxy must be available that is aware

of the data that will flow between the client and the remote EJB object. Designing

and implementing such a proxy is a challenging task, especially when starting with

an existing application that is not horizontally scalable. In order to migrate such an

application, it is necessary to be aware of the data that flows between the client tier

and the EJB tier and uniquely identifies the EJB tier components necessary to satisfy

a particular client request.

As an example, consider migrating an existing J2EE application to the architec-

ture presented in Figure 2.4. The application has been built according to the J2EE

specification, and respectively the application developers focused on the business logic,

without much thought about later deployment. The application server developers,

on the other hand, provided the object-level lookup service, the intelligent proxy,

and other necessary services. Those services must be aware of the specifics of the

particular application in order to function correctly, and respectively the application

server developers have left the configuration of these services to whoever uses them.

It is now the job of J2EE administrators to take the application, which they did

not write, and deploy it on the general services that the application server provides

by configuring them with the specifics of the application. To do that, they need to

extract the data those services need from the application. In the next chapter we
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propose a dynamic analysis that identifies a significant portion of that data. This

analysis is executed once, at application configuration time (using some existing test

cases) and is not being continuously run in the background for the lifetime of the

application.
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CHAPTER 3

IDENTIFICATION OF ENTITY BEAN IDS

The proposed new design for distributed J2EE applications requires additional

services, as described in the previous chapter. One such service is an enhancement to

the already existing web tier proxy service. That service will need specific information

about the J2EE application that is deployed on it. The purpose of this chapter and

the next one is to describe dynamic analyses that extract that information from the

application.

3.1 Intelligent Proxy

As a reminder, the web tier proxy service, as it exists currently, has the following

functionality:

• Whenever a lookup is made from the web tier to obtain the handle of a remote

object, the lookup passes through the intelligent proxy at the web tier level.

• The proxy determines the physical machine in the EJB tier against which to

execute the request and, correspondingly, obtain the handle of a remote object.

The identity of that machine is decided according to a pre-existing policy.
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import javax.naming.InitialContext;

public class Client {

public static void main(String[] args) throws Exception {

InitialContext ctx = new InitialContext();

Calculator calculator =

(Calculator)ctx.lookup("CalculatorBean/remote");

System.out.println("1 + 1 = " + calculator.add(1, 1));

System.out.println("1 - 1 = " + calculator.subtract(1, 1));

}

}

import javax.ejb.Stateless;

@Stateless

public class CalculatorBean implements Calculator {

public int add(int x, int y) {

return x + y;

}

public int subtract(int x, int y) {

return x - y;

}

}

Figure 3.1: A remote client connecting to a session bean.

• Once the handle is obtained, the web tier can execute requests against it. The

proxy is not invoked further, unless another lookup is made.

A very simple example of a client connecting to a remote session bean, and exe-

cuting requests against it, is presented in Figure 3.1. Class Client and class Calcu-

latorBean are deployed on different physical machines. CalculatorBean is a stateless

session bean, which is bound to the JNDI tree of its application server under the name

CalculatorBean/remote. The local configuration of Client includes the addresses of

at least some of the application servers in the EJB cluster. Each application server

has a running high-availability JNDI service, containing bindings for locally deployed

classes, as well as availability and load information for the other members of the clus-

ter. When the main method of Client is executed, first an InitialContext object is
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created. Such objects are used as front-ends to the web tier proxy. Then a lookup

request is made against that object. The proxy standing behind it chooses one of

the remote EJB tier machines based on their availability and load information, and

returns a local handle (an RMI stub object) to an object of the type the client needs.

Note that Figure 3.1 presents a console client as opposed to the typical case of

a client belonging to the web tier of the application. We chose a console client to

simplify the example, and our choice has no impact on the lookup code described in

the previous paragraph.

According to the above description, the client proxy is agnostic of the exact data

the client will later pass over the network. The enhancement to the web tier proxy,

or the additional service that the proxy will provide, requires that the proxy is aware

of the identity and significance of some of the parameters the client will later feed to

the remote EJB tier object. Commonly, at least one of those parameters is a unique

identifier that is passed to the remote EJB object, which usually is a session bean,

so that a corresponding entity bean is invoked. The intelligent web tier proxy should

be aware of at least one such parameter for every lookup it services. If a call uses an

already existing RMI connection, it typically does not pass unique identifiers as pa-

rameters, because those have been passed previously at the time when the connection

was established. For calls that do need to establish a connection, the proxy takes the

value of the unique identifier, and executes a lookup against the object-level lookup

service that was described previously. The result of this lookup is the address of a

physical machine that contains the desired data. The proxy then executes a lookup

against that physical machine, knowing that the state it is looking for resides there,
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@Stateless

public class CustomerDAOBean implements CustomerDAO {

@PersistenceContext

private EntityManager manager;

public Customer find(int id) {

return (Customer)manager.find(Customer.class, id);

}

}

Figure 3.2: A stateless session bean.

and establishes an RMI connection that can be used afterward to access the same

remote session bean object.

3.2 Dynamic Analysis for the EJB Tier

The service described previously relies on an intelligent lookup on the client’s

part. To do this lookup, the client must be aware of relevant parameters that will be

passed later to the EJB tier. Identifying this data is non-trivial, and is the goal of

the described dynamic analysis.

The state of the EJB tier depends either directly or transitively on the particular

entity bean objects that are located in its memory space. In J2EE applications entity

beans are fetched from the database based on their ID or primary key by calling a

special service object, called an Entity Manager.

Figure 3.2 represents a very simple stateless session bean. Its only purpose is to

return Customer objects, which are Entity beans, based on their unique identifiers.

When the session bean is instantiated, an EntityManager is automatically associated

with it through dependency injection. Later this EntityManager is used to fetch entity

beans from the database through its <T> find(Class<T>, Object pk) method.
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@Embeddable

public class CustomerPK implements java.io.Serializable {

private long id;

private String name;

public CustomerPK(long id, String name) {

this.id = id;

this.name = name;

}

...

public int hashCode() {return (int) id + name.hashCode();}

public boolean equals(Object obj) {

if (obj == this) return true;

if (!(obj instanceof CustomerPK)) return false;

if (obj == null) return false;

CustomerPK pk = (CustomerPK) obj;

return pk.id == id && pk.name.equals(name);

}

}

Figure 3.3: A composite primary key.

The primary keys of entity beans are usually of primitive types, as in the above

example. This does not always have to be the case. The EJB 3.0 specification defines

the notion of a composite primary key, which is a Java bean object containing two or

more primitive type fields. Such a composite primary key may be passed as the second

parameter of the EntityManager.find method. It typically redefines its hashCode

and equals methods so that any comparisons the EntityManager makes are consistent

with the expected behavior. Figure 3.3 shows an example of a composite primary key

object.

As discussed previously, a client obtains a remote reference to a session bean,

which provides methods to handle the business logic the client needs. The session

bean object works with entity bean objects, which contain the application data,

by either obtaining their references from an EntityManager, or utilizing previously

obtained such references. The client typically passes the identifiers of the entity bean
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objects to the session bean, so that the session bean may fetch them as needed. The

common use cases for such passing are:

• The client may directly pass a primitive-type identifier to the session bean as

one of the parameters of a remote call.

• The client may directly pass a composite primary key object to the session bean

as one of the parameters of a remote call. The composite object is serialized

and passed over the wire.

• The client may pass the data that comprises a composite primary key object as

two or more of the parameters of a remote call. The session bean instantiates

the composite object.

• The client may pass the data that comprises a composite primary key object as

parameters of two or more remote calls. The session bean holds the data until

it is ready to instantiate the composite object.

Our dynamic analysis handles all of the use cases presented above. Its aim is to

match input parameters for session bean methods with actual parameters passed to

an EntityManager.find method. Thus, the dynamic analysis has well-defined entry

points (a remote invocation of a session bean method), and a well-defined exit point

(a call to EntityManager.find). The dynamic analysis covers typical cases, which

have the following properties:

• The values that comprise an entity bean’s primary key are never modified within

the EJB tier.
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• There are no exceptions at the EJB tier level. This assumption is made for the

purpose of simplifying the algorithm. A generalization of the algorithm that

handles EJB tier exceptions within the enterprise application code should be

possible to design using the approach from [57].

In order to match input parameters to primary keys, the dynamic analysis tracks

the flow of the values of the input parameters. Whenever a value that originated in

an input parameter is certain to be an entity bean’s primary key, or a part of one, the

dynamic analysis outputs a match between the input parameter and the respective

primary key.

3.2.1 Abstract Algorithm

The algorithm that comprises the dynamic analysis is based on code instrumen-

tation. Whenever an assignment, i.e., a passing of a value without any modification,

is about to take place within the EJB tier, the dynamic analysis intercepts the par-

ticipants in that assignment. This information is used to update a data structure

referred to as a value flow graph (VFG).

The abstract version of the algorithm, then, proceeds as follows:

• Whenever a remote call is made against a session bean object, intercept the

formal parameters to the call, and remember information that uniquely identifies

the parameters in their corresponding VFG nodes.

• Whenever an assignment takes place within the EJB tier, intercept the right-

hand side of the assignment (both the memory location and the uniquely iden-

tifying information related to it), and look up that information in the VFG.
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• If a location corresponding to the right-hand side of the assignment already

exists in the VFG, then it contains a pointer to its origin, i.e., it knows the

session bean method and parameter number that its value came from. Create

an association between the location corresponding to the left-hand side of the

assignment, and the origin of the value.

• Such an association is introduced even if the left-hand side does not yet corre-

spond to a location within the VFG. In that case, the corresponding location is

created.

• If a location corresponding to the left-hand side already exists in the VFG, it

already has a pointer to an origin. In that case, the association modifies the

pointer of that location, pointing it to the origin of the location corresponding

to the right-hand side of the assignment.

• If an EntityManager.find method is reached, output the association between

the second parameter to that method, and its origin. This association relates

a remote value passed to a session bean method and an entity bean’s primary

key, which was the purpose of the algorithm.

This abstract algorithm presents a high-level picture of the necessary run-time

processing; the following sections refine this picture and introduce additional details.

3.2.2 Code Instrumentation

The dynamic analysis relies on instrumented code to make callbacks into dynamic

analysis functions. Code instrumentation is executed on the Jimple intermediate

representation for analyzing and transforming Java bytecode provided by the Soot
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framework [64]. Jimple is a typed 3-address intermediate representation, and is par-

ticularly useful for the purposes of the dynamic analysis, because it makes explicit

all assignments encountered in the Java code. This includes, among other things, the

use of reference this to the receiver object within a method, and the use of method

parameters.

The following statements are instrumented:

• Direct assignment: v1 = v2

• Instance field write: v1.f = v2

• Instance field read: v1 = v2.f

• Static field write: X.f = v

• Static field read: v = X.f

• Static invocation: w = X.m(v1,. . .,vk) or X.m(v1,. . .,vk)

• Instance invocation: w = v0.m(v1,. . .,vk) or v0.m(v1,. . .,vk)

• Return: return v or return

In the above statements, vi denotes a local variable or a formal parameter (includ-

ing this). Additional instrumentation is also necessary for the entry and exit points

of the analysis: the exit points are invocations of EntityManager.find methods, and

the entry points are at the beginning of the bodies of all remotely accessible methods

of session beans.

Our experience shows that J2EE application programmers often wrap primitive-

type entity bean IDs in their respective wrapper types — specifically, the common case
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is when int parameters are passed to Integer constructors, and then the Integer

object is passed to EntityManager.find. We treat boxings of int values as assign-

ments, and instrument them accordingly. For example, for an assignment x = new

Integer(id), a node for x is created in the VFG and the origin for this node is set

to the origin for id.

In summary, the following run-time events are instrumented:

• Assignment

• Method invocation

• Boxing of primitive types

• Method exit

• Source — that is, the entry point of a session bean method called remotely

• Sink — that is, a call to EntityManager.find

3.2.3 Data Structure

It is clear from the above discussion that the VFG is a set of nodes, with informa-

tion associated with them. Those nodes represent either heap locations, correspond-

ing to static and instance fields, or local variables within methods. The relationships

(arcs) between the nodes represent the origins of the values in the heap locations

or local variables represented by the nodes. Some nodes (root nodes) stand for an

input parameter to a remote method invocation for a session bean. Those nodes have

no origin relationship, i.e., their origin pointer is effectively null. Any other node

contains an origin pointer, pointing to one of the root nodes.
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Each node within the VFG must be uniquely identifiable, so that the analysis can

relate left- and right-hand sides of assignments to already existing nodes. The unique

identifier differs in structure for the two types of nodes. A node effectively contains

a single reference to its origin, and a unique identifier, which may consist of multiple

pieces of data.

The first node type, which corresponds to static and instance fields, has the fol-

lowing structure:

• Reference to an origin; null if the node is a root.

• The name of the corresponding field.

• The fully qualified name of the class that contains the static field, or the class

whose instance contains the instance field.

• The identity hash code of the object that contains the instance field; null if

the field is static.

The second node type, which corresponds to local variables (including formal

parameters) within methods, has the following structure:

• Reference to an origin; null if the node is a root.

• The name of the corresponding local variable.

• The unique thread ID of the thread running the method containing the local

variable.

• The stack frame depth of the method containing the local variable in the running

thread. The role of this value is to distinguish between local variables in different

stack frames.

48



Note that both node types ignore the actual value of the field or variable. The

purpose of the analysis is to associate an entry point (parameter of a session bean

remote method invocation) with an exit point (invocation of an EntityManager.find

method). The value that actually flows through the assignments, be it a primitive

type or a reference to a composite primary key, brings no additional useful information

to the analysis.

The root nodes, which always correspond to formal parameters, additionally con-

tain information identifying uniquely the session bean class, method, and formal

parameter that served as an entry point.

3.2.4 Concrete Algorithm

This section presents a concrete version of the algorithm for the dynamic analy-

sis, building on the details presented earlier. Whenever an assignment of the types

discussed previously is executed, the analysis intercepts the assignment operation, as

well as its left- and right-hand side. Whenever a method invocation is encountered,

the analysis creates nodes of the local variable type. The number of those nodes is the

same as the number of the formal parameters of the called method. (An exception

is the @this formal parameter: no node is created for it, and assignments with its

participation are not instrumented, because they cannot carry a value that is inter-

esting to the analysis.) The thread ID of those nodes is the current thread ID, and

the stack depth is the current stack depth plus one. The origins of those nodes are

set to the origins of the nodes for the actual parameters at the call site. If the method

invocation is also an assignment, i.e., the method has a return value, an additional

local variable node is created for the left-hand side local at the call site (if a node for
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this local does not already exist). That node has no origin (yet), its thread ID is the

current one, and its stack depth is the current one.

Consider an assignment whose left-hand side is a local variable. The following

cases exist for the right-hand side:

• It is a constant. This case is silently skipped.

• It is a local variable. In those cases, the analysis searches the VFG and finds

the node corresponding to the right-hand local, based on the variable name, the

current thread ID, and the current stack depth. The analysis then searches for

a node corresponding to the left-hand side local, creating and populating one

if it does not exist. Then its origin is set to point to the origin of the node

corresponding to the right-hand local.

• It is a formal parameter of the current method. The analysis searches the VFG

for the node corresponding to that formal, which has been created just before

the method invocation. Then it proceeds with the left-hand side as discussed

in the previous bullet.

For instance field writes, instance field reads, static field writes, and static field

reads, the procedure is similar. The analysis finds the node corresponding to the

right-hand side, no matter whether it is a local variable or a field. It then finds, or

creates and populates, a node corresponding to the left-hand side, and sets its origin

to the origin of the right-hand side node.

When a return statement is encountered, the following functionality takes place:

• If the value of the return statement is a variable, the analysis searches the VFG

for a node corresponding to the left-hand side local variable at the caller. That
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node contains the following information: it has no origin, its thread ID is the

current one, and its stack depth is the current one minus one. When such a node

is found, its origin is set to the origin of the local variable node corresponding

to the value of the return statement.

• The analysis proceeds to remove from the VFG all local variable nodes that

correspond to the method being left, i.e., all local variable nodes whose thread

ID is the current one, and whose stack depth is the current one.

Whenever an entry point is encountered, i.e., the start to a remotely-invoked

session bean method, the analysis creates root nodes corresponding to the formal pa-

rameters of the method. The root nodes have no origins. Whenever an exit point is

reached, i.e., an invocation of an EntityManager.find method, the node correspond-

ing to the primary key actual parameter of that method is captured. The analysis

outputs the association between that node and its origin.

Clearly, the analysis simulates the run-time call stack of application code by in-

creasing a counter for every method entry event, and decreasing the counter for every

method exit event. Such a simulation is problematic in the presence of static initial-

izers and finalizers, because they may be invoked by the JVM in a way that violates

the proper ordering of entry/exit events. If such invocations happen during the algo-

rithm, associations involving origins of primary keys may be incorrectly omitted or

incorrectly introduced. While the algorithm could potentially be extended to identify

such cases, this is beyond the scope of our current work. The experimental results

presented later indicate that such cases did not influence the precision of the anal-

ysis implementation for our specific test cases. We manually traced all results and

ensured that every output produced by our implementation was correct, and every
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@Stateful

public class ShoppingCartBean implements ShoppingCart {

@PersistenceContext

private EntityManager manager;

private int orderID;

private Order order;

public void setOrder(int id) { orderID = id;}

public void buy(String product) {

if (order == null)

order = manager.find(order.class, id);

order.addPurchase(product);

}

...

}

Figure 3.4: A stateful session bean.

false negative was due to reasons other than out-of-order events such as invocations

of finalizers or static initializers.

3.2.5 Example

Figure 3.4 presents an example of an integer primary key passed to a stateful

session bean. The session bean does not immediately instantiate the entity bean

related to it. Rather, it keeps the value in field orderID until it is forced to invoke

method addPurchase in method buy. At that time, it asks the EntityManager for

the entity bean it needs. The Jimple code of the two methods of the session bean is

shown in Figure 3.5.

The instrumentation has placed a hook to a dynamic analysis method before each

assignment in the Jimple code1. The algorithm proceeds as follows:

1Strictly speaking, the initial n assignments of the form local := parameteri, where n is the
number of formal parameters, represent parameter passing and instrumentation cannot be inserted
before them. In these cases, we insert our instrumentation at the start of the actual method body,
i.e., after those assignments, but before any other code is executed.
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public void setOrder(int) {

ShoppingCartBean r0;

int i0;

r0 := @this;

i0 := @parameter0;

r0.orderID = i0;

return;

}

public void buy(java.lang.String) {

java.lang.Class r3;

Order r2;

EntityManager r1;

ShoppingCartBean r0;

int i1;

java.lang.String i0;

r0 := @this;

i0 := @parameter0;

r2 = r0.order;

if r2 != null goto label0;

r1 = r0.manager;

r3 = r2.class;

i1 = r0.orderID;

r2 = r1.find(r3, i1);

label0:

r2.addPurchase(i0);

return;

}

Figure 3.5: Jimple representation.

• A remote client calls method setOrder of the session bean with an integer

parameter. The analysis catches the entry to the method and instantiates a

root node corresponding to the first formal parameter of the method.

• The analysis does nothing for the first assignment (r0 := @this).

• For the second assignment (i0 := @parameter0), the analysis finds the node

corresponding to @parameter0 of the currently executing method, creates a new

node corresponding to variable i0 of the currently executing method, and sets

the origin of that node to the node of @parameter0.
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• For the third assignment (r0.orderID = i0), the analysis finds the node cor-

responding to i0, creates a new node corresponding to the field named orderID

of the object with identity hash code System.identityHashCode(r0), and sets

its origin to the origin of i0, i.e., @parameter0.

• The analysis intercepts the empty return statement, and deletes the node cor-

responding to local variable i0.

• Some time later, a remote client calls method buy(String). The analysis

catches the entry to the method and instantiates a root node corresponding

to the String formal parameter of the method.

• The analysis does nothing for the first assignment (r0 := @this).

• The analysis proceeds to create a node corresponding to the left-hand side of

the second assignment (i0 := @parameter0), and points its origin reference to

the node corresponding to @parameter0 of buy.

• The next three assignments (r2 = r0.order; r1 = r0.manager; r3 = r2.class;)

are skipped, as there are no nodes corresponding to their right-hand sides.

• For the next assignment (i1 = r0.orderID), the analysis creates a new node

corresponding to i1, and points its origin reference to the origin of the already

existing node corresponding to the orderID field of the current object. As a re-

minder, that node was created as a result of the previous call to setOrder. The

result is a node corresponding to i1 with an origin pointer to the @parameter0

node for setOrder.
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• The following method call is intercepted (r2 = r1.find(r3, i1)). This is a

call to EntityManager.find. The analysis looks at the node corresponding to

the second actual parameter of that call, and outputs a match between the first

formal parameter of setOrder and a primary key of an entity bean.

The end result of the analysis in this example, assuming that there is no interesting

functionality within Order.addPurchase, is a match between an entry parameter to

the EJB tier and a primary key of an entity bean.

3.2.6 Handling of Composite Primary Keys

The above algorithm matches formal parameters if remotely-invoked session bean

methods to entity bean primary keys, as long as the primary keys are of a primitive

type, or are composites that are passed directly from the client tier as DTOs. With

an alteration, the algorithm also associates the components of a composite primary

key with their originators at the EJB tier level, no matter whether those components

are passed together through an invocation of the same session bean method, or they

originate from different session bean remote methods.

The necessary alteration is an additional exit case. The Jimple representation is

instrumented at the instantiations of composite primary key objects. Those instanti-

ations are trivial to find, because composite primary keys are annotated as such, as

required by the J2EE component model. Whenever such an instantiation happens,

the analysis captures the nodes corresponding to all actual parameters to the con-

structor of the composite primary key, and outputs the associations between those

parameters and their origins.
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3.2.7 Primary Keys in Arrays

Another enhancement to the algorithm allows tracking primary keys which were

passed from the client tier as members of an array. Since array accesses do not

differ significantly from other assignment statements, it was simple to instrument

Jimple assignments featuring arrays, as well as augment the already existing VFG to

support array-based memory locations. Since Java does not allow pointer arithmetic,

the only way an array cell could possibly be modified is through an array reference.

Respectively, yet another type of node is introduced in the VFG. Nodes of that type

are very similar to nodes carrying information about object fields; the only difference

is that, instead of the field name, such nodes carry an integer, which is the array

index corresponding to that node. Thus an array is represented in the VFG as a set

of nodes. The size of that set is the array length. Since none of the test applications

utilized arrays containing primary keys, this functionality of the algorithm was not

evaluated.

3.2.8 EJBCA Example

Figures 3.6 and 3.7 present a simplified example of an EJBCA use case, which the

analysis encountered and successfully evaluated in our experimental evaluation. The

two methods presented are located within a single session bean class,

LocalRaAdminSessionBean. When a client invokes the first method in the figure, it

passes several parameters to the EJB tier: an Admin object, an int value, a String

value, and an EndEntityProfile object. The VFG is populated with four new nodes,

holding data about the four parameters. The relevant state of the VFG is shown in

Figure 3.8.
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public void addEndEntityProfile(org.ejbca.core.model.log.Admin, int,

java.lang.String, org.ejbca.core.model.ra.raadmin.EndEntityProfile)

throws org.ejbca.core.model.ra.raadmin.EndEntityProfileExistsException {

org.ejbca.core.ejb.ra.raadmin.LocalRaAdminSessionBean r0;

...

int i0, $i1, $i2, $i3, $i4, $i5;

...

boolean $z0, $z1;

...

i0 := @parameter1: int;

...

$z1 = specialinvoke r0.<org.ejbca.core.ejb.ra.raadmin.

LocalRaAdminSessionBean: boolean isFreeEndEntityProfileId(int)>(i0);

...

}

Figure 3.6: EJBCA example, part 1.

The second parameter to the method, denoted by @parameter0, is assigned to

local variable i0. Respectively, a new VFG node is created to hold that information.

After the execution of some code irrelevant to this particular use case, the ex-

ecution trace reaches the method call noted on Figure 3.6. A new VFG node is

created whose origin is the origin of the i0 node, or the second parameter of the

addEndEntityProfile method. This new node’s name is @parameter0, with stack

depth equal to the current one plus one.

When isFreeEndEntityProfileId is entered (Jimple code on Figure 3.7), the

node just created is immediately used. Because the value of @parameter0 is assigned

to local variable i0, as per the Jimple code, yet another node is created in the VFG.

Its name is, naturally, i0; its stack depth is the current one, which is one in this case;

and its origin is the origin of the value assigned to it, which is root node @parameter0

with stack depth 0.
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private boolean isFreeEndEntityProfileId(int) {

org.ejbca.core.ejb.ra.raadmin.LocalRaAdminSessionBean r0;

int i0;

boolean z0;

org.ejbca.core.ejb.ra.raadmin.EndEntityProfileDataLocalHome $r2;

java.lang.Integer $r3;

r0 := @this: org.ejbca.core.ejb.ra.raadmin.LocalRaAdminSessionBean;

i0 := @parameter0: int;

z0 = 0;

label0:

if i0 <= 1 goto label1;

$r2 = r0.<org.ejbca.core.ejb.ra.raadmin.LocalRaAdminSessionBean:

org.ejbca.core.ejb.ra.raadmin.EndEntityProfileDataLocalHome

profiledatahome>;

$r3 = new java.lang.Integer;

specialinvoke $r3.<java.lang.Integer: void <init>(int)>(i0);

interfaceinvoke $r2.<org.ejbca.core.ejb.ra.raadmin.

EndEntityProfileDataLocalHome: org.ejbca.core.ejb.ra.raadmin.

EndEntityProfileDataLocal findByPrimaryKey(java.lang.Integer)>($r3);

label1:

...

return z0;

}

Figure 3.7: EJBCA example, part2.

The next relevant event is the creation of a new Integer object which wraps the

value of local variable i0. Respectively, a new node is created in the VFG. The name

of the node is $r3, which is the local variable name in Jimple for the reference to the

Integer object. The stack depth is one, and the origin is root node @parameter0.

The execution then proceeds to make the call to findByPrimaryKey with local

variable $r3. The analysis captures that information, finds the origin of that node,

and outputs that the second formal parameter of addEndEntityProfile is an entity

bean primary key. The relevant VFG state just before the call to findByPrimaryKey

is depicted in Figure 3.9.
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Figure 3.8: Initial VFG state

Figure 3.9: Final VFG state

3.3 Finer-Grain Tracking of Values

The algorithm as described previously is concerned with detecting the entry points

of primary keys to the EJB tier. It tracks assignments within the EJB tier, setting

origin pointers of VFG nodes to the respective entry nodes of the values. This results

in losing the propagation chain of those values. The analysis keeps the distinction

between local variable nodes in multiple calls to the same method by simulating a call

stack, and assigning a stack depth value to each local variable node. When a method

is exited, all local variable nodes for that method invocation are deleted, because at

that moment they become irrelevant to the intended output of the analysis. That
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public void addEndEntityProfile(org.ejbca.core.model.log.Admin, int, int,

java.lang.String, org.ejbca.core.model.ra.raadmin.EndEntityProfile)

throws org.ejbca.core.model.ra.raadmin.EndEntityProfileExistsException {

org.ejbca.core.ejb.ra.raadmin.LocalRaAdminSessionBean r0;

...

int i0, i1, $i2, $i3, $i4, $i5;

...

boolean $z0, $z1;

...

i0 := @parameter1: int;

i1 := @parameter2: int;

...

$z0 = specialinvoke r0.<org.ejbca.core.ejb.ra.raadmin.

LocalRaAdminSessionBean: boolean isFreeEndEntityProfileId(int)>(i0);

$z1 = specialinvoke r0.<org.ejbca.core.ejb.ra.raadmin.

LocalRaAdminSessionBean: boolean isFreeEndEntityProfileId(int)>(i1);

...

}

Figure 3.10: Augmented EJBCA example

output is a list of session bean methods and their formal parameters that have been

identified as primary keys.

A programmer may want to have more information regarding the values of primary

keys, i.e., the chain of assignments and conversions that the values flowed through

in order to reach the findByPrimaryKey call. Such information improves program

comprehension and may be useful for testing, debugging, and maintenance tasks.

As an example, consider an extension of the code from Figure 3.6, presented in

Figure 3.10. The addition is a new integer parameter to the method, which is used

to call the method from Figure 3.7 for the second time. The programmer may be

interested in the propagation of values, so a desirable piece of information for every

assignment is the signature of the method whose local variable participates in the

assignment. In addition, the information regarding value propagation should not be

removed from the graph, meaning that local variable nodes should not be deleted at
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method exit. This necessitates having three additional pieces of information for each

variable node:

• A flag that says whether the node is “alive”, signifying whether it may partici-

pate in future assignments, or just exists in the graph simply for the purpose of

recording the propagation chains. There must be no more than one live node

with the same uniquely identifying information.

• The full signature of the method containing the declaration of the variable (and,

by extension, any assignments with its participation).

• A counter distinguishing between multiple calls of the same method. This

counter must be different from the stack depth counter that already exists.

In addition, the origin pointer of a node is replaced with a parent pointer, which

points to the node’s immediate predecessor.

The method signature and the method call counter, which were not included in the

previous version of the VFG, together may safely substitute the stack depth counter.

As a reminder, the function of the stack depth counter is to distinguish between

multiple local variables with the same name somewhere along a call chain. The above

two additional pieces of information combine to form a method-specific invocation

counter that serves the same purpose, and in addition distinguishes between local

variables with the same name and the same stack depth, as Figure 3.10 shows. The

latter is a complication introduced by the fact that local variable nodes are not

removed from the VFG at method exit in this version of the algorithm.

Figure 3.11 represents the state of the VFG at the end of the second call to

isFreeEntityProfileId if additional information about value propagation is desired.

61



Figure 3.11: Final VFG state with additional information

Nodes marked with a solid line are tagged as live, while ones marked with a dotted

line are tagged as dead and cannot participate in further assignments. For the sake of

brevity, it has been assumed in the figure that the method represented in Figure 3.10

has a method signature internally identified by 14, while the corresponding number

for the method in Figure 3.7 is 15. That final state can readily be output from

the algorithm, resulting in a sequence of nodes for each primary key that uniquely

identifies the propagation chain of its value.

To construct the VFG presented in Figure 3.11 the algorithm presented in the

previous section must be changed as follows.

When the first method call in Figure 3.11 is reached, a new node is created in

the VFG. The node corresponds to the first formal parameter of the called method.

The method signature is indicated by 15, and the global execution counter for this

method is 0, since this is its first execution. The parent pointer of that node is
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the local node representing i0 of the 0th execution of addEndEntityProfile. As a

reminder, the method signature and the execution counter together form a method-

specific call counter. The execution counter represents the successive instances of the

respective method, e.g., nodes with method:15,call:1 represent local variables in

the 1st run-time instance of the method with signature 15. Instances are counted

from zero.

Once that method is entered (Figure 3.7), local node i0 is assigned the value of

its first formal parameter. A lookup is made against the VFG, searching for a live

local node variable with name @parameter0 for the 0th execution of method 15. A

new node is created, corresponding to local variable i0. If such a node already exists

(meaning that this local variable has already been assigned a value), that node is

tagged as dead. It remains in the VFG, however, for the sake of any chains in which

it participates. The parent pointer of the new node is set to the @parameter0 node. A

similar functionality takes place when the value of i0 is boxed in an Integer object,

whose address is stored in local variable $r3. Then, when the findByPrimaryKey

method is called, the entire chain of nodes related to $r3 can be produced as output.

When the method exits, all its local variables are tagged as dead: they may not

be returned from lookups any more. However, they remain in the VFG, because

they may have taken part in chains with the participation of object fields, return

statements, or in general chains that may later lead to a findByPrimaryKey method,

even though this is not the case in this example.

Back in Figure 3.11 the next line of code is executed. It is another call to

isFreeEntityProfileId, this time with a different parameter. The execution counter
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for that method is increased to 1, and a new node is created in the VFG correspond-

ing to @parameter0 of that method. Afterward the algorithm proceeds as described

above.

In general, every assignment creates a new VFG node for the left-hand side. Any

old nodes having the same identifying information as the new one are marked as

dead, but are not deleted from the VFG, so that any chains with their participation

may be retrieved later. This happens without regard for the node type. This, of

course, is necessary because a local variable or an object field may participate in the

propagation of a primary key, but later may be reassigned with another value. It

must still be possible to retrieve the original chain despite this reassignment.

3.4 Experimental Study

The dynamic analysis was evaluated on three separate Enterprise Java applica-

tions, running on the JBoss Application Server version 4.0.5 [31]. The largest and

most complicated application used for the evaluation was EJBCA version 3.4.1 [22].

The reasons for our choice of this application were its realistic size (635 classes), ro-

bustness, source code availability under the Lesser General Public License, and the

fact that it is an industrial-strength enterprise application that has been successfully

deployed on a number of web sites. The two smaller applications were Duke’s Bank

[21] and Pet Store [30]. We used HSQLDB, the native Java database engine that is

bundled with JBoss, for the database layer. The machine used for experimental eval-

uation had an AMD Athlon XP 2200+ CPU with 1 GB RAM. The operating system

was Ubuntu 7.04 GNU/Linux. JBoss and HSQLDB, together with the Enterprise

Java applications deployed on them, were run through Sun’s Java 6 JVM.
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For the evaluation we used applications built for J2EE up to version 1.4 (corre-

sponding to EJB version up to 2.1). While there are significant differences between

the latest Enterprise Java version (1.5, corresponding to EJB version 3.0) and J2EE

1.4, those differences are mostly irrelevant to the dynamic analyses described in this

work. The relevant difference is the lack of an EntityManager object in J2EE 1.4.

The method used to return primary keys of entity beans is a member method of the

corresponding entity bean, with signature Object findByPrimaryKey(Object id).

This difference necessitated a trivial alteration of the algorithm.

We implemented two separate versions of the algorithm. The first version uses

bytecode instrumentation to call functionality on the VFG from within the instru-

mented code. That is, whenever an interesting event (an entry point, an assignment

of the kinds described previously, a method invocation, a value-carrying return state-

ment, or an ending point) happens, there will also be a static invocation of a gateway

to the VFG, passing all relevant data to it. This is the online version of the algorithm.

We also implemented an offline version which uses bytecode instrumentation of all

interesting events to simply dump all relevant data to a file. Of course, the bytecode

instrumentation for the offline version is the same as the one for the online version.

After the testing run ends, the trace is processed with a separate tool, which invokes

the VFG functionality as necessary. A final implementational point of interest is that

we did not track thread IDs. This simplification was made possible by the fact that

all tests performed used single-threaded test suites.
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3.4.1 Analysis Precision

For the experimental evaluation of EJBCA we utilized its own testing suite. It

is run remotely (from a separate JVM), and connects to the running instance of the

enterprise application directly through RMI, meaning that it bypasses the Web tier

of the application. To evaluate the other two applications we manually tested their

functionality through a browser, connected to their Web tiers.

Analysis precision is determined as follows: let n be the total number of calls

to findByPrimaryKey methods, and let m be the total number of matched such

calls, where a matched call is defined as a call whose parameter origin is known

(i.e., the analysis has output a match between an input parameter to the EJB tier

and this particular method invocation). Then the number of unmatched calls is,

naturally, n − m. In the best possible case the parameter to every single call to

findByPrimaryKey would originate at the EJB tier entrance. Unfortunately, in some

tests there were calls to findByPrimaryKey whose parameters did not originate at

that entrance, and we had to manually inspect the relevant source code in order to

find the origin of the parameter.

Therefore, an unmatched call could be caused by one of the following:

• A deficiency in the algorithm, where the assignment chain between a value

flowing in the EJB tier and the value leaving the EJB tier is not tracked precisely,

• Or a rare use case where the value leaving the EJB tier originates within the

EJB tier.

There were a total of 152 invocations of findByPrimaryKey methods in EJBCA.

Our analysis matched 141 of the invocations, meaning that there were 11 unmatched
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ones. An inspection of the execution trace and EJBCA’s source code showed that

three of those unmatched invocations were instances of two separate method calls,

which use a pre-configured constant value (which turned out to be 0 and "0" respec-

tively) to fetch some kind of a “base” entity bean of a particular type. In short, this

value was constant, and it originated within the EJB tier.

The other unmatched invocations were instances of method calls that take a String

value. This String value is a manipulation of another String value, passed by a client

tier to the EJB tier. The algorithm could not match the entry point to the exit point

in this case because there was a manipulation of the value other than assignment.

On the whole, the tool achieved a precision of approximately 93% when evaluated

on EJBCA. The other two Enterprise Java applications, being small in size and

mostly trivial in complexity, provided a precision figure of 100%. Every single call to

findByPrimaryKey was matched.

In addition, we evaluated the precision with respect to the call sites invoking

findByPrimaryKey in the application code. The 152 invocations of findByPrimaryKey

methods in EJBCA corresponded to 43 distinct call sites. Of those, a total of four

call sites were unmatched (meaning that there was at least one invocation for the call

site that was not matched by the tool), and 39 were fully matched. This corresponds

to precision of approximately 91%.

3.4.2 Analysis Cost

Several overheads were measured:

• Startup overhead (time to start the JVM with everything loaded, before the

execution of any tests)
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• Run-time overhead during test execution

• Time to process the execution trace (offline version only)

The start-up time of JBoss and EJBCA deployed without instrumentation was

1 minute and 35 seconds. The start-up time with instrumentation according to the

online version of the algorithm was 1 minute and 38 seconds. The time it took the

framework to start with EJBCA instrumented with the offline version was 1 minute

and 37 seconds. Those three numbers are very close, and fall within the possible error

due to non-deterministic events such as hard drive swapping. Indeed, the start-up

overhead should be either negligible or nonexistent, because none of EJBCA’s code

is executed. The only possible source of overhead is the slightly longer time to load

EJBCA’s classes as a result of the slightly increased size of those classes due to the

instrumentation. The results for the other two applications were similar.

The run-time overhead was as follows. EJBCA completed its test suite without

any instrumentation in 4 minutes and 48 seconds. The online version of the algorithm

ran the test suite (and produced immediate matches) in 18 minutes and 12 seconds,

while the offline version of the algorithm completed the test suite in exactly 12 min-

utes. This corresponds to an overhead of 279% for the online version, and 150% for

the offline version. Again, those numbers match one’s intuition: the online version of

the algorithm processes the data on the fly. The gateway must create a new object

wrapping the data passed to the VFG for every call to it, and then search for an

already existing such object within the VFG (which is based on hash tables). Finally,

if there is a match, the gateway must write the relevant information to a file. The

offline version, on the other hand, only incurs overhead for invoking the gateway and

pushing the data passed to it to a file, which is wrapped in a buffer to alleviate costs.
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Note that for the offline version the above number measures only the time to generate

the execution trace on disk. The size of the disk trace produced by the offline version

was 183 MB.

For the two smaller applications, the overheads for the online version were slightly

lower: approximately 183% for Duke’s Bank, and approximately 195% for Pet Store.

This could potentially be due to the smaller number of assignments in these applica-

tions, which corresponds to faster search in the VFG.

Finally, we measured the time to process the execution trace for the offline version

of the algorithm. For EJBCA the time was 15 minutes and 33 seconds, and for the

two smaller applications the time was approximately 1 minute per trace.

Note that even though the analysis is dynamic, it will typically have to be executed

only once for a J2EE application because of the specifics of its intended use (see

Section 2.4). Thus, the 2.8× slowdown for the online version is practical and quite

reasonable.

3.5 Optimizations and Enhancements

Several optimizations could reduce the run-time overhead of the analysis. For

example, when a reference type parameter flows in from the client, it is not necessary

to track its value unless the type is interesting. A set of interesting types can be

determined in advance. That set would include composite primary keys, and possibly

other DTO objects. The determination of such a set should include scanning the

source code of the enterprise application for certain annotations (e.g., annotations

specifying composite primary keys), as well as DTO identification, as described in

Chapter 5.
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Enhancements to the algorithm are also possible. One such enhancement is the

tracking of entity bean primary keys that are contained within other structures,

namely primary keys passed from the client tier as parts of a DTO.

Supporting DTOs containing primary keys includes some non-trivial issues. First,

DTO identification is a crucial pre-processing step in this case, which means a direct

utilization of the algorithm presented in Chapter 5. Second, an additional step is

necessary in the dynamic analysis, which will “unwrap” a DTO whenever one is passed

from a client tier. The separate parts of the DTO can then be tracked according to

the algorithm with no changes. Such parts may include primitive types, composite

primary keys, and other DTOs. In the case of a DTO wrapped within a DTO, the

inner DTO is again unwrapped, and its components are tracked separately.

Yet another enhancement includes tracking a composite key after its creation. It

is possible, although extremely unlikely, that a composite key is created within the

EJB tier, and is not used later to refer to an entity bean object. For example, a

client may pass the components of a composite key to the EJB tier, which constructs

the composite key object and returns it to the client without utilizing it further. In

such an unlikely case, the dynamic analysis will incorrectly identify the remote call

parameters as uniquely determining the partition of the session bean.

To alleviate that issue, the second version of the algorithm should track references

to newly created composite keys until they flow into an findByPrimaryKey method.

Such tracking will require alterations to the VFG, because a node corresponding

to the composite key must have more than one origin in this case. The origins of

such a node are nodes corresponding to the primitive-type values that comprised the

composite key object at its construction.
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Conclusions and Future Work. The dynamic analysis described in this chapter

identifies the entry points of primary keys, or parts of primary keys, within the

EJB tier of an enterprise application. Within the larger context of the dissertation

this analysis contributes towards the object-level lookup service described previously

by identifying the pieces of data that must be looked up, so that the client tier

executes a remote call against the correct EJB tier machine. The analysis cost,

while significant, is not prohibitive, and thus the analysis is practical. Moreover,

analysis cost could potentially be reduced by the various optimizations described

earlier. The analysis precision, while already good, could be further improved by

utilizing additional algorithms (e.g., dynamic slicing), as described in Chapter 6.
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CHAPTER 4

EJBQL RELATIONSHIP IDENTIFICATION

The previous chapter proposes an analysis that identifies a major portion of the

data necessary to implement the object-level lookup service discussed in Chapter 2.

There are, however, other pieces of information that flow between the client tier

and the EJB tier, which uniquely identify the objects within the EJB tier that the

application needs in order to service the corresponding request. That information

comprises parameters used in queries that the EJB tier executes against the data tier

to fetch corresponding objects.

4.1 EJBQL

This section provides a brief overview of the Enterprise JavaBeans Query Language

(EJBQL), based in part on material from [24]. EJBQL defines the queries for the

finder and select methods of an entity bean with container-managed persistence within

a J2EE application. A subset of SQL92, EJBQL has extensions that allow navigation

over the relationships defined in an entity bean’s abstract schema. The scope of an

EJBQL query spans the abstract schemas of related entity beans.

EJBQL queries are defined in the deployment descriptor of the entity bean. Typi-

cally, a tool will translate these queries into the target language of the underlying data
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store. Because of this translation, entity beans with container-managed persistence

are portable — their code is not tied to a specific type of data store.

The term container-managed persistence (CMP) means that the EJB container

handles all database access required by the entity bean. The bean’s code contains

no database access (SQL) calls. As a result, the bean’s code is not tied to a specific

persistent storage mechanism (database). Because of this flexibility, even if an ad-

ministrator deploys the same entity bean on different J2EE servers that use different

databases, he will not need to modify or recompile the bean’s code. In short, the en-

tity beans are more portable. This is the main reason CMP is predominantly used in

J2EE applications, as opposed to the other option, bean-managed persistence, which

leaves all persistence support in the hands of the developer, and the resulting code is

generally not portable (not to mention the additional effort and cost in implement-

ing custom versions of services that the application server already provides). The

applications we tested utilize CMP exclusively.

In order to generate the data access calls, the container needs information that

application developers provide in the entity bean’s abstract schema.

4.1.1 Abstract Schema

Part of an entity bean’s deployment descriptor, the abstract schema defines the

bean’s persistent fields and relationships. The term abstract distinguishes this schema

from the physical schema of the underlying data store. In a relational database, for

example, the physical schema is made up of structures such as tables and columns.
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The name of an abstract schema is specified in the deployment descriptor. This

name is referenced by queries written in EJBQL. For an entity bean with container-

managed persistence, the application developer must define an EJBQL query for every

finder method (except findByPrimaryKey). The EJBQL query determines the query

that is executed by the EJB container when the finder method is invoked.

4.1.2 Persistent Fields

The persistent fields of an entity bean are stored in the underlying data store. Col-

lectively, these fields constitute the state of the bean. At run time, the EJB container

automatically synchronizes this state with the database. During deployment, the

container typically maps the entity bean to a database table and maps the persistent

fields to the table’s columns.

A CustomerEJB entity bean, for example, might have persistent fields such as

firstName, lastName, phone, and emailAddress. In container-managed persistence,

these fields are virtual. Developers declare them in the abstract schema, but they do

not code them as instance fields in the entity bean class. Instead, the persistent fields

are identified in the code by access methods (getters and setters).

4.1.3 Relationship Fields

A relationship field resembles a foreign key in a database table — it identifies a

related bean. Like a persistent field, a relationship field is virtual and is defined in the

enterprise bean class with access methods. But unlike a persistent field, a relationship

field does not represent the bean’s state.
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4.1.4 Multiplicity

There are four types of multiplicities:

• One-to-one: Each entity bean instance is related to a single instance of another

entity bean. For example, to model a physical warehouse in which each storage

bin contains a single widget, StorageBinEJB and WidgetEJB would have a one-

to-one relationship.

• One-to-many: An entity bean instance may be related to multiple instances of

another entity bean. A sales order, for example, can have multiple line items.

In the order application, OrderEJB would have a one-to-many relationship with

LineItemEJB.

• Many-to-one: Multiple instances of an entity bean may be related to a single

instance of another entity bean. This multiplicity is the opposite of a one-to-

many relationship. In the example mentioned in the previous bullet, from the

perspective of LineItemEJB the relationship to OrderEJB is many-to-one.

• Many-to-many: The entity bean instances may be related to multiple instances

of each other. For example, in college each course has many students, and

every student may take several courses. Therefore, in an enrollment application,

CourseEJB and StudentEJB would have a many-to-many relationship.

4.1.5 Direction

The direction of a relationship may be either bidirectional or unidirectional. In

a bidirectional relationship, each entity bean has a relationship field that refers to

the other bean. Through the relationship field, an entity bean’s code can access its

75



related object. If an entity bean has a relationship field, then it can be said that it

“knows” about its related object. For example, if OrderEJB knows what LineItemEJB

instances it has and if LineItemEJB knows what OrderEJB it belongs to, then they

have a bidirectional relationship.

In a unidirectional relationship, only one entity bean has a relationship field

that refers to the other. For example, LineItemEJB would have a relationship field

that identifies ProductEJB, but ProductEJB would not have a relationship field for

LineItemEJB. In other words, LineItemEJB knows about ProductEJB, but ProductEJB

doesn’t know which LineItemEJB instances refer to it.

EJBQL queries often navigate across relationships. The direction of a relationship

determines whether a query can navigate from one bean to another. For example,

a query can navigate from LineItemEJB to ProductEJB, but cannot navigate in the

opposite direction. For OrderEJB and LineItemEJB, a query could navigate in both

directions, since these two beans have a bidirectional relationship.

4.1.6 Finder Queries

As described above, EJBQL queries are included in an entity bean’s configuration

data, and are translated into Java code by tools provided by the application server.

Each query maps to a method within its corresponding entity bean class. Finder

queries correspond to methods that fetch from the data tier one or more objects that

are instances of the entity bean class where the query was defined. Such queries often

take parameters to filter a selection.

Figure 4.1 represents a simple finder query that retrieves from the data tier all play-

ers with the specified position and name (specifically, all objects of type PlayerEJB
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SELECT DISTINCT OBJECT(p)

FROM Player p

WHERE p.name = ?1

Figure 4.1: Simple finder query example

SELECT DISTINCT OBJECT(p)

FROM Player p, IN (p.teams) AS t

WHERE t.league = ?1

Figure 4.2: Complex finder query example

whose name field equals the first and only parameter passed to the query). When

translated to the code of the application, this query can be executed by calling a

findByName(String name) method of that entity bean class.2 The name element is

a persistent field of the PlayerEJB entity bean. The WHERE clause compares the value

of that field with the parameter of the findByName method. EJBQL denotes an input

parameter with a question mark followed by an integer. The first input parameter is

?1, the second is ?2, etc.

The parameters to such finder queries typically originate in client requests. In

the above example, a client will typically call remotely a session bean method with

a String parameter. The session bean will pass that parameter to the entity bean

method corresponding to the above query. After the entity bean method returns the

collection of corresponding objects, the session bean might pass them back to the

client, or it might process them additionally.

2The method name has been specified in the same configuration file that specifies the body of
the query.
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SELECT DISTINCT OBJECT(p)

FROM Player p

WHERE p.salary BETWEEN ?1 AND ?2

Figure 4.3: Relationship finder query example

Figure 4.2 depicts a slightly more complex example of a finder query. The addi-

tional complexity is introduced by the navigation of two relationships. The p.teams

expression navigates the relationship between players and teams, and the t.league

expression navigates the relationship between teams and leagues.

The query in that figure retrieves the players that belong to a specified league. The

finder method is findByLeague(LocalLeague league). Note that in this example

the parameter is an object whose type is application-specific, and matches the league

relationship field in the comparison expression of the WHERE clause.

Figure 4.3 represents a finder query that has a relationship between input param-

eters other than equality. Various operators may be present in finder queries that

form relationships among the participating entities in the respective query, including

the input parameters. In this particular case, the query returns all players whose

salaries fall within the range between its two input parameters. The full grammar of

EJBQL is specified in [23].

4.2 Dynamic Analysis

The intelligent proxy described in Chapter 3 relies on the knowledge of certain

data that flows from the client tier to the EJB tier, and the fact that the data uniquely

identifies the application state that the corresponding client request will access when

serviced by the EJB tier. The proxy makes a lookup request against the object level
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lookup service with that data, receives the address of the physical machine that holds

the respective application state, and forwards the client request accordingly.

Chapter 3 proposed a dynamic analysis that focused on identifying the primary

keys that flow from the client tier to the EJB tier. While primary keys constitute a

significant portion of the data the intelligent proxy service needs, there exist client

requests that do not pass such primary keys. However, the majority of those client

requests feature at least one parameter that is passed to an EJBQL query somewhere

within the EJB tier.

The intelligent proxy needs to be aware of such parameters in order to execute

lookup requests against the object-level lookup service. That service in turn must

be aware of both the values of those parameters and the EJBQL queries in which

they participate, so that it can reliably identify the application state relevant to

those parameters and return the (potentially multiple) addresses of physical machines

holding that state to the proxy.

In the most general case, the object-level lookup service must execute the entire

query that a value passed to it participates in. There often are cases, however, when

the lookup service needs to execute only a certain part of the query. For example, if an

EJBQL query requires joining three tables at the database level (which corresponds to

following two entity bean relationship fields), and the selection of objects returned by

the query is based on a parameter of the third entity bean, then the lookup service

needs only that parameter, the entity bean it is a part of, and the relationship in

which the parameter participates within the query. Such an example is depicted in

Figure 4.2. The query in that figure joins two tables at the database level based on

a relationship field (i.e., Player.teams), and returns objects of type Player based
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on the value of a field in the other table (i.e., Team.league). The lookup service is

not interested in identifying the location of every object in the memory space of the

application, however. If the application state is partitioned optimally among physical

machines, then relationships among objects such as the one in Figure 4.2 mean that

all related objects are located within the same partition/physical machine. Therefore,

the lookup service needs information identifying any of the related objects in order to

return the address of the machine containing all of them. In Figure 4.2, the lookup

service only needs the value of the ?1 parameter, as well as its name and relationship

(i.e., “Teams.league = ?1”), in order to return the address of the physical machine

that contains both the relevant Team and the related Player objects. In general,

queries containing at least one table join at the database level can be optimized at

the level of the object lookup service.

4.2.1 Abstract Algorithm

To achieve identification of the data described in the previous paragraphs, we

propose a dynamic analysis that builds upon the ideas presented in the previous

chapter. As a reminder, the dynamic analysis from Chapter 3 tracks assignments

of values that originate in a client request to the EJB tier (from the point of view

of the EJB tier). Whenever a call to find is encountered with the participation of

such a value, the analysis outputs a match between the origin of the value and call

to find. The previous chapter described a version of that analysis that identifies the

entry points of primary keys. With some extensions, the analysis can be used to also

identify EJBQL parameters and the query relationships in which they participate.
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The analysis presented in this chapter is again based on code instrumentation.

The information captured from instrumenting the application code is stored in a

VFG. The abstract version of this analysis proceeds as follows:

• Whenever a remote call is made against a session bean object, intercept the

formal parameters to that call. Filter those input parameters based on their

type: if a value of such a type flows as input parameter to an EJBQL query

somewhere within the EJB tier of the application, remember information that

uniquely identifies this parameter in a VFG node.

• Whenever an assignment takes place within the EJB tier, proceed as in Chap-

ter 3.

• If a method is called that executes an EJBQL query, intercept the parameters

to that method. Output the association between each of those parameters and

its origin at the entry to the EJB tier, if it exists. For each such parameter,

report its complete type (primitive or entity bean), as well as the role it plays

in the query.

• If the method called in the previous bullet returns a single object (as opposed

to a Collection), create a new VFG node for the method’s return value, and set

its origin to the origin of the parameter input to the EJBQL query. If there are

multiple such parameters, the new VFG node will have multiple origins.

The differences between this algorithm and the one presented in Chapter 3 are the

additional information that the algorithm uses in the first bullet, and the additional

information it outputs in the third bullet. There is also an additional step (represented
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by the last bullet above) which takes care of a possible use case in J2EE applications:

an entity bean is retrieved from the database based on one of its parameters, and

is later used as a parameter in another query. The additional step ensures that the

analysis outputs the true origin of the parameter used in the latter query. If that step

does not exist, no origin would be reported for the second query.

It is clear from the above discussion that the analysis needs a preprocessing step

as well as a modification of the VFG.

4.2.2 Preprocessing

There are two preprocessing steps that are necessary: determine the types of input

parameters to EJBQL queries present in the application, and analyze the queries

themselves to extract the relationships in which these parameters participate.

Input Parameter Types

The analysis, as presented in the bullet list above, needs to be aware of the types of

all values passed to EJBQL queries. Note that those types have no constraints except

those imposed by the application. It might well be that a value of type double is

used in an EJBQL query, which would be impossible in the case of a primary key.

It is clear that the J2EE application must be analyzed for the types of parameters

passed to queries. We had access to the source code of our experimental applications,

and we extracted the necessary information from the source code as a preprocessing

step.

Figure 4.4 represents the declaration of an EJBQL finder method within EJBCA,

one of our test applications. This declaration exists as a comment block within

the source code of the EndEntityProfileDataBean entity bean, which implements
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* @ejb.finder

* description="findByProfileName"

* signature="org.ejbca.core.ejb.ra.raadmin.EndEntityProfileDataLocal

findByProfileName(java.lang.String name)"

* query="SELECT OBJECT(a) from EndEntityProfileDataBean a WHERE a.profileName=?1"

Figure 4.4: EJBCA query example

the EndEntityProfileDataLocal interface. The details of this preprocessing are

not interesting for the purpose of understanding the dynamic analysis, and are not

included here.

Relationship Identification

An important piece of information the object-level lookup service needs, when

presented with the values of parameters that will later participate in a query, is the

relationships those parameters participate in. This information is not necessary for

the correct operation of the service, because it is always possible to execute the entire

query as it exists in the application. However, the availability of such information

leads to potential optimizations of the object lookup service, as discussed previously.

While it is possible to dynamically parse the EJBQL queries called during the analysis,

that will introduce significant overhead at run-time. We chose to pre-parse all queries

before the dynamic algorithm was run, and make the information collected during

that parsing available to the analysis.

During this preprocessing step we extracted comparison relationships with the

participation of query parameters. Specifically, we were interested in the six com-

parison operators (equals, greater than, less then, different from, greater or equal,

less than or equal) and the BETWEEN keyword, and we extracted such relationships

where at least one operand was an input query parameter. We also extracted logical
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operations in cases where there are two or more comparisons, every one of which

operates with at least one input parameter (e.g., “select all students with lastname

?1 and GPA greater than ?2” where ?1 and ?2 are input parameters). We considered

only these kinds of relationships; if the query contains more complicated ones (e.g.,

functions such as SUM or queries whose WHERE clauses include relationships without

the participation of input parameters such as a comparison between two fields of an

entity bean) our current approach reports that it is not possible to express the effect

of the query with the simple relationships we target. Our experimental results show

that such simple relationships are enough to fully describe the effects of the large

majority of queries in our test applications.

As a result of this preprocessing step our analysis could output information regard-

ing the types of entity beans and the names of the fields participating in such relation-

ships. As an example, parsing the query in Figure 4.4 produces the information that

the first parameter of the findByProfileName query of EndEntityProfileDataBean

participates in an equality check against a profileName member field of the same

entity bean.

4.2.3 Value Flow Graph

We use a similar data structure to the one used for the first analysis. There

are the same kinds of nodes as those described in the previous chapter. We made

several additions, however, to account for the differences between the two algorithms,

namely:

• Every value in the VFG may have multiple origins for the reasons explained

previously. At the same time, the number of the origins of a VFG node typically
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remains constant for the lifetime of that node. Therefore, we replaced the single

origin reference we used in Chapter 3 with an array of such references.

• In addition, every node in the VFG except the root nodes may potentially

represent an entity bean reference that was fetched as the result of a query. We

set a flag for such nodes, and also keep the fully qualified name of the entity

bean class, to allow the possibility for the potential enhancement described in

more detail later in this chapter.

4.2.4 Code Instrumentation

The dynamic analysis relies on code instrumentation to intercept interesting events

and information related to them from within the application code. Code instrumen-

tation is again executed on the Jimple representation of application bytecode.

In addition to the instrumentation mentioned in the previous chapter, we instru-

ment the entries of methods that execute EJBQL queries in a different way than other

method entry events. Specifically, we do not create new VFG nodes for the formal

parameters as we usually do for other methods, and we do not rely on the instru-

mentation of the return statements of those methods. Rather, we check whether the

return type of the method is a Collection. If it is, we silently skip instrumenting

the return value; otherwise, we insert a call to a hook that will associate the vari-

able carrying the return value from the method with the actual parameters to that

method. In effect, if the return value is not a Collection, we treat the method call

as a direct assignment, whose left side is the variable carrying the return value, and

whose right side are the actual parameters to the method.
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Note that for every such method we also insert a call to the sink hook of the

analysis. That hook will take the information regarding the actual parameters and

output various information related to them, which is the main purpose of the analysis.

4.2.5 Concrete Algorithm

This section presents a detailed version of the concrete algorithm for the dynamic

analysis. Note that portions of this description repeat that of the analysis proposed

in Chapter 3. We present the full algorithm here for the sake of completeness.

Whenever a session bean method is called remotely, the analysis intercepts the call

and its parameters. It proceeds to check the parameter types against the list of types

participating in EJBQL queries somewhere within the EJB tier of the application.

The analysis has obtained this list from one of the preprocessing steps described

previously. If a parameter’s type is present in the list, the analysis creates a root

VFG node of the local variable type and populates it accordingly.

Whenever an assignment is encountered, the analysis intercepts information that

fully identifies the right-hand side and the left-hand side of the assignment. If a VFG

node that matches the right-hand of the assignment is present, there are two possible

cases:

• A node that matches the left-hand side of the assignment is present in the VFG.

In that case its origin is set to point to the origin of the VFG node representing

the right-hand side of the assignment.

• Such a node does not exist. In that case it is created, and its origin is set

accordingly.
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Whenever a call to a method that is different from a sink (i.e., different from

a query method) is encountered, the analysis creates a VFG node for each formal

parameter of the method. It names those nodes accordingly and sets their stack

depth to the current one plus one, so that they will be found when the method’s

formals participate in assignments within the method. It also sets the origins of

those nodes to the origins of the actuals that carry the values at the method call. In

addition, if the method call returns a value, the analysis creates an additional local

variable node in the VFG that will represent the left-hand-size variables at the call

site; this node has no origin yet.

Whenever a value-carrying return statement is encountered, the analysis finds the

VFG node that corresponds to the left-hand size at the call site. This node has no

origin, is not a root node, and its stack depth is the current one minus one. When

it is found, the analysis sets its origin to the origin of the local variable carrying the

value of the return statement. If one is not found, the case is silently skipped. For

any return statement, including value-carrying ones, all local variable nodes whose

stack depth is the current one are removed from the VFG.

Whenever a call to a query method is encountered, the analysis outputs a match

between that query and the origins of its actual parameters. In addition, it looks

up information about the relationships in which those parameters participate within

the query, and outputs it as well. This information is available as a result of the

second preprocessing step defined previously. Also, the analysis checks if the return

value of the method is a Collection; if it is not, it creates an entity bean VFG node

corresponding to the left-hand-side local variable at the call site, and sets its origin

to the origins of the actual parameters of the call.
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public void cloneEndEntityProfile(org.ejbca.core.model.log.Admin, java.lang.String,

java.lang.String) throws org.ejbca.core.model.ra.raadmin.

EndEntityProfileExistsException {

...

java.lang.String r2, r3, r4, r6, r7, $r8, r34;

org.ejbca.core.ejb.ra.raadmin.EndEntityProfileDataLocal r13;

...

r2 := @parameter1: java.lang.String;

r3 := @parameter2: java.lang.String;

...

r13 = interfaceinvoke $r12.<org.ejbca.core.ejb.ra.raadmin.

EndEntityProfileDataLocalHome: org.ejbca.core.ejb.ra.raadmin.

EndEntityProfileDataLocal findByProfileName(java.lang.String)>(r2);

...

interfaceinvoke $r17.<org.ejbca.core.ejb.ra.raadmin.

EndEntityProfileDataLocalHome: org.ejbca.core.ejb.ra.raadmin.

EndEntityProfileDataLocal findByProfileName(java.lang.String)>(r3);

...

}

Figure 4.5: EJBCA query invocation

4.2.6 Example

Figure 4.5 illustrates an EJBCA use case. The session bean method that is pre-

sented executes the same EJBQL query twice with different parameters. The entity

bean method and the query it executes are depicted in Figure 4.4.

When a client invokes the session bean method, it passes an Admin object and

two String values. The preprocessing step to the analysis has determined that Admin

objects are not participants in queries within the application, so this formal parameter

is ignored. The analysis does create two root VFG nodes corresponding to the two

String formal parameters.

The next interesting event is the invocation of findByProfileName, which our

preprocessing has determined to be an EJBQL query method. The analysis outputs

a match between the first parameter of that query and the second parameter of the
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Figure 4.6: Final VFG state

cloneEndEntityProfile method of this session bean, as well as the additional re-

lationship information regarding the first parameter of that query. This information

is output in the form “type.fieldname relationship queryParameter” with po-

tentially multiple such clauses, joined by logical operators. In this specific case, the

following relationship is reported: EndEntityProfileDataBean.profileName = ?1.

In addition, the analysis creates a new VFG node corresponding to the return value

of the query method. That node represents local variable r13, which holds a reference

to an entity bean of type EndEntityProfileDataLocal. It has a single origin in this

case, because the query has a single parameter. The origin of that node is set to the

origin of the query parameter, which is itself a root node.

The last event of interest in this example is another call to the same query method,

but with a different value. In addition, there is no return value from that call. In this

case the analysis outputs a match between the first parameter to the query and the

third parameter of cloneEndEntityProfile. There are no new VFG nodes created

as a result of the execution of this query. The relevant state of the VFG after the

second execution of the query method is presented in Figure 4.6.
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4.2.7 Finer-Grain Tracking of Values

It is possible to extend the algorithm to capture the complete flow of query pa-

rameters within the EJB tier of the application similarly to the extension described

in Section 3.3. The changes are similar to those described in the previous chapter,

namely: a tag that specifies whether a VFG node is “live” or “dead”; the full sig-

nature of the method where the variable is declared; and a counter distinguishing

between multiple calls to the same method. In addition, the enhanced algorithm

must allow for VFG nodes with multiple parents. Respectively, there may be more

than one chain from a VFG node to EJB tier entry parameters. Such multiple chains

must be reported appropriately.

4.3 Experimental Study

The experimental setup we used was the same one as that for the analysis proposed

in Chapter 3. As before, the experimental subjects were Enterprise Java applications

built on J2EE up to version 1.4, corresponding to EJB version up to 2.1. We next

describe several changes and additions that may be made to the analysis so that it is

compatible with the latest Enterprise Java version (1.5, corresponding to EJB 3.0).

One difference between EJB 2.1 and EJB 3.0 is the change in the persistence

mechanism, which was already briefly mentioned in Chapter 3. While J2EE 1.4

applications rely on entity beans providing their own persistence (either container-

managed or bean-managed), EJB 3.0 applications make use of an EntityManager

object for their persistence needs, including executing queries against it. While this is

a significant difference in terms of application design, it matters little for our analysis,
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and we could trivially replace the exit points of our analysis with the respective

EntityManager calls.

Another difference is the place of query specification. In EJB 2.1 applications that

place is a configuration file or a comment block within the source code of the respective

entity bean. In EJB 3.0 applications, queries are specified either in configuration

files, in annotations within the source code, or simply as Strings passed to specific

EntityManager methods. The last case necessitates a change in our dynamic analysis:

it should investigate all such String values in order to become aware of the particular

query to be executed and to report correct information regarding its parameters. In

effect, the analysis must intercept the String values passed to certain EntityManager

methods and parse those values at run time, thus incorporating the preprocessing

steps described previously in the online algorithm. Finally, the query language of

EJB 3.0 applications, which is called JPQL, is much richer than EJBQL, which will

require changes to the preprocessing steps.

We only implemented an online version of the algorithm, which processes infor-

mation as it is passed from the instrumented code. Also, we did not have to track

thread IDs because of the use of single-threaded test suites.

4.3.1 Analysis Precision

The experimental setup was the same as in Chapter 3. We used EJBCA’s test

suite, and manually tested the functionality of the two smaller applications through a

web browser. The precision was defined as the number of executed queries for which

the analysis could find a matching entry point for their parameters, relative to the

total number of executed queries that were instrumented.
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Note that the preprocessing step identifies all EJBQL queries that take input

parameters. There are queries that return all entity beans of a specific type, as

well as queries that return purely statistical information on all entity beans, e.g., the

average of all product prices. All such queries were ignored because there is no useful

output the analysis could have produced for them.

The analysis matched 96% of all queries with EJBCA’s own test suite (i.e., 43 out

of 45), and 100% when tested on the two smaller applications (7 queries for Duke’s

Bank and 4 queries for Pet Store). A match in this context corresponds to a match

between every parameter flowing into the query and an entry point to the EJB tier.

After investigating the source code of EJBCA, we found the following causes for

analysis imprecision:

• There was a case of an unmatched parameter whose value was manipulated

within the EJB tier. Specifically, it is a case of calculating a one-way hash of a

String password.

• A query took as its input parameter the value of a member field of an entity

bean. We later discuss a potential enhancement of the analysis that will account

for such cases.

As with the previous analysis, we also measured the number of matched query call

sites in the code of EJBCA. The 45 query invocations corresponded to 13 query call

sites in EJBCA’s code. We consider a call site to be matched only when all runtime

invocations of the call site were fully matched. Of the 13 call sites, 11 were matched,

which corresponds to precision of approximately 85%.
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We also tested the coverage of parameter relationships. The analysis was able

to classify the relationships within 87% of the executed EJBQL queries in EJBCA,

and 100% for the two smaller applications. From a call site point of view, 10 out of

the 13 call sites in EJBCA had their relationships fully identified, which corresponds

to precision of approximately 77%. This is fundamentally a measurement of how

well the simple relationships described earlier capture the common cases occurring in

real code. Later we discuss a potential approach for increasing this precision value.

This number is significant because it indicates that the majority of executed queries

are either simple enough to be executed without penalty by the object-level lookup

service, or it is possible that a very simple part of them be extracted and used to

satisfy the needs of that service.

4.3.2 Analysis Cost

The run-time overhead of the online analysis was 293% for EJBCA. The results

for the two smaller applications were comparable.

4.4 Enhancements

There are several possible enhancements to the algorithm. One such enhancement

is the tracking of query parameters that are contained within other structures, e.g.,

query parameters passed from the client tier as parts of a DTO. This enhancement is

similar to the one described in Chapter 3.

Another enhancement consists of “unwrapping” an entity bean returned from a

query and tracking its parts separately. An entity bean typically consists of a set of

values corresponding to database columns, with their associated getters and setters.

These values can be tracked by the algorithm by introducing new VFG nodes for

93



them, and setting the origins of those nodes to the origin of the node corresponding

to the entity bean that contains the values. This enhancement will immediately

improve the precision of the algorithm, e.g., for the EJBCA application.

A third possibility is taking care of Java Collections of entity beans returned

from query methods. While our test applications did not have such use cases, it is

conceivable that an entity bean in such a collection, or parts of it, may later be used

in another query. The analysis may potentially be improved to track members of such

collections, and even parts of such members.

Yet another enhancement includes capturing more complex relationships in EJBQL

queries in the second preprocessing step to the dynamic analysis. As an example, one

could extract the arithmetic operations on input parameters from queries such as

“select all students whose GPA is between ?1 and ?1 + ?2” where ?1 and ?2 are the

two input parameters to the query. The object-level lookup service could use such

information to recreate only the relevant part of the respective arithmetic expression.

Conclusions. In summary, we have designed and implemented a dynamic analysis

that identifies the entry points of query parameters to the middle tier of an EJB

application, as well as certain commonly used relationships in which those parame-

ters participate within the queries. The implementation has practical overhead and

achieves excellent precision. These results add to those of the dynamic analysis of

entity bean IDs, and contribute information necessary for the implementation of an

object-level lookup service.
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CHAPTER 5

DTO IDENTIFICATION

This chapter proposes a dynamic analysis that can be used to contribute infor-

mation towards future enhancements of the analyses described in Chapter 3 and

Chapter 4.

5.1 Introduction

Data Transfer Object (DTO) [16, 2, 62] is a design pattern that is commonly used

in distributed systems in general and Enterprise Java applications in particular. Every

method call made to a business object in an enterprise system is potentially remote.

In EJB 2.1 applications such remote invocations use the network layer regardless of

the proximity of the client to the server, creating network overhead. Such method calls

may permeate the network layers of the system even if the client and the enterprise

application layer are both running in the same Java Virtual Machine (JVM). When

multiple attribute values need to be obtained, using multiple calls to getX methods

(one per attribute) is highly inefficient.
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A DTO, also called a transfer object or a value object,3 encapsulates a set of

values, allowing remote clients to request and receive the entire value set with a

single remote call.

We define a dynamic program analysis that identifies classes which implement

the DTO pattern. The identification of DTOs is useful in several contexts. First, it

can assist program comprehension by pointing out instances of this Enterprise Java

pattern; this can also be used to create additional documentation (e.g., JavaDoc

comments). Second, DTOs may involve serialization, which can create performance

bottlenecks [52, 39]. As a performance optimization, identified DTOs can be subjected

to customized serialization mechanisms (i.e., type-aware serialization and acyclic-

graph serialization [66, 56]). Third, identifying DTO instances is an important step

towards software evolution for migrating Java Enterprise applications based on the

older EJB 2 specifications to the new EJB 3 model. In EJB 3, entity beans can be

detached from the persistence context related to a database, modified elsewhere in

the application, and merged back to the respective persistence context. As DTOs in

older EJB applications usually mirror the state of entity beans, it is highly desirable to

simplify the design by using the same entity bean object to represent state throughout

the application layer stack. Finally, a DTO is an ideal candidate for a composite

primary key of an Entity Bean as defined in Chapter 3 that is passed directly from

a client tier to the EJB tier. In addition, a primary key may be passed from the

client tier as part of a DTO. Consequently, identifying DTO instances may serve as

a preprocessing step for the dynamic analysis defined in Chapter 3.

3Note that a DTO is different from the GoF Value Object pattern [26].
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We propose a dynamic analysis for identifying DTOs in Enterprise Java appli-

cations. The analysis tracks the reads and writes of object fields, and maintains

information about the application tier that initiates the field access. The lifecycle

of a DTO is represented by a finite state automaton (FSA) that captures the rel-

evant run-time events and the location of the code that triggers these events. We

implemented the proposed approach using the JVMTI infrastructure in Java 6, and

performed a study on the same EJBCA application used in the previous two chapters.

The experimental results indicate that the dynamic analysis achieves high precision

and has acceptable overhead.

5.2 Background and Problem Statement

As discussed previously, an Enterprise Java application consists of layers, or tiers.

The EJB tier usually provides various means for clients to access it. There are inter-

faces to both clients within the same JVM (i.e., the web tier) or remote clients. Thus

it is possible for a user to access the functionality of a well-designed J2EE application

by going to the web site of the application and browsing its web tier, or by running

a desktop application designed specifically for that purpose, which connects directly

to the EJB tier through Java RMI or a similar remoting mechanism.

5.2.1 Uses of Data Transfer Objects

The information that a client (be it the web tier or a remote application) receives

from the EJB tier could be a primitive value, a Java Collection object, or a DTO

that is specific to the particular enterprise application. The client may also create

DTOs and pass them to the EJB tier in order to decrease the network overhead. A

DTO may even be created in one tier (EJB, web, or remote client), carry its state
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public class UserDataVO implements Serializable {

private String username;

private String subjectDN;

private int caid;

private String subjectAltName;

private String subjectEmail;

private String password;

private int status;

private int type;

private int endentityprofileid;

private int certificateprofileid;

private Date timecreated;

private Date timemodified;

private int tokentype;

private int hardtokenissuerid;

private ExtendedInformation extendedinformation;

public void setUsername(String user) { ... }

public String getUsername() { ... }

public void setDN(String dn) { ... }

public String getDN() { ... }

public int getCAId() { ... }

public void setCAId(int caid) { ... }

...

}

Figure 5.1: A DTO example from EJBCA.

to another tier, and then the same object may be used to carry new state back to

the tier where it was created. This more complex pattern is referred to as Updatable

DTO.

The single most important part of the definition of a DTO is that it must be

capable of being passed over the wire. Indeed, there are multiple explanations

and/or definitions of the DTO design pattern [16, 2, 62], but the only property

they all strictly require of a DTO class is that it must implement either interface

java.io.Serializable or (in extremely rare cases) java.io.Externalizable. Fig-

ure 5.1 shows a part of a DTO class from the EJBCA application used in the exper-

imental study.
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5.2.2 DTO Lifecycle

A DTO passes through several states during its lifecycle. In State 1, the object

has just been created, and it does not yet carry any application-specific state, mean-

ing that its fields have not been initialized. Populating the just-created DTO with

application state by initializing its fields leads to State 2. When in State 1 or State

2, the DTO exists within the same J2EE tier (we will refer to it as Tier 1); this is

usually the EJB tier. The fields of the DTO may be accessed and/or modified in

Tier 1 after initialization for various reasons, for example reading a field indicating

the application-specific status of the DTO.

The DTO enters State 3 when it is passed to an object belonging to a different tier

(Tier 2). The application state carried by the DTO is read and/or written in Tier 2.

The DTO then might be passed back to State 4 in Tier 1, where its data is read and

potentially modified again. In fact, the object can “oscillate” between State 3 and

State 4. Finally, when the use case ends, the DTO is prepared for garbage collection

(in either Tier 1 or Tier 2) and enters State 5. The FSA for this lifecycle is shown in

Figure 5.2.

5.2.3 Problem Definition

The goal of this work is to perform dynamic analysis of the execution of a J2EE

application in order to identify classes whose instances implement the DTO pattern.

To achieve this goal, the analysis tracks the lifecycle events of potential DTO objects,

and matches the observed sequence of events (on per-object basis) with the DTO

FSA. The key research questions that need to be answered are as follows:
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Figure 5.2: Lifecycle of a DTO.

• What specific kinds of run-time information should be collected during the

dynamic analysis, and how should this information be used to identify DTO

objects?

• What is the false positive rate? That is, how often does the analysis observe

objects whose behavior matches the DTO state transition diagram, even though

these objects do not actually implement the DTO pattern?

• What is the false negative rate? In other words, how many DTO objects violate

the pattern described above, and therefore are not reported by the analysis?

• What is the run-time overhead of the analysis?

5.3 Dynamic Analysis for DTO Identification

DTOs always carry state, and sometimes also implement application logic. This

approach is focused on the state, which makes it unnecessary to track call/return or
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method entry/exit events. To identify DTOs, the analysis tracks field accesses (reads

and writes) for objects of potential DTO classes, together with the location of the

code that triggers the events. The relevant run-time events are observed with the

help of the Java Tool Interface (JVMTI), which provides a portable and standardized

infrastructure for implementing the dynamic analysis.

5.3.1 Processing at Class Loading

Classes that are DTO candidates are Java classes that (1) belong to the enterprise

application, and (2) implement interface java.io.Serializable. The analysis inter-

cepts all class load events within the application server’s JVM, considers whether the

loaded class is a DTO candidate, and if so, tags all its fields. Tagging enables run-time

events related to tagged fields: whenever a field in such a class is accessed (read or

written) anywhere within the same JVM, a JVMTI event is generated and processed

by the analysis. Events are generated for a tagged field regardless of whether the field

is static (i.e. the field directly pertains to a DTO candidate class) or instance (i.e.

the field belongs to an object that is an instance of a DTO candidate class).

5.3.2 Processing of Field Reads and Writes

When a field read or a field write event is observed, the analysis identifies the

object that caused that event and the location (i.e., application tier) of that object.

To find the object that caused the event, the analysis obtains a handle to the call

stack of the current thread. A traversal of the stack frames, starting from the most

recent one, identifies the first method that belongs to an application class different

from the class that the field belongs to. The receiver object of that method is the
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one accessing the candidate DTO. The analysis has to consider the state of the run-

time call stack because it is very common for DTOs to implement getter and setter

methods. If a field is read through a getter, or written through a setter, the top call

stack frame would be within the context of a method belonging to the same class as

the field. However, the analysis is interested in the object that caused the field read

or write to happen in the first place.

Note that the traversal of the call stack must identify a method that belongs

to an application class. This is necessary due to the frequent use of reflection in

J2EE applications and application servers. The analysis matches the current frame

method’s class against the packages of the J2EE application to ensure that it does

not identify the cause of the field read/write event as a java.lang.Class object,

java.lang.reflect.Method object, or some other irrelevant object which is only

used as part of a mechanism internal to the application server.

Once the analysis pinpoints the method causing the field read/write event, it

determines the tier that contains the method’s declaring class, and thus the tier that

accesses the DTO candidate. This determination is done using precomputed lists of

class names for each application tier. A simple static analysis of the package hierarchy

of the J2EE application can be used to create such lists. J2EE applications usually

follow a strict package hierarchy, with web tier classes consolidated into a package

(or a package hierarchy), EJB tier classes consolidated in another package hierarchy,

etc. The application is even deployed as a combination of different modules — for

example, a web module is deployed as a .war archive, and is strictly separated from

other modules. The analysis uses that information to find the location of the object
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(or class, if the method is static) that caused the field read/write event. That location

(i.e., application tier) is also the current location of the DTO candidate.

The analysis maintains information about a DTO candidate object, including the

fully-qualified class name, the location of its creation, as well as a flag indicating

whether the object has moved to a different location during its lifetime. When a

field read/write event is observed and the current location of the DTO candidate is

identified, the analysis checks whether this is the first such event ever to happen for

that object. If this is the case, the object has just been created, and is entering State

2 of its lifecycle. The location (i.e., tier) of its creation is recorded as the object’s

current location.

If this is not the first such event, the object has already been accessed. If this

is not a DTO, its current location should always be the same as the location of its

creation. If the object a DTO, however, it may change its location, which means it

might be entering State 3 of the DTO lifecycle. If the location of the DTO candidate

is different from the location of its creation, the “moved” flag is set to true, which

essentially means that the object is marked as a DTO.

5.3.3 Processing at Garbage Collection

When a DTO candidate is being garbage collected, the analysis observes the

corresponding event and processes it. At this time no information about the object is

accessible, including its class name, so the analysis has to rely on its data structures for

all information related to that object. At this stage the analysis simply checks whether

the object that is being garbage collected has moved from the location of its creation,

and if so, the object’s class is reported as a DTO class. The implementation ensures
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that a garbage collection event is observed for every DTO candidate by aggressively

forcing garbage collection through JVM’s internal mechanisms.

5.4 Implementation Details

The Java 6 version of the JVM Tool Interface (JVMTI) was used to implement

the dynamic analysis outlined above. JVMTI provides the various capabilities that

are necessary, as well as the required event hooks to the internal workings of a Java

6 JVM. The code is written completely in C, and interfaces with the JVM through

the Java Native Interface mechanism, of which JVMTI is an extension. The JVMTI

capabilities that the tool requires (and enables) are the ability of the JVM to generate

field read events, field write events, object free events, and the capability for the agent

to set and get object tags.

JVMTI provides the useful capability for agents to set and get object tags, which

the analysis uses extensively. Unfortunately, there is a constraint on the use of JVMTI

object tags: an object tag is a single integer, which is supposed to be used by agents

as an internally-generated (possibly auto-incrementing) key. A single integer of 32

bits cannot fit all the information tracked about an object.

Since the agent is written in C, the analysis simply uses for the object tag (of

type integer) the memory address of an instance of the book-keeping data structure.

The analysis allocates memory for an instance of its data structure the first time

an object is used, and populates the object’s tag with the memory address of that

instance. During the lifetime of the object, the agent casts the tag from an integer to

pointer and vice versa as needed. Finally, when the object is being garbage collected,

the analysis also deallocates the memory used by the associated data structure.
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We did consider tracking method entry and exit events instead of field read and

write events. Since the goal is DTO detection, which can be achieved through tracking

state changes and their location, both sets of events would be able to produce results

suitable for interpretation. However, there is an important difference in the imple-

mentation of these event hooks in JVMTI. Once the capability of sending method

entry/exit events is enabled, every single such event (i.e., every call stack push or

pop) is reported, which introduces very significant overhead. On the other hand, it is

possible to flag only certain fields, and manipulating only those fields would trigger

field read/write events. To evaluate run-time overhead, a simple test was performed

with only method entry/exit events enabled. The EJB application server took over

two hours to initialize and start, with no enterprise applications running or even de-

ployed. As a result of this test, we decided to track state changes through the much

more lightweight field read/write events.

A useful optimization that JVMTI provides automatically is its sending garbage

collection events only for objects which have had their tag set. This functionality

ensures that events are sent when objects tracked by the analysis are garbage collected,

but no overhead is incurred for any other objects. We have not made any other efforts

to optimize the implementation of the algorithm or the data structures. Clearly, there

is ample room for improvement in terms of optimizations, which can be pursued in

future work.
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5.5 Experimental Study

The dynamic analysis was evaluated on the same physical machine and application

server as the previous two analyses. The single experimental subject was EJBCA,

which was also used in the experiments from the previous two chapters.

5.5.1 Analysis Precision

Various uses of EJBCA were tested by accessing the web tier from a web browser.

The results can be summarized as follows. There were a total of 132 classes that

implement java.io.Serializable and are part of EJBCA, and whose bytecode was

loaded from disk by the JVM for potential execution. Since there was no other

way of detecting the actual EJBCA DTOs, and because documentation is almost

nonexistent, we had to manually inspect the source code of every potential DTO

class (i.e., each of these 132 classes) and decide whether that class was a DTO or not

based on our experience with J2EE applications. After this manual analysis, 13 out

of the 132 classes were deemed to be DTO classes. Of those 13, 11 were actually used

by EJBCA when the test cases were executed. (The other two remained loaded and

prepared, but unused: no objects were instantiated from them at any point.) Ideally,

the dynamic analysis would report these 11 classes.

The dynamic analysis reported 11 classes, of which 10 were DTO classes as de-

termined by the manual examination of the code. These 10 classes demonstrated

various levels of complexity of behavior. There were classes that were true DTOs and

nothing more — they only had fields, constructors, getters, and setters. There were

classes that implemented java.lang.Comparable in addition to being DTOs, which

meant they had additional logic for comparison. There were classes that had many
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fields, with the corresponding getters and setters, but also had methods capable of re-

turning additional information based on the values of the fields and complex hashing

algorithms. Finally, there was a class org.ejbca.util.Query that had four fields,

two of which were Vector references, but it never returned them directly. The fields

of that class were only used to answer certain boolean queries through corresponding

methods.

The single false positive that the analysis reported was org.ejbca.util.Query.

This class may actually be considered a DTO. It was reported by the analysis because

its instances move between the J2EE tiers. The problem is that these Query instances

never allow other objects to have direct access to their fields through setter and getter

methods, and as such the class does not fit the “standard” definition of a DTO.

Therefore, in the manual examination of the code it was classified as a non-DTO

class. However, the purpose of this class is still to carry data between the tiers, and

it allows some access (albeit very circumspect) to this data. Arguably, this class

implements the DTO pattern “in spirit”.

Of the 11 classes that were manually determined to be DTOs and were also used

during the execution of the test cases, one class was not reported by the analysis —

that is, this was a false negative. The reason the class was not reported is because it

was wrapped by another DTO class. The agent detected the wrapper DTO, not the

inner one, because the cause for all reads/writes for the inner DTO is actually the

wrapper DTO, according to the analysis algorithm (the wrapper is different from the

inner DTO, but it still is a part of EJBCA, and belongs to the same tier). Conse-

quently, according to the dynamic analysis, the inner DTO has never moved because
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all locations that cause field reads and writes (i.e., methods of the wrapper DTO) are

part of the same tier as the inner DTO.

In summary, the analysis correctly identified 10 DTOs, and had one false positive

and one false negative. These promising results indicate that DTO identification can

be performed with high precision using the proposed run-time analysis techniques.

5.5.2 Analysis Cost

The start-up time of JBoss with EJBCA deployed with and without the agent

running in the background was measured. The purpose of this test is to estimate the

startup overhead due to the analysis. The application server started completely in 1

minute and 32 second without the agent, and in 2 minutes and 56 seconds with it.

These results correspond to run-time overhead of about 91%.

We also ran a batch of test use cases against the RMI interface of EJBCA to track

the execution time with and without the agent. We used this method to estimate

the overhead, as opposed to tracking the times for the web use cases, because of the

event-driven structure of the analysis. When testing web use cases, both the web

tier and the EJB tier are located within the same JVM. Due to the HTTP session

objects the web tier keeps for individual users, it would be nearly impossible to draw

hard lines between the separate test use cases in terms of memory and processing

time, unless we tracked the time it took every single method to execute and return.

As discussed earlier, tracking method entry/exit events incurs impractical overhead.

We chose instead to test the RMI interface of the EJB tier only, and to track the

execution time on the client side. Because of the remote client, in this experiment

the analysis did not report any DTOs — from its perspective, no objects were ever
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moved to a client tier. However, the analysis still responded to all relevant events and

performed all stages of the algorithm, resulting in a meaningful estimate of overhead.

The running time of the batch of remote tests without the agent was 4 minutes

and 53 seconds. The corresponding time with the agent turned on was 17 minutes

and 44 seconds. These results correspond to run-time overhead of approximately

263%. While significant, this overhead is not prohibitive, and the approach remains

suitable for practical use. As mentioned earlier, no attempts were made to optimize

the performance of the analysis implementation; future work may be able to improve

this performance and to reduce significantly the run-time overhead.

Conclusions. The dynamic analysis presented in this chapter identifies instances

of the DTO design pattern with high precision and acceptable run-time cost. A DTO

is an ideal candidate for a composite primary key that is passed directly from a client

tier to the EJB tier. What is more, primary keys (both composite and primitive) of

Entity Beans may be wrapped inside a DTO and passed between tiers. Consequently,

this analysis constitutes a potential preprocessing step for the dynamic analyses pre-

sented in Chapter 3 and Chapter 4 within the larger context of the dissertation. In

addition, DTO identification is useful for a number of other tasks related to program

comprehension, performance optimization, and software evolution.
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CHAPTER 6

RELATED WORK

6.1 Identification of Entity Bean IDs and Query Parameters

The dynamic analyses described in Chapter 3 and Chapter 4 trace the flow of

certain values through the EJB tier of a J2EE application. Thus, they resemble

a dynamic slicing algorithm. The basic approach to dynamic slicing is to execute

the program once and produce an execution trace which is processed to construct a

dynamic data dependence graph that in turn is traversed to compute dynamic slices

[34, 35]. A dynamic program slice is an executable subset of the original program

that produces the same computations on a subset of selected variables and inputs.

Informally, a dynamic slice consists of all statements that influence the value of a

variable occurrence for specific program inputs, and a dynamic slice with respect

to a set of variables may be obtained by taking the union of slices with respect to

individual variables in the set. Slices in general, and dynamic slices in particular, are

used for debugging purposes to decrease the number of program statements a human

must manually inspect in order to find the cause for a program bug.

Research exists on imprecise dynamic program slicing. Reference [1] includes

a total of four dynamic slicing algorithms, representing a range of solutions with
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varying space-time-accuracy trade-offs. Unfortunately, the first two of those dynamic

slicing algorithms, which are imprecise, have been proven to produce slices many

times larger than the respective precise slices [69]. The work in [69, 71] defines three

precise dynamic slicing algorithms with full preprocessing (FP), limited preprocessing

(LP), and no preprocessing (NP), respectively. Preprocessing in this context means

building a dependence graph by recovering dynamic dependencies from the program

execution trace. Thus FP builds the entire dependency graph before slicing. NP

does not perform any preprocessing; it uses demand-driven analysis for recovering

dynamic dependencies, and caches the recovered dependencies for future reuse. LP

first augments the execution trace with summary information, allowing for faster

traversal of the trace later, and then uses the same demand-driven analysis as NP

on the compacted execution trace. The experimental results presented in this work

show that the FP algorithm is impractical for real programs because of the amount

of memory it uses: it runs out of memory during the preprocessing phase, because

the dynamic dependence graphs are extremely large. The NP algorithm has no such

problems, but is slow. The LP algorithm never runs out of memory, while at the

same time is relatively fast, which implies that a carefully designed precise dynamic

slicing algorithm can be practical, and there is no need to trade precision for space

or time.

The original work on dynamic slicing included only backward analysis, i.e., after

the execution trace of the program is first recorded, the dynamic slicing algorithm

traces backwards the execution trace to derive dynamic dependence relations that

are then used to compute dynamic slices. Korel and Yamanchili proposed a forward

approach to dynamic program slice computation [36]. Dynamic slices are computed
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during program execution without major recording of the execution trace. The major

advantage of the forward approach over the backward approach is that space complex-

ity is bounded, unlike the case with the painstaking execution trace recording that

backward program slice computation must perform. The main disadvantage of such

algorithms is the space and time required to maintain a large set of dynamic slices.

Reference [70] analyzes the characteristics of dynamic slices, identifying space effi-

cient representation of a set of dynamic slices, and proposes a representation based

on reduced ordered binary decision diagrams. This work then defines a space and

time efficient forward computation algorithm, based on the analysis and the pro-

posed representation. The experimental results are favorable in both time and space

complexity.

Finally, there is the dynamic slicing algorithm described in [68], which comprises

the state of the art in dynamic program slicing. This algorithm could have been used

for the purposes of identifying Entity Bean IDs. The trouble with it is its generality,

which results in significant overhead. While more optimal than all other dynamic

slicing algorithms, this algorithm still compares unfavorably against our specialized

algorithm in terms of processing time and run-time overhead. Having in mind the

multitude of potential optimizations to our algorithm, the performance gap between

the two algorithms is likely to increase. A possible future enhancement in this area is

improving our algorithm’s precision by incorporating parts of this optimal dynamic

slicing algorithm, so that the causes of the few unmatched findByPrimaryKey calls

can be reliably identified.

Another field that is very relevant to the algorithms presented in Chapters 3 and 4

is information flow analysis. Static information flow analysis is well researched [18, 19],
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especially within the domain of language-based security mechanisms. For instance,

[12, 45] introduce a typed assembly language that alleviates the difficulties inherent in

information flow analysis for low-level languages. There is also considerable research

in statically ensuring information flow control for high-level languages, e.g., Java and

Java-like languages [46, 7, 4, 54, 5, 61].

Dynamic information flow analysis is also known as dynamic taint analysis. It

consists, intuitively, of marking and tracking certain data in a program at run-time.

Dynamic taint analysis is a relatively new field. Most research in the field of tainting

is related to the context of information security. The most studied type of software

exploit is overwrite attacks, a class of attacks where sensitive program data is over-

written by an attacker. The data overwritten typically consists of return addresses,

function pointers, or format strings. By suitably overwriting this data, attackers are

able to hijack a program and execute arbitrary code. The two most common types

of overwrite attacks are buffer overflows and format string attacks.

Newsome and Song [47] present one of the first dynamic-taint-based approaches

for preventing overwrite attacks. Their approach taints any data read from a network

socket. The tainted data is then propagated as the program executes. Finally, the

approach enforces the security of a program by checking that tainted data is not used

as the target of a jump, a format string, or a system-call argument. Several other

techniques for detecting overwrite attacks were developed at a similar or later time.

In particular, [33] proposes a hardware-based approach.

Dynamic tainting has also been used to prevent SQL injection attacks, in which

attackers submit maliciously-crafted strings to a web application to access its under-

lying database. Most dynamic taint based approaches against SQL injection operate
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by tainting and tracking unsafe data, similar to the approaches to prevent overwrite

attacks. Before a query string is sent to the database, it is checked to ensure that

no tainted data was used to create the string or specific parts of it. The work in [48]

proposes an instance of this approach for web applications written in PHP, whereas

[53, 27] target Java-based applications.

Dynamic-taint-based approaches have been successfully used in the context of in-

formation flow security to enforce information flow policies. Such policies define limits

on how information is used within a system. An example of an information flow secu-

rity policy is a military system where classified information must not be transferred

to individuals without the appropriate clearance level. Dynamic tainting is an ideal

technique for that purpose. Different taint markings can be used to label sensitive

information, and then the analysis can check whether marked data reaches parts of

the system forbidden to it according to the policies in place. For example, Chow and

colleagues [14] present TaintBochs, a simulator for tracking tainted data through an

entire system, including applications, operating system, and hardware. They use the

simulator to research the lifetime of sensitive information in several common applica-

tions. More recently, McCamant and Ernst [44, 43] presented a tainting technique for

dynamically tracking information flow in C programs. Their technique quantitatively

measures information flow at the instruction level using bit-tracking analysis. Finally,

Masri and Podgurski have contributed an empirical study [41] and techniques [42, 40]

for dynamic information flow analysis.

All of the above approaches are limited in that they are defined in an ad-hoc

manner, and for the specific purposes of a single application area. These inherent

limitations are addressed in [15] by Clause, Li, and Orso, who have presented a generic
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dynamic taint analysis framework that is general and flexible, as well as dytan,

an implementation of the framework that works on x86 binaries. This framework

allows for performing both data-flow and control-flow tainting, and does not rely on

a customized run-time system.

The dynamic analysis for Entity Bean ID identification can be thought of as a

dynamic taint analysis targeting a specific problem. The algorithm it uses utilizes a

single class of taint markings. It computes the subset of the data in the program that

is affected by a given set of data. The sources of tainting are the parameters of remote

calls to Session Bean methods, and the sinks of tainting are the second parameters

of EntityManager.find calls. Unfortunately, none of the existing approaches target

directly the case outlined in this work, because of the complexity and specifics of

Enterprise Java applications. dytan is a general framework that could have been

used with some additional overhead. Unfortunately, it only supports x86 binaries, as

opposed to Java bytecode.

A field related to the algorithm presented in Chapter 4 is dynamic analysis of

SQL injection attacks in Web applications. At the heart of the issue here is verifying

that the user has not altered the syntax of the query. Respectively, much of the

work focuses on analyzing string inputs. For example, Buehrer et al. enforce a policy

that user input must be a single token in the query [13]. They bound user input,

parse the query, and check whether the parse tree retains the same structure when

the user input is replaced by a single dummy node. They have also provided an

implementation of their technique for J2EE. Wasp, by Halfond et al., uses positive

tainting: it allows only trusted characters in keywords unless the programmer specifies

with a regular expression that user input may include certain keywords [27, 28]. Su
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and Wassermann use delimiters to track user input into generated queries, and parse

the queries based on a modified grammar [60]. The latter work is very similar to [13].

6.2 DTO Identification

Researchers have proposed a number of techniques based on static analysis to

recover design patterns from existing programs (e.g., [3, 37, 6, 55, 49, 51]). There is

also a body of work related to formalizing design patterns (e.g., [58, 63, 8]). Such

formalizations can later be used to match structural patterns in the source code of

a program to the structure of a design pattern. However, many design patterns in

general, and the DTO pattern in particular, have significant behavioral aspects that

static analysis cannot capture precisely. For example, in order to model precisely

the temporal sequence of events that constitutes a pattern instance, a static analysis

may have to employ expensive algorithms with flow/context/path sensitivity, which

creates significant scalability challenges for real-world Enterprise Java applications.

As another example, dynamic features such as reflection and dynamic class loading

(commonly used in enterprise Java applications) present a serious challenge for static

analysis. Even though some existing work has addressed scalability problems related

to analysis of FSA-based properties for large programs (e.g., [25, 20, 10, 11]) as well

as handling of dynamic features (e.g., [59, 38]), the current state of the art does

not provide enough evidence that static analysis of patterns in EJB application can

achieve correctness and precision at a practical cost. Thus, we believe that for such

applications the use of dynamic analysis is a more natural choice, at least until more

advances are made in static analysis research.
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Wendehals and Orso [67] propose an approach that combines static and dynamic

analysis. A static analysis examines structural properties in order to identify pattern-

instance candidates. A dynamic analysis considers a set of such candidates and checks

whether the run-time interactions match the behavioral properties of the pattern. A

FSA is used to match the observed method calls to the expected behavior. This

approach is similar to our work in that it uses a predefined FSA-based abstract

pattern specification to capture relevant program behavior and match it to design

patterns. More generally, there is a body of work on performing dynamic analyses

based on properties expressed by finite state automata (e.g., [9, 17, 29, 32]). Our work

uses a similar technique, with the focus being on (1) reads and writes of fields, and (2)

the application tier that initiates the read or write, as determined by examining the

run-time call stack. Most existing approaches target properties related to method

entry/exit events, with or without information about the identity of the receiver

object. However, our experience with JVMTI indicates that such an approach may be

impractical for J2EE applications due to the complexity of the underlying middleware

(i.e., a JBoss application server), which leads to substantial run-time overhead.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This work proposed three dynamic analyses to extract information from J2EE

applications that makes possible their deployment on an application server featuring

a partitioned architecture and an object-level lookup service. Such an architecture

and service will, in turn, ameliorate the significant problems of memory and network

scalability in existing J2EE configurations.

The first dynamic analysis identifies the entry points of primary keys to the EJB

tier of a J2EE application. This information can be used by the application server

to intercept client calls to the EJB tier and, after consultation with the object-level

lookup service, to route those calls to the appropriate EJB tier machine. Such infor-

mation is crucial for the correct operation of the proposed architecture. The analysis

achieves that identification by tracking the flow of values participating in assignments

and originating at entry points to the EJB tier until a value flows into a specific

method call, determined by the J2EE specification to pass a primary key to the data

tier of the application. The analysis also handles certain special cases, namely the

existence of composite primary keys, which are complete objects that are used as

primary keys as per the J2EE specification, and the participation of primary keys

in arrays. An additional enhancement of the algorithm was proposed that outputs
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the complete chain of assignments that a primary key passes through within the EJB

tier. Such information may be used for better program comprehension.

The analysis was implemented via code instrumentation of interesting events

within the code of the EJB tier of a J2EE application. Such events include assign-

ments, method calls and exits, EJB tier entries and exits, as well as events necessary

for the more complex cases such as composite primary key creation. Two separate

versions of the analysis were implemented, an online and an offline version. The im-

plementations were tested on a major, widely used and commercially deployed open-

source J2EE application (EJBCA), as well as two smaller J2EE applications. The

experimental evaluation indicates that the cost of the analysis is practical, especially

in light of its intended use, while the analysis results achieve excellent precision.

Future optimizations to the implementation could potentially reduce analysis cost.

The algorithm may also be enhanced in several ways. One potential enhancement

is tracking primary keys that enter the EJB tier via more complex structures, e.g.,

instances of the DTO pattern or instances of Java Collection classes. Another en-

hancement is tracking composite primary keys after their creation to ensure that they

are indeed used by the application in the way the J2EE specification intends.

The second dynamic analysis identifies another significant portion of the data

necessary to enable a partitioned architecture and an object-level lookup service. It

extracts the entry points of EJBQL query parameters to the EJB tier. Within the

context of J2EE applications, queries are necessary to fetch objects from the data tier

to the EJB tier based on more complicated logic than identification by primary keys.

Such logic may include comparisons between object fields and the values flowing into

a query in the EJB tier, and may span multiple relationships among objects.
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The analysis tracks the flow of query parameters from their entry to the EJB

tier to their exit via a call to a query method within the EJB tier. It outputs a

match between those two points for every such value, enabling the application server

to intercept client calls carrying such parameters and route them appropriately. It

also outputs information identifying the most common relationships in which such

parameters participate within the queries, enabling potential future optimizations of

the object-level lookup service. The analysis also takes care of the case when an

object returned by a query may be later used as a parameter in another query within

the EJB tier.

The analysis modifies and enhances the previous algorithm to achieve its purpose.

It consists of two preprocessing steps, namely identifying the possible parameter types

participating in queries, and identifying the most common relationships that query

parameters participate in, and the main step, which is executed at run-time and

tracks the flow of query parameters. It was implemented via code instrumentation,

and was tested on the same J2EE applications as the previous one. The experimental

evaluation of the analysis indicates that it achieves practical cost and excellent pre-

cision. In addition, it captured the overwhelming majority of relationships of query

parameters in our test applications.

Potential enhancements to the algorithm include increasing the coverage of the

relationships in which query parameters participate. Another enhancement is tracking

query parameters entering the EJB tier as parts of a DTO or a Java Collection. A

third potential enhancement is unwrapping an object returned from a query and

tracking its parts separately in case they are later used as parameters in another
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query. Yet another enhancement consists of analyzing Java Collections returned from

queries, unwrapping them, and tracking the objects contained in them separately.

The third dynamic analysis presented in this work identifies instances of the Data

Transfer Object design pattern. This pattern is commonly used in J2EE applications

for alleviating network overhead. Instances of it are used to wrap multiple values

(objects or primitive-typed) and carry them together over the network. The analysis

outputs such instances entering the EJB tier of a J2EE application, thus contributing

to potential enhancements to the previous two dynamic analyses, as well as to better

program comprehension, performance optimization, and software evolution.

The analysis algorithm investigates the lifecycle of certain objects living at the

boundary between the EJB tier and a client tier, and matches that lifecycle against

a state transition diagram that describes the behavior of an instance of the DTO

pattern. The implementation used the Java Virtual Machine Tool Interface, which

provides the capability to insert agents written in C in the Java Virtual Machine

itself. Run-time tracking is performed for interesting events happening within the

JVM, such as loading of serializable application classes, reading from and writing

to fields of instances of such classes, and garbage collecting such instances. The

implementation builds a history of the use of the instances in question, and matches

that history against the usual behavior of a DTO instance.

The implementation was tested on EJBCA, which is a sufficiently large application

to necessitate the use of DTOs. The experimental evaluation indicates that the

analysis achieves very high precision and practical run-time cost. Future work could

consider the tracking of parts of a DTO instance separately, due to the possibility
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that such parts themselves are DTO instances. This functionality will increase the

precision of the analysis.

Long-term future work includes investigating the challenges for building the object-

level lookup service itself. The contributions of this dissertation have laid the grounds

for such a service and the partitioned J2EE architecture that employs it. We envision

that once such a service is built, it will naturally become a part of the Enterprise Java

ecosystem, and will seamlessly solve some of the major problems J2EE administrators

and application server developers are trying to tackle, namely those of memory and

network scalability.

122



BIBLIOGRAPHY

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 246–
256, 1990.

[2] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns, Second Ed. Prentice Hall
PTR, 2003.

[3] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recovery in object-

oriented software. In International Workshop on Program Comprehension, pages
153–160, 1998.

[4] A. Banerjee and D. Naumann. Stack-based access control for secure information

flow. Journal of Functional Programming, 15(2):131–177, Mar. 2005.

[5] A. Banerjee, S. Rosenberg, and D. Naumann. Expressive declassification policies

and modular static enforcement. In IEEE Symposium on Security and Privacy,
pages 339–353, May 2008.

[6] E. Baniassad, G. Murphy, and C. Schwanninger. Design pattern rationale graphs:

Linking design to source. In International Conference on Software Engineering,
pages 352–362, 2003.

[7] G. Barthe, D. Naumann, and T. Rezk. Deriving an information flow checker

and certifying compiler for Java. In IEEE Symposium on Security and Privacy,
pages 230–242, 2006.

[8] A. Blewitt, A. Bundy, and I. Stark. Automatic verification of design patterns
in Java. In International Conference on Automated Software Engineering, pages

224–232, 2005.

[9] E. Bodden. J-LO: A tool for runtime-checking temporal assertions. Master’s
thesis, RWTH Aachen University, Nov. 2005.

[10] E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis to
improve the performance of runtime monitoring. In European Conference on

Object-Oriented Programming, pages 525–549, 2007.

123



[11] E. Bodden, P. Lam, and L. Hendren. Finding programming errors earlier by
evaluating runtime monitors ahead-of-time. In ACM SIGSOFT Symposium on

the Foundations of Software Engineering, 2008.

[12] E. Bonelli, A. Compagnoni, and R. Medel. Information-flow analysis for a typed

assembly language with polymorphic stacks. In Construction and Analysis of

Safe, Secure and Interoperable Smart Devices, pages 37–56, 2006.

[13] G. Buehrer, B. Weide, and P. Sivilotti. Using parse tree validation to prevent
SQL injection attacks. In International Workshop on Software Engineering and

Middleware, pages 106–113, 2005.

[14] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum. Understand-

ing data lifetime via whole system simulation. USENIX Security Symposium,
pages 321–336, 2004.

[15] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis frame-
work. In International Symposium on Software Testing and Analysis, pages 196–

206, 2007.

[16] W. Crawford and J. Kaplan. J2EE Design Patterns. O’Reilly and Associates,

2003.

[17] M. d’Amorim and K. Havelund. Event-based runtime verification of Java pro-
grams. In International Workshop on Dynamic Analysis, pages 1–7, 2005.

[18] D. Denning. A lattice model of secure information flow. Communications of the

ACM, 19(5):236–243, 1976.

[19] D. Denning and P. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504–513, 1977.

[20] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via scalable path-
sensitive value flow analysis. In International Symposium on Software Testing

and Analysis, pages 12–22, 2004.

[21] Duke’s Bank. java.sun.com/j2ee/1.4/download.htm.

[22] EJB Certificate Authority. www.ejbca.org.

[23] EJBQL Full Syntax. http://java.sun.com/j2ee/tutorial/1 3-fcs/doc/EJBQL5.html.

[24] EJBQL Tutorial. http://java.sun.com/j2ee/tutorial/1 3-fcs/doc/EJBQL.html.

[25] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate
verification in the presence of aliasing. In International Symposium on Software

Testing and Analysis, pages 133–144, 2006.

124



[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[27] W. Halfond, A. Orso, and P. Manolios. Using positive tainting and syntax-aware
evaluation to counter SQL injection attacks. In ACM SIGSOFT Symposium on

the Foundations of Software Engineering, pages 175–185, 2006.

[28] W. Halfond, A. Orso, and P. Manolios. Wasp: Protecting web applications using

positive tainting and syntax-aware evaluation. IEEE Transactions on Software

Engineering, 34(1):65–81, 2008.

[29] K. Havelund and G. Rosu. An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design, 24(2):189–215, 2004.

[30] Java Pet Store. java.sun.com/developer/releases/petstore/petstore1 3 1 02.html.

[31] JBoss Application Server. jboss.org.

[32] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. V. Sokolsky. Java-MaC:

A run-time assurance approach for Java programs. Formal Methods in System

Design, 24(2):129–155, 2004.

[33] J. Kong, C. Zou, and H. Zhou. Improving software security via runtime
instruction-level taint checking. Workshop on Architectural and System Support

for Improving Software Dependability, pages 18–24, 2006.

[34] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters,

29(3):155–163, 1988.

[35] B. Korel and J. Laski. Dynamic slicing of computer programs. Journal of Systems

and Software, 13(3):187–195, 1990.

[36] B. Korel and S. Yalamanchili. Forward computation of dynamic program slices.
In International Symposium on Software Testing and Analysis, pages 66–79,

1994.
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