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ABSTRACT

Computations involving successive application of 3D stencil oper-
ators are widely used in many application domains, such as im-
age processing, computational electromagnetics, seismic process-
ing, and climate modeling. Enhancement of temporal and spa-
tial locality via tiling is generally required in order to overcome
performance bottlenecks due to limited bandwidth to global mem-
ory on GPUs. However, the low shared memory capacity on cur-
rent GPU architectures makes effective tiling for 3D stencils very
challenging – several previous domain-specific compilers for sten-
cils have demonstrated very high performance for 2D stencils, but
much lower performance on 3D stencils.

In this paper, we develop an effective resource-constraint-driven
approach for automated GPU code generation for stencils. We
present a fusion technique that judiciously fuses stencil computa-
tions to minimize data movement, while controlling computational
redundancy and maximizing resource usage. The fusion model
subsumes time tiling of iterated stencils, and can be easily adapted
to different GPU architectures. We integrate the fusion model into
a code generator that makes effective use of scarce shared memory
and registers to achieve high performance. The effectiveness of the
automated model-driven code generator is demonstrated through
experimental results on a number of benchmarks, comparing against
various previously developed GPU code generators.
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1. INTRODUCTION
Stencil computations are central to numerous computational meth-

ods, ranging from image processing to the numerical solution of
partial differential equations. Many previous efforts for compiler
optimization of stencil computations have focused on time-iterated
stencils involving repeated application of a stencil operator [23, 4,
5, 8, 9]. In contrast, multi-statement stencils and image process-
ing pipelines apply a sequence of stencil operators on a set of input
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domains [16, 19]. Such stencil computations can be represented
by a directed acyclic graph (DAG) in which nodes represent stencil
operators and incoming edges represent inputs to these operators.
These stencil pipelines are often bandwidth-bound.

Time-tiling is a key transformation to enhance temporal reuse
in bandwidth-bound stencils. In a time-tiled execution, operations
from several consecutive time steps of a stencil computation are
combined to form a tile, which is executed atomically to exploit
data reuse. Previous efforts towards optimizing 2D stencils on
GPUs have demonstrated the effectiveness of time-tiling, along with
the utilization of shared memory [4, 9]. However, tiling 3D sten-
cils has proved to be a challenge for all previously reported code
generators. The difficulty arises from the cubic versus quadratic
increase in shared memory requirement for the 3D case, and the
very limited (usually under 64 Kbytes) shared memory available
per streaming multiprocessor (SM) on GPUs. Consequently, the
use of overlapped tiles [9] with 3D stencils results in very rapid in-
crease in redundant computations, even for very small values of the
time-tile size.

In this paper, we present a GPU code generator that optimizes a
DAG of stencil operators, making effective use of available shared
memory and registers. This enables handling of multi-statement
stencils and image processing pipelines, as well as time iterated
stencils (as arising in multigrid smoothers, etc.) via explicit un-
rolling of a few time iterations. Thus, a single framework can be
used to generate high-performance GPU code, both for time iter-
ated stencils and multi-statement stencil pipelines.

A key issue in optimizing the execution of 3D stencils is the
determination of tile shape/size and the amount of fusion across
multiple stencils, while making effective use of a combination of
shared memory and registers to enable a high degree of reuse. We
use a number of strategies to overcome the difficulties faced by
previous GPU code generators with 3D stencils:
• Instead of using symmetric 3D tiles, we use a sliding win-

dow along one spatial dimension and symmetric overlapped
2D tiling in the other two spatial dimensions to enable sig-
nificantly greater data reuse than 3D overlapped tiling.

• We exploit the flexibility of associative reordering of stencil
contributions to each data element, thereby reducing the de-
mand on the very scarce shared memory via increased use of
the more plentiful registers on modern GPUs.

• We develop a model-driven approach to determine which
stencil operators to fuse, since excessive fusion leads to in-
creased redundant computation, increased data traffic to/from
global memory, and increase in overhead from register spilling.

The paper makes the following contributions:
• It develops a resource-directed model-driven approach to gen-
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erate high-performance GPU code for stencil computations.
• It develops a practically effective stencil fusion algorithm for

GPU code generation.
• It presents compiler algorithms for an automated code gen-

erator that takes a DAG of stencil computations as input, and
generates GPU code which makes effective use of registers,
shared memory, and streamed tile execution to achieve high
warp occupancy.

• It presents a case study highlighting the factors that can con-
strain performance, and the impact of effective fusion on a
resource-intensive stencil from a partial differential equation
solver application.

• It evaluates a set of 3D benchmarks on Kepler and Maxwell
devices, demonstrating significantly higher performance than
other existing GPU code generators for stencils.

2. OVERVIEW OF APPROACH

2.1 DSL Input to Code Generator
Listing 1 shows a 7-point Jacobi stencil expressed in a domain

specific language (DSL). The input language used by our code gen-
erator is similar to Forma [19], and is designed to provide a high-
level description of the stencil computation. Each function prefixed
by stencil describes the operations to execute at a point of the com-
putation domain. Array accesses within the stencil function are
described in terms of offsets to be used to access an array element.
For example, A[1, 0,−1] refers to access to element A[i+1, j, k−1]
when executing iteration point (i, j, k).

Even though we can write many operations within a stencil func-
tion, each individual operation must be written in a generic form
with a view that a separate kernel call may be generated for it. The
code generator decides which stencil operations to fuse, how to
shift and align the offsets for array accesses when fusing operations
with dependences, and how many output stencil functions the input
stencil function is split into. To simplify the presentation, in the
examples we omit the explicit specification of the domains (array
extents) over which the stencils are applied.

The type and size of the arrays used in the computation are ex-
plicitly defined (line 10 of Listing 1). Arrays that represent the
result of the computation are specified as return-ed (line 13). An
array listed as temporary need not be explicitly stored in memory,
freeing the compiler to either store it in temporary scratch mem-
ory (such as shared memory buffers on the GPU) or in registers.
We note that such information could also be extracted from code in
other languages such as C or Fortran, but the required code analyses
are outside the scope of this paper.

2.2 Code Generation Challenges for 3D Sten-
cils

For 3D stencils, existing GPU stencil code generators [4, 5, 9,
19, 24] suffer from limitations on one or more of the following is-
sues: (a) effective management of limited GPU resources for tiled
execution; (b) optimization of the degree of fusion across multi-
ple stencils (or equivalently, the time-tile size) to achieve reduction
in data movement to/from global memory; and (c) exploitation of
associativity/commutativity properties of stencil operations to opti-
mize resource usage. Next, we discuss how the approach presented
in this paper addresses these issues.

a) Time Tiling and Computational Redundancy.
Time-tiling a stencil computation involves executing operations

from multiple time steps of the computation atomically. For exam-
ple, the stencil of Listing 1 computes two time steps (at lines 2 and

Listing 1: The stencil representation for two time steps of an

order-1 7-point Jacobi computation
1 s t e n c i l j a c o b i −d e f ( A , B , C , a , b , c ) {
2 B [ 0 , 0 , 0 ] = a∗ ( A [ 1 , 0 , 0 ] ) +
3 b∗ ( A[0 , −1 ,0]+A[0 ,0 , −1]+A [ 0 , 0 , 0 ]+A [ 0 , 0 , 1 ]+A [ 0 , 1 , 0 ] ) +
4 c∗ ( A [ −1 , 0 , 0 ] ) ;
5 C[ 0 , 0 , 0 ] = a∗ ( B [ 1 , 0 , 0 ] +
6 b∗ ( B[0 , −1 ,0]+B[0 ,0 , −1]+B [ 0 , 0 , 0 ]+B [ 0 , 0 , 1 ]+B [ 0 , 1 , 0 ] ) +
7 c∗ ( B [ −1 , 0 , 0 ] ) ;
8 }
9 p a r a m e t e r L , M, N;

10 f l o a t A[ L ,M,N] , B[ L ,M,N] , C[ L ,M,N] , a , b , c ;
11 t e m p o r a r y B ;
12 j a c o b i −d e f (A, B , C , a , b , c ) ;
13 r e t u r n C ;

5) of a 7-point Jacobi computation. Tiling the jacobi-def stencil on
a GPU requires the partitioning of the computational domain into
smaller sub-domains, and assigning these sub-domains to thread
blocks. However, simple rectangular partitioning of the iteration
space into tiles is not feasible, since at time step t, the threads at the
boundaries of adjacent tiles each need values at time step t−1 from
each other. The overlapped boundary region is called the ghost zone

or halo region. Overlapped tiling [9, 12] overcomes this problem
of cyclic inter-tile dependences by having the thread blocks redun-
dantly compute values at the halo region, thereby eliminating the
mutual dependence between adjacent tiles.

For 2D stencils, the fractional volume of redundant operations
with overlapped tiling can be effectively controlled [20]. Let us
consider a B × B thread block size, and a time-tile size of 4. If
the intermediate results are stored in shared memory, the amount of
memory required is O(4B2). The total amount of shared memory
available on GPUs is typically 48 Kbytes. For time-tile size of 4, it
is possible to use a block size of 32×32 while keeping all the inter-
mediates in shared memory. For an order-1 stencil, an overlapped
tile will involve reading in a 32×32 block from global memory, and
computation of intermediate result blocks of sizes 30× 30, 28× 28,
26 × 26, and 24 × 24, respectively for the 4 time steps in the tile.
This represents a total work of 302+282+262+242 = 2936 stencil
operations, where the non-redundant work is 4 × 242 = 2304 sten-
cil operations, resulting in a fractional redundant work volume of
632/2304 = 27%.

For a 3D stencil, a thread block size of 10 × 10 × 10 can be used
with all the intermediates in shared memory. The work performed
for 4 time steps with overlapped tiling would be 8×8×8, 6×6×6,
4×4×4, and 2×2×2, respectively. The total work is 83+63+43+23 =

800 stencil operations, of which only 4×23 = 32 operations are non-
redundant, with a fractional overhead of 768/32 = 2400%. Even
with a time-tile size of 2, the total work done is 83+63 = 728 stencil
operations, of which 2× 63 = 432 are non-redundant, resulting in a
high fractional overhead volume of 294/432 = 68%.

This indicates that when using overlapped tiling, going from
2D stencils to 3D stencils significantly increases the computational
redundancy. The resulting performance degradation makes over-
lapped 3D tiling ineffective for 3D stencils.

To overcome this problem, we perform overlapped tiling along
two spatial dimensions of the 3D domain, and launch 2D thread
blocks that stream through the unpartitioned third dimension at
each time step [15, 20]. This scheme, referred to as sliding window

time-tiling, provides full reuse along the unpartitioned dimension.
The size of the sliding window at time step t equals the number of
input planes read to compute one output plane at time step t+1. For
a 3D order-k single input/output Jacobi stencil, the sliding window
size will be 2k + 1 at each time step. For example, since Listing 1
is an order-1 (k = 1) stencil, the computation at lines 2–4 needs to



Listing 2: Fusion profitability for multi-statement stencils
1 s t e n c i l f u s i o n (A, B , C , D, E , d ) {
2 s1 : B[ 0 , 0 , 0 ] = A[ 1 , 0 , 0 ]+A[ 0 , 0 , 0 ]+A[ −1 , 0 , 0 ] ;
3 s2 : C[ 0 , 0 , 0 ] = A[ 1 , 0 , 0 ]+A[ 0 , 0 , 0 ]+A[ −1 ,0 ,0]+B[ −1 , 0 , 0 ] ;
4 s3 : d += A[ 0 , 0 , 0 ] ;
5 s4 : D[ 0 , 0 , 0 ] += E [ 0 , 0 , 0 ] − E [ 0 , −1 , 0 ] ;
6 }
7 p a r a m e t e r L , M, N;
8 f l o a t A[ L ,M,N] , B[ L ,M,N] , C[ L ,M,N] , D[ L ,M,N] , E [ L ,M,N ] ;
9 f l o a t d ;

10 t e m p o r a r y B ;
11 f u s i o n (A, B , C , D, E , d ) ;
12 r e t u r n C , D, d ;

read only three input planes (A[1, ∗, ∗], A[0, ∗, ∗], and A[−1, ∗, ∗]),
to compute output plane B[0, ∗, ∗] using a 2D grid/thread configura-
tion that spans the extent of the inner dimensions of B. If the planes
of A are stored in shared memory, then after computing B[0, ∗, ∗], to
next compute B[1, ∗, ∗] would require loading of just one additional
plane of A (i.e., A[2, ∗, ∗]).

The amount of shared memory also constraints the extent of
time-tiling. Consider the case where the shared memory available
per SM is 48 Kbytes. If each of the 2k + 1 input planes read by a
block is mapped to a distinct shared memory buffer, then for single
precision computation with k = 1 and a maximum of 2048 threads
per SM (as is the case for the Nvidia Kepler and Maxwell GPUs
used for experiments in this paper), the maximum number of shared
memory buffers per thread block is ≤ 6 (i.e., 48 Kbyte/(4× 2048)).
Since each time step requires 3 shared memory buffers, the time-tile
size is constrained to 2 time steps. For k = 2, we can only perform
spatial tiling with a 32×32 thread block. For higher values of k, we
must either perform global memory read transactions at each time
step, or sacrifice occupancy (and hence thread-level parallelism)
to perform time-tiling. Our modeling accounts for such resource
constraints in order to generate appropriate code for different GPU
devices.

b) Fusion of Stencil Operators.
GPUs have a significant gap between their compute and mem-

ory throughput. Many stencil applications are bandwidth-bound,
making it extremely difficult to achieve near-peak computational
performance. Performance for such stencils can be improved by
reducing global memory transactions via caching or use of shared
memory and registers. Time-tiling and fusion are two key trans-
formations used to enhance data locality. However, as shown later
in Sections 3 and 4, an indiscriminate attempt to time-tile or fuse
stencil operators can be counter-productive.

Consider the computation in Listing 2. If s1 is fused with s2,
array B does not have to be written to global memory since it is
marked temporary. The output of s1 can be stored in a register or
shared memory buffer before being read by s2. Thus, global read
and write transactions for an entire array can be eliminated after
fusion. However, since there is a RAW dependence between s1 and
s2 due to B, atomic execution of a tile will require computation of a
halo region. Fusing s3 with either s1 or s2 will also lead to savings
in global read transactions for array A. The savings in global mem-
ory transactions are less in this case, but no halo region needs to
be computed. Since none of the arrays from s4 appear in any other
statement, fusing s4 with any other statement will not enhance data
reuse.

While fusion can significantly reduce the amount of data moved
from/to global memory, it increases demands on shared memory
and/or registers. For complex stencils that arise in many applica-
tions, the number of possible fusion choices can be large. In this
paper, we develop a fusion profitability metric and a greedy heuris-

Listing 3: Leveraging associativity to rewrite Listing 1 stencil
1 s t e n c i l j a c o b i (A, B , C , a , b , c ) {
2 s1 b1: B[ 1 , 0 , 0 ] = c∗ (A[ 0 , 0 , 0 ] ) ;
3 b2: B[ 0 , 0 , 0 ] += b∗ (A[ 0 , −1 , 0 ] + A[ 0 , 0 , −1] + A[ 0 , 0 , 0 ]
4 + A[ 0 , 0 , 1 ] + A[ 0 , 1 , 0 ] ) ;
5 b3: B[ −1 , 0 , 0 ] += a∗ (A[ 0 , 0 , 0 ] ) ;
6 s2 b4: C[ 1 , 0 , 0 ] = c∗ (B [ 0 , 0 , 0 ] ) ;
7 b5: C[ 0 , 0 , 0 ] += b∗ (B[ 0 , −1 , 0 ] + B[ 0 , 0 , −1] + B[ 0 , 0 , 0 ]
8 + B[ 0 , 0 , 1 ] + B[ 0 , 1 , 0 ] ) ;
9 b6: C[ −1 , 0 , 0 ] += a∗ (B [ 0 , 0 , 0 ] ) ;

10 }
11 p a r a m e t e r L , M, N;
12 f l o a t A[ L ,M,N] , B[ L ,M,N] , C[ L ,M,N] , a , b , c ;
13 t e m p o r a r y B ;
14 j a c o b i (A, B , C , a , b , c ) ;
15 r e t u r n C ;

tic to select good fusion configurations that satisfy all resource con-
straints.

c) Associative Reordering for Resource Management.
As noted above, complex stencil computations can place exces-

sive demands on shared memory. An approach that has previously
been developed to reduce register pressure with high-order stencils,
in the context of multi-core processors, is to perform reordering of
operations by exploiting the associativity of additive contributions
in stencil computations [21]. We use associative reordering to bal-
ance resource usage by trading off register use for shared memory.
For example, the additive contributions to the statement at lines
2–4 in Listing 1 can be reordered without changing the seman-
tics of the computation. Although floating-point additions are not
strictly associative, it is generally acceptable to perform associative
reordering of accumulations in stencil computations. DSLs such as
Forma [19] and Halide [18] currently do not recognize and exploit
associative operations. Our approach uses operator associativity to
reduce the shared memory demand by a simple restructuring of the
computation. Listing 3 shows the resulting DSL code after restruc-
turing the stencil from Listing 1, which is done automatically by
the DSL compiler.

Statement s1 (s2) at lines 2–4 (lines 5–7) of Listing 1 is split into
sub-statements b1 through b3 (b4 through b6) at lines 2–5 (lines
6–9) in Listing 3. For the same plane of the input array, these
sub-statements update different points of the output domain, i.e.,
the plane A[0, ∗, ∗] is read once to update the values of B[−1, ∗, ∗],
B[0, ∗, ∗], and B[1, ∗, ∗]. Since the computations per plane are ex-
ecuted in parallel by each thread in a kernel, neighboring threads
will access the same element of array A. To reduce the number
of global memory accesses, the plane of array A can be loaded
into shared memory, with each thread loading a single element of
the plane. The threads can then access all the values of A[0, ∗, ∗]
needed to perform the computation specified in statement s1 from
shared memory.

After executing s1, the plane corresponding to B[−1, ∗, ∗] has re-
ceived all the updates needed from statement s1 and can be used
to update the value of array C in statement s2. The plane corre-
sponding to B[−1, ∗, ∗] in s1 is used as the generic plane B[0, ∗, ∗]
in statement s2. Again, neighboring threads of the kernel access
common elements of the plane B[0, ∗, ∗] in statement s2. It is there-
fore beneficial to store this plane in shared memory as well for the
same reason as above.

Note that the planes corresponding to the writes represented by
B[0, ∗, ∗], and B[1, ∗, ∗] in statement s1 are not needed in statement
s2 yet. These can be stored in registers. As the sliding window
moves across the planes of array A, the values in these registers can
be updated. With the execution model described above, only two
shared memory buffers are needed, one for the plane corresponding



to A[0, ∗, ∗] in statement s1, and the other for the plane correspond-
ing to B[−1, ∗, ∗] in statement s1 (which is the same as the plane
corresponding to B[0, ∗, ∗] in statement s2).

In general, for a single statement that executes an order-k stencil,
instead of 2k + 1 shared memory buffers per time step, the opti-
mized kernel code uses 2k registers and 1 shared memory buffer
per time step with reassociation. The advantage of using registers
for storage is twofold: (1) in current GPU architectures, registers
are more plentiful than shared memory, and (2) the access latency
of registers is lower than that of shared memory, and so using them
as cache speeds up the computation. We will use the jacobi stencil
of Listing 3 as a running example throughout the rest of the paper.

3. RESOURCE-CONSTRAINED FUSION
To maximize performance with complex stencil DAGs, we must

judiciously use registers and the memory hierarchy of GPUs to re-
duce expensive data movement. Fusion is a classical loop trans-
formation that can enhance data locality, thereby minimizing data
movement. The key idea is to fuse the nodes in the DAG with
common predecessors (i.e., stencil operators that access common
input arrays), or a chain of nodes in the DAG (i.e., stencil oper-
ators that have producer-consumer dependences) so that temporal
locality and the per-load data reuse is maximized.

Without violating dependences, different nodes in a DAG can be
fused to get different valid schedules. The performance of each
schedule can vary depending on the profitability of fusion. The
space of all valid execution schedules can be vast. To avoid ex-
ploring the entire space to find the best fusion schedule, we use
a greedy algorithm which fuses nodes in the DAG with the intent
to minimize a chosen objective function. From the initial stencil
DAG Dg = (V, E), our aim is to create a resultant fused directed
graph D f = (V f , E f ) such that each v f ∈ V f is a convex partition

of nodes from V . A convex partition of nodes forms clusters of
“macro-nodes’ with no dependence chain leaving and re-entering
any macro-node. Just as convex-shaped tiles of an iteration space
can execute atomically, the fused macro-nodes computed by the fu-
sion algorithm ensure that no dependences are violated upon their
atomic execution. The convex partitioning therefore guarantees
that D f is acyclic. Only nodes whose fusion is deemed profitable
by the objective function are combined together in v f . A single
GPU kernel is generated for each node in v f . No global memory
transactions are needed for domains whose definition and use do
not cross partition boundaries.

Overview of the Greedy Fusion Algorithm.
The rest of this section details a flexible greedy algorithm for

fusing nodes in a directed stencil graph, designed for easy incorpo-
ration of multiple objective metrics. The fusion algorithm consists
of the following steps:

Step 1: Compute the resource usage of each individual statement
in the stencil DAG (Section 3.1).

Step 2: Identify pairs of statements that can be legally fused, as
well as some profitability metrics that quantify their fusion benefits
(Section 3.2).

Step 3: For each statement pair, compute the resource usage of
the fused node based on the resource usage of individual statements
obtained in Step 1 (Section 3.3).

Step 4: From the resource usage of the fused node, compute the
profitability metrics identified in Step 2 (Section 3.4).

Step 5: Define a custom sort to order the profitability metrics of
statement pairs, and choose to fuse the most profitable pair that sat-
isfies additional hardware-imposed constraints (discussed in Sec-
tion 3.6 and Section 4). Update the stencil DAG and the depen-

dence graph, and repeat again from Step 1, until no more statement
pairs can be fused (Section 3.5).

Once the fusion algorithm creates the fused stencil DAG D f , the
code generator described in Section 5 generates a CUDA kernel for
each node of D f .

3.1 Modeling Resource Requirements
Efficient management of GPU resources is crucial for perfor-

mance. In the reordering optimization of Listing 3, each statement
uses some registers and shared memory buffers to cache some input
and output values. Since fusion of different statements may result
in an increase in the resource requirement, it is important to quan-
tify the hardware resources used by each statement. We use the ac-
cess pattern for each array in the statement for this estimation. The
per-statement resource estimates are then used to estimate the re-
source requirements after fusing any two statements (Section 3.2).
Without loss of generality, let us assume that we stream through
the outermost dimension of a 3D domain. To determine the re-
source requirement of a stencil statement that is order-k along the
streaming dimension, we need to reason about the storage type of
the 2k + 1 accessed planes. We follow a simple chain of reasoning:
(a) If the computation of an output element at (z0, y0, x0) only uses

a single input element at (zr, y0, x0) from an input plane zr, then
that input element is stored in an explicit register (i.e., storage
type of zr is register). Otherwise, zr is cached in shared memory

(b) An output element is written to an explicit register (i.e., its stor-
age type is register) if it is an accumulation statement, or it is
not the last assignment to a non-temporary array. For the last
assignment to any non-temporary array, the storage is type is
global memory.

Here, an explicit register refers to a scalar temporary variable cre-
ated to hold an array element instead of using shared memory. It
is expected that the compiler will place such scalars in registers.
We distinguish these from other implicit registers that are used in-
ternally by NVCC, to hold elements of arrays and intermediate re-
sults in computing expressions. We note that these terms are used
just for the purpose of explanation; in the final code, the explicit
registers just appear as thread scalars.

From rule (a), we can infer that statement s1 of Listing 3 should
use a shared memory buffer to store the input plane A[0, ∗, ∗]. This
is because five different values are read from that plane and con-
tribute to different output points. Similarly, from rule (b), it follows
that statement s1 should use three explicit registers to store the out-
put values written to B[1, 0, 0], B[0, 0, 0] and B[−1, 0, 0].

We represent the resource requirement for each statement by
a 3-tuple (Nreg,Nshm,Macc→res), where Nreg, Nshm are the number
of explicit registers and shared memory buffers used by the state-
ment, and Macc→res is a resource map from each accessed plane to
a handle that represents the storage used for that plane. For exam-
ple, the 3-tuple for s1 is (3, 1,M1), where M1 = {B[−1, 0, 0]→bm,
B[0, 0, 0]→bc, B[1, 0, 0]→bp, A[0, ∗, ∗]→shma}; the 3-tuple for s2

is (3, 1,M2), where M2 = {C[−1, 0, 0]→cm, C[0, 0, 0]→cc, C[1, 0, 0]
→cp, B[0, ∗, ∗]→shmb}.

3.2 Modeling Fusion Profitability
An objective function is used to choose among multiple valid fu-

sion choices. The impact of fusion on performance is governed by
an intricate interplay of many factors, some of which are hardware
dependent. Fusion of two nodes can decrease data movement, but
may lead to an increase in the shared memory/register requirement.
Beyond a certain point, any further increase in resources can result
in reduced occupancy and/or excessive register spills, both negat-
ing the benefits of fusion. Let us revisit the computation of Listing



2. Clearly, data movement can be significantly reduced by fusion
across the first three stencil statements. The data movement savings
and total resource requirement after fusing any pair of statements
will depend on the data dependences between the statements. As-
suming that all the arrays are of the same size, the data movement
cost is modeled simply as the number of arrays read from or written
into during the computation. Consider the following fusion choices
for the code in Listing 2.
• Fusing s1 and s2: the data movement cost reduces by 3 (1

load saving for A, and 1 store + 1 load saving for B), but the
resources used increase by 2 over s1 (a register for B[−1, 0, 0]
and C[0, 0, 0] each).

• Fusing s1 and s3: the data movement cost reduces by 1 (1
load saving for A), while the resource requirement increases
by 1 over s1 (a register for d).

If the fusion of any two statements is guaranteed not to exceed re-
source constraints, then we would prefer to fuse statements s1 and
s2 if minimizing data movement is the objective, but prefer to fuse
s1 and s3 if minimizing combined use of resources is the objective.
Since there are multiple resources to be managed, and many com-
plex interacting factors that affect overall performance, we do not
attempt to develop a single aggregated objective function to guide
the choice of fusion. Instead, we use a multi-dimensional vector,
whose components quantitatively reflect various considerations of
importance, and a lexicographic ordering among the vectors as a
basis for choice among valid fusion configurations. Such an ap-
proach allows great flexibility in experimenting with different per-
mutations of the “objective-vector” to change the relative priority
of the different components in choosing between alternatives.

Components of the Fusion Profitability Metric

The greedy fusion algorithm begins by computing the 3-tuple de-
fined in Section 3.1 for each stencil statement to model its resource
requirements. The dependences in the stencil DAG are captured by
the dependence graph Gdep = (V, Edep). From Gdep, we compute a
transitive dependence graph Gtrans = (V, Etrans), such that

si → s j ∈ Etrans iff { ∃sk | sk ∈ V ∧ sk , si ∧ sk , s j ∧

there exists a path from si to sk (denoted as si  sk ) ∧

there exists a path from sk to s j i.e., sk  s j } (1)

We use Gtrans to ensure the validity of fusion, i.e., that all par-
titions generated by fusion are convex. If si → s j ∈ Etrans, then
fusing si and s j will violate convexity unless all the nodes along
any path si  s j are also included in the fused macro-node. The
definition above does not preclude fusion of a statement with its im-
mediate predecessor as long as there are no intervening statements
along all paths from si to s j.

Since the benefits from fusing different statement pairs may vary,
we construct a fusion profitability metric for each distinct stencil
statement pair (si, s j). This metric is a 7-tuple (Dm, S reg, S shm, Ereg,

Eshm,Treg,Tshm), where
− Dm represents the savings in data movement after fusing si

and s j

− S reg represents the savings in explicit registers, modeled as
the number of common registers between si or s j

− S shm represents the savings in shared memory, modeled as
the number of common shared memory buffers between si

and s j

− Ereg represents the excess of explicit registers, modeled as
the minimum extra registers required in the fused node over
the amount used by si or s j before fusion.

− Eshm represents the excess of shared memory, modeled as the

minimum extra shared memory buffers required in the fused
node over the amount used by si or s j before fusion.

− Treg represents the total number of explicit registers in the
fused node

− Tshm represents the total number of shared memory buffers
used in the fused node

3.3 Computing the Resource Map
In order to assess the impact of fusing two statements, we need to

find the resources that would be needed to execute the fused node.
Let Mi and M j be the maps from accessed array planes to GPU re-
sources (Macc→res) for the fusion candidates si and s j, respectively.
Let M f used be the resource map for the fused node. This map is
computed as shown in Algorithm 1. If there is no dependence be-
tween si and s j, the resource map of the fused node is a union of
the resource map of the individual nodes, where the rules of union
are as defined in this section.

If there is a dependence between the two statements, we need
first compute the schedule_id of the target statement. This id repre-
sents the statement’s execution schedule. Two statements have the
same execution schedule if their instances can be perfectly inter-
leaved. The array accesses in the target statement are shifted by its
schedule_id along the streaming dimension. The shift is to ensure
that the dependences are satisfied within the fused node. For exam-
ple, in Listing 3, s2 can read the values of array B at a plane i only
after s1 had read the plane i+1 of array A and updated the values of
plane i of B. Therefore, the schedule_id of s2 has to be one less than
the schedule_id of s1. Function min_plane_offset() at line 5 iterates
over all the sub-statements of the source statement, and returns the
minimum LHS access offset along the streaming dimension. If we
stream along the outermost dimension, then the value returned by
min_plane_offset() for s1 of Listing 3 will be min (1, 0,−1) = −1.
This will be the schedule_id for the target statement.

While the schedule_id is needed for the correctness of the gener-
ated code, it also affects the mapping of resources in the fused node
(lines 6–27 of Algorithm 1). Once all array accesses in the target
statement have been offset by schedule_id, there might a non-empty
intersection between the planes accessed by statement si and s j. For
example, for s1 in Listing 3, B[−1, ∗, ∗] is mapped to registers (Sec-
tion 3.1). Since the schedule_id for s2 is −1, B[0, ∗, ∗] in s2 will be
shifted to B[−1, ∗, ∗] in the fused node. Since this plane is mapped
to shared memory in M2, this plane will be mapped to shared mem-
ory in the fused node as well (line 14 of Algorithm 1). There might
also be cases where the in-plane accesses of the intersecting plane
in statement si are different from the in-plane accesses in statement
s j. In these cases as well, the plane is mapped to shared memory
in the fused node, in keeping with the approach described in Sec-
tion 2-c (lines 16–21 of Algorithm 1).

For Listing 3, the fused resource map computed by Algorithm 1
would be M f used = {C[−2, 0, 0]→cm, C[−1, 0, 0]→cc, C[0, 0, 0]→cp,
B[−1, ∗, ∗]→shmb B[0, 0, 0]→bc, B[1, 0, 0]→bp, A[0, ∗, ∗]→shma}.

3.4 Computing the Profitability Metric
Once the resource map of the fused node has been computed

using Algorithm 1, we can quantify the profitability of fusing state-
ments si and s j using the 7-tuple described in Section 3.2. We
populate the 7-tuple only if si → s j < Etrans, to ensure that we
do not violate any dependencies. For every si → s j ∈ Eraw, there
is an implicit reduction in data movement for the array carrying
the dependence. To capture this, Dm is incremented by 2 for each
RAW dependence between the two statements that are carried by
arrays marked as temporary, once each for the write in si and read
in s j. If the RAW dependence is carried by an array that is not



Algorithm 1: Computing the resource map for a fused node

Input : si, s j: stencil statements
Input : M1, M2: Resource map for s1 and s2 respectively
Output: M f used: Resource map for the fused node

1 if ¬has_dependence (si, s j) then
2 M f used ← M1 ∪ M2;
3 end

4 else
5 schedule_id = min_plane_offset (si);
6 M f used ← M1;
7 for each entry m ∈ M2 do

8 curr_access_plane← get_accessed_plane (m);
9 new_access_plane← curr_access_plane + schedule_id;

10 accessed_array← get_accessed_array (m);
11 key← get_map_key (accessed_array, new_access_plane);
12 if key ∈ M f used then
13 if mapped_to_shared_mem (M2, key) then
14 M f used[key]← new_shared_mem_resources ();
15 end
16 else if mapped_to_registers (M f used , key) then
17 fused_offsets← in_plane_accesses (si,

new_access_plane, accessed_array);
18 curr_offsets← in_plane_accesses (s j,

curr_access_plane, accessed_array);
19 if fused_offsets , current_offsets then
20 M f used[key]← new_shared_mem_resources ();
21 end

22 end

23 end
24 else
25 M f used .insert (m);
26 end

27 end

28 end

marked temporary, Dm is incremented by 1 since we do not have to
reload the data written to global memory. There is no explicit data
movement saving for arrays carrying WAR dependence. If there
is WAW dependence between si and s j but no RAW dependence,
Dm is incremented by 1 for each WAW dependence to capture the
reduction in multiple writes to the same location in global memory.
The savings due to RAR dependences can be computed by finding
the common arrays accessed among si and s j, and incrementing Dm

accordingly.
The other tuple items are computed as follows:
• S reg = num_registers(Mi) + num_registers(M j)
− num_registers(M f used)

• S shm = num_shared(Mi) + num_shared(M j)
− num_shared(M f used)

• Ereg =min(num_registers(Mi), num_registers(M j)) − S reg

• Eshm =min(num_shared(Mi), num_shared(M j)) − S shm

• Treg = num_registers(Mi) + num_registers(M j) − S reg

• Tshm = num_shared(Mi) + num_shared(M j) − S shm

To illustrate the construction of the profitability metric, we con-
struct the 7-tuple for statements s1 and s2 of Listing 3. The 3-tuples
for s1 and s2 were computed in Section 3.1. Since there is a true
dependence from s1 to s2, Dm = 2. The number of registers used is
3 for M1, 3 for M2, and 5 for M f used. Therefore, S reg = 1. The num-
ber of shared buffers used is 1 for M1, 1 for M2, and 2 for M f used.
Therefore, S shm = 0. Since s1 requires 3 registers for B and 1
shared memory buffer for A, Ereg = 3−1 = 2 and Eshm = 1−0 = 1.
Post fusion, Treg = 3+ 3− 1 = 5, and Tshm = 1+ 1 = 2. The 7-tuple
for s1 and s2 is therefore {2, 1, 0, 2, 1, 5, 2}.

The process described above is codified in Algorithm 2 for com-
putation of the profitability metric for each statement pair.

Algorithm 2: Creating the objective function for fusion

Input : IN: input DAG with n statements
Output: OUT: A sorted list of 7-tuple, Ltuple

1 Ltuple ← ∅;
2 compute_resource_3-tuple ();
3 {Graw,Gwar ,Gwaw} ← create_dependence_graphs (IN);
4 Gdep ← Graw ∪Gwar ∪Gwaw;
5 Gtrans ← transitive_closure (Gdep) \Gdep;
6 for each distinct stmt pair (i, j), i, j ≤ n do
7 Dm ← 0;
8 if (si → s j < Gtrans) then

9 Mi ← resource_usage (si);
10 M j ← resource_usage (s j);

// Call Algorithm 1

11 M f used ← fused_resource_map (si, s j,Mi,M j);
12 Dm += 2∗RAW_dependence_count(si, s j,

TEMPORARY_ARRAYS);
13 Dm += RAW_dependence_count (si, s j,

NON_TEMPORARY_ARRAYS);
14 Dm +=WAW_dependence_count (si, s j);
15 Dm += RAR_dependence_count (si, s j);
16 S reg ← num_registers (Mi) + num_registers (M j) -

num_registers (M f used);
17 S shm ← num_shared (Mi) + num_shared (M j) - num_shared

(M f used);
18 {Eshm, Ereg,Tshm,Treg} ← compute (Mi,M j, S shm, S reg);
19 Ltuple.append ((Dm, S reg, S shm, Ereg, Eshm,Treg,Tshm));

20 end

21 end
22 sort (Ltuple, minimize_data_movement);

3.5 Constructing the Objective Function
Once the 7-tuple has been computed for all statement pairs, we

need a method to order them based on their fusion profitability. To
do so, we define a custom-sort relation ≺ as a total order over the
list of tuples (Ltuple). We first define a set of sorting rules that can
be applied to order two 7-tuples ci, c j ∈ Ltuple.
a. (Dm)ci

< (Dm)c j
⇒ ci ≺ c j

b. (Treg + Tshm)c j
< (Treg + Tshm)ci

⇒ ci ≺ c j

c. (Treg)c j
< (Treg)ci

⇒ ci ≺ c j

d. (Tshm)c j
< (Tshm)ci

⇒ ci ≺ c j

e. (Ereg + Eshm)c j
< (Ereg + Eshm)ci

⇒ ci ≺ c j

f. (Ereg)c j
< (Ereg)ci

⇒ ci ≺ c j

g. (Eshm)c j
< (Eshm)ci

⇒ ci ≺ c j

h. (S reg + S shm)ci
< (S reg + S shm)c j

⇒ ci ≺ c j

i. (S reg)ci
< (S reg)c j

⇒ ci ≺ c j

j. (S shm)ci
< (S shm)c j

⇒ ci ≺ c j

k. i < j⇒ ci ≺ c j

where rule k is only used to ensure that a total order can be found
in case of tuples with strictly identical metrics.

The order in which the sorting rules are applied to break the
tie depends on the minimization objective. If the objective is to
minimize the data movement, ≺ follows the rule sequence a →

b → c → d → e → f → g → h → i → j → k, where a

is the primary sorting rule, and the ties are settled by following
the remaining rules in the sequence. If the objective is to mini-
mize the total resource requirement, ≺ follows the rule sequence
b → c → d → a → e → f → g → h → i → j → k, where
b is the primary sorting rule, and the ties are settled by following
the remaining rules. A high priority to minimizing explicit register
count (b and c) in both the cases is to ensure that the fused kernel
does not generate register spills upon compilation. Line 22 of Al-
gorithm 2 sorts all the 7-tuples with an objective to minimize data
movement.

Once sorted, the topmost tuple of Ltuple represents the most prof-



itable candidate for fusion. However, the constraints described so
far do not account for constraints imposed by hardware, such as
the limits on shared memory and registers available per SM, or the
trade-off between redundant computation and reduction in global
memory accesses due to the use of overlapped tiling. These two
constraints are treated differently than the other component metrics
in the Ltuple. Instead of just being components in a multi-component
profitability metric, they are treated as filters. We eliminate any
candidate fusion choices that violate either hardware constraints
(Section 3.6) or generate too much redundant computation (Sec-
tion 4). Henceforth, we collectively refer to the hardware con-
straints and redundancy constraints as fusibility constraints. The
highest tuple in the list that satisfies the fusibility constraints is cho-
sen, and the nodes corresponding to it are fused. The stencil DAG
is updated to include the fused node, and the original statements are
removed after updating the dependence graph appropriately. Algo-
rithm 2 is reapplied to this new DAG. This is repeated till no further
fusion is feasible.

3.6 Imposing Hardware Constraints
For each node in the stencil DAG, a single kernel is generated to

perform the computation represented by that node. We achieve full
utilization of the GPU device when the hardware-defined maximum
number of concurrent threads supported per SM, say ThS M , are all
active. To minimize the volume of redundant computation, we try
to maximize the block size on the device, Bmax, such that the threads
are maximally utilized (i.e., maximize Bmax such that ThS M%Bmax

is minimum, ideally 0). The number of blocks per SM, say NB,
would be ⌊ThS M/Bmax⌋.

The fusion algorithm described in Algorithm 2 has so far not
accounted for the constraints of shared memory available per SM
on the device (Kmax), as well as the number of registers available
for each thread (Rmax). To do so, the sorted list generated at the
end of Algorithm 2 is traversed from top to bottom to select the
highest tuple that also satisfies the criteria described in the rest of
this section.

The amount of shared memory used by each node can be esti-
mated from the resource map (Macc→res) associated with each node,
the size of the thread block used, and the data type of each buffer
mapped to shared memory. The tuples in the list where the fused
node would require more than the amount of shared memory avail-
able per block, i.e., Kmax/NB, are ignored.

While the register files on modern GPUs are quite large, a large
number of registers per thread can adversely affect the occupancy
achieved. We define Ropt as the number of registers available to
each thread for maximum occupancy. Ropt can be computed by di-
viding the register file size by Thsm (Ropt = ⌊65536/2048⌋ = 32
for Kepler device). The occupancy decreases from usage of Ropt

to Rmax. High occupancy is essential in order to tolerate the access
latencies to global memory. To maintain a sufficiently high occu-
pancy, we ignore tuples in Ltuple for which the number of explicit
registers in the fused node is higher than some threshold. Our cur-
rent implementation uses a threshold of 12.

It is difficult to model the use of implicit registers as it varies with
the compiler version and the optimization level specified during
compilation. However, the number of implicit registers used by
NVCC usually increases with an increase in the degree of fusion.
Our fusion algorithm handles implicit register pressure by ignoring
tuples in Ltuple which result in register spills upon compilation. The
amount of register spills can be determined by using “-Xptxas -v"

flag during compilation. Setting the threshold of register spills to
0 might seem too conservative. However, determining a perfect
balance between spills, occupancy, and performance is beyond the

scope of our framework. We currently allow the user to set the
threshold on number of spills that can be tolerated.

3.7 Controlling recompilation
Since we need to compile the code generated for each fusion

candidate to determine register usage/spills, excessive recompila-
tion can add significant overhead to the code generation time for
complex stencils. However, this overhead is mitigated in part due
to the choice of a greedy algorithm over one that explores all valid
schedules. The number of recompilations is controlled by the fol-
lowing choices:
• Fusion always results in an increase in the resources used by

the fused cluster. We only recompile the code of the fused
cluster when the fusibility constraints are not already vio-
lated by the constraints on shared memory, explicit registers,
and redundant computation.

• If fusing any two nodes results in register spills, then we rule
out, without recompilation, fusion of any clusters involving
either of these two nodes. For example, if fusing nodes A and
B results in spills, then we will not consider fusing clusters
such as {A,C}, {B,D}, etc.

• We provide the user an option to specify a recompilation-
bypass size, and only recompile for clusters exceeding that
size. For example, if the recompilation-bypass size is 2, then
we only recompile when the fusion results in a cluster of size
≥ 3.

With these choices, we prune away a large number of fusion candi-
dates requiring recompilation, thus controlling the total code gen-
eration time.

4. MODELING COMPUTATION AND COM-

MUNICATION REDUNDANCY
We use overlapped tiling to achieve concurrency of tiled exe-

cution. Overlapped tiling trades off redundant computation for re-
duced communication/synchronization overheads. For convenience
of description, we make the following assumptions:
− All the stencil operators are order-k, operating on a single N3

input domain without boundary conditions
− Overlapped tiling applied to any dimension of the input do-

main tiles it in chunks of size B

− Applying the fusion strategy of Section 3.1 results in the fu-
sion of T stencil operators, where operator Op has a RAW
dependency on operator Op−1

Traditional 3D overlapped tiling partitions the input domain into
blocks of size B3. A stencil operator at fusion depth t will compute
an output block of size (B − 2tk)3. Since the computable output
domain is of size (N − 2Tk)3, the total number of thread blocks

launched must be
(

N − 2Tk

B − 2Tk

)3

. If we use sliding window tiling

along one dimension and perform overlapped tiling along the other
two dimensions, the per-block computation increases, but the total

number of blocks launched reduces to
(

N − 2Tk

B − 2Tk

)2

. Table 1 lists the

per-block data transfer and computation volume for both the meth-
ods, assuming all global memory transactions are perfectly aligned.
Multiplying them by the number of blocks launched gives us the to-
tal data transfers and computation volume.

We note that with both forms of overlapped tiling, the fractional
redundant computation overhead increases with the time tile size
T and stencil order k, and decreases as the block size B is in-
creased. However, the demand on shared memory and registers
grows as O(B3) for 3D overlapped tiling, but only as O(B2) for
sliding-window overlapped tiling. As was illustrated by the exam-



Scheme
Load
Inst.

Load Trans-
actions

Store Inst. Store Transactions Total Computation Redundant computation

Traditional 3D
Tiling B3 B2

⌈ B

W

⌉

(B − 2Tk)3 (B − 2Tk)2
⌈ B − 2Tk

W

⌉

T
∑

i=1

(B − 2ik)3

T−1
∑

i=1

((B − 2ik)3 − (B − 2Tk)3)

Sliding Window
with 2D Tiling NB2 NB

⌈ B

W

⌉ (N − 2Tk)
(B − 2Tk)2 (N − 2Tk)(B − 2Tk)

⌈ B − 2Tk

W

⌉

T
∑

i=1

(N − 2ik)(B − 2ik)2

T−1
∑

i=1

((N − 2ik)(B − 2ik)2 −

(N − 2Tk)(B − 2Tk)2)

Table 1: Per-block data transfers and computational volume for different overlapped tiling schemes. W is the warp size.

ple in Section 2, the limited size of shared-memory per SM (under
64 Kbytes) makes it infeasible to use block sizes much larger than
10 for 3D overlapped tiling, while a block size of around 32 is fea-
sible for sliding-window overlapped tiling. Even for k=1, the re-
dundant computation overhead explodes for 3D overlapped tiling,
even for fusion over 3 time steps, making it completely ineffective
for 3D stencils for the hardware parameters of current GPUs. In
contrast, the redundant computation overhead for sliding-window
overlapped tiling is much lower, enabling useful fusion over multi-
ple statements or time steps.

We next characterize the redundancy in computation and the
global memory transactions for sliding-window overlapped tiling
as a function of the input domain and the tiling parameters. Such a
characterization is essential for modeling the profitability of fusion
for statements with RAW dependence between them.

For a fixed k, the data transfer and redundant computation vol-
ume depends on T , which is controlled by the extent of fusion. For
illustration, assume that there are four fusion-amenable stencil op-
erators. We can explore several fusion choices – fuse all the four to
get a single operator, fuse two to get two resultant operators, or fuse
none. For sliding-window tiling, Table 2 explores the profitability
of different fusion choices for stencils of various orders.

k fusion
degree

Load
Transactions

Store
Transactions

Redundant
Computation

1
1 18939904 17686800 0
2 10786022 9364037 39978854
4 7225344 5334336 144831456

2
1 21572044 18728073 0

2 2 14450688 10668672 95227776
4 15745024 7626496 487849728

4
1 28901376 21337344 0
2 31490048 15252992 313916416

Table 2: Choosing degree of fusion for varying k

We seek to minimize global memory transactions via fusion,
while accounting for the increase in redundant computation as more
statements are fused together. The hardware constraints used to
eliminate tuples of the sorted list Ltuple in Section 3.6 usually elimi-
nate high degrees of fusion. The profitability of fusion for the con-
figurations in Table 2 is determined by computing the estimated
time for performing global memory transactions (Tmem) and the
estimated time for performing the computation (Tcomp). To com-
pute these estimates, we use the peak memory bandwidth and the
peak performance achieved by a set of synthetic stencil bench-
marks on the underlying device. The comparison metric Tmax =

max (Tcomp,Tmem), inspired by the roofline model [26], is used to
quantify the efficiency of the generated sliding-window overlap-
tiled code. If a tuple of the list Ltuple has a value of Tmax for the
fused node that is greater than the sum of the values of Tmax for
the unfused nodes, that fusion choice is eliminated from consider-
ation. The configurations with lowest Tmax for different values of k

are highlighted in Table 2. For experimental validation, we plot the

performance for 12 time steps of a 13-point order-2 3D Jacobi sten-
cil sequence with varying degree of fusion. The results are shown
in Figure 1. The best performance is achieved when the degree of
fusion is 2, as predicted by the model.
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Figure 1: Performance of 12 time steps of a 13-point Jacobi

stencil (k=2) for varied degree of fusion

5. CODE GENERATION
The code generation for an input stencil DAG consists of three

main steps:
1. Fuse nodes in the DAG using the process described in Sec-

tions 3 and 4.
2. Generate a device kernel for each node in the fused DAG to

execute the computation represented by the node.
3. Generate a host function to copy input arrays into device

memory, launch the kernels generated in Step 2 in a sequence
that satisfies dependencies between the fused DAG nodes,
and copy the output of the computation back to the host.

Algorithm 3: Device code generation

Input : IN: a node from the post-fusion stencil DAG
Output: Dgpu: device function for the node

1 MIN ← resource_usage(IN) ;
2 Dgpu ← generate_allocated_resources (MIN );
3 for each A in input_arrays (IN) do
4 Dgpu.append (generate_read_new_plane (MIN , A));
5 end

6 Dgpu.append (generate_stencil_code (IN, MIN ));
7 for each A in (all_arrays (IN) - input_arrays (IN)) do
8 Dgpu.append (generate_rotate_data (MIN , A));
9 end

Algorithm 3 shows the phases involved in the device code gen-
eration, and Listing 4 shows the output of our code generator. The
output CUDA code can be divided into four distinct parts.

The first part uses the resource map MIN computed in Section
3.3 to allocate GPU resources for different arrays involved in the
computation. Function generate_allocate_resources() at line 2 de-
clares the required shared memory buffers and registers for arrays
A, B, and C at lines 10–12 of Listing 4.



The second part reads a new plane for each input array from
global memory into the sliding window. Function generate_read_

new_plane() at line 4 reads a new plane for the input array A into
the shared memory buffer at line 15 of Listing 4.

The third part generates the stencil code for each statement. Func-
tion generate_stencil_code() at line 6 visits all the accesses in each
stencil statement, and replaces it by the assigned GPU resource
from MIN (lines 17–28 of Listing 4).

Once the stencil computation is performed, the fourth part slides
the window across the arrays cached in shared memory buffers/ex-
plicit registers for each statement freeing one resource to read from
global memory in the next iteration. Function generate_rotate_-

data() at line 8 rotates the data for arrays B and C at lines 31–32 of
Listing 4, freeing a register for each array in the process.

To write the final accumulated value for the output array C to
global memory, a store statement is generated after the last write to
C at line 27 of Listing 4. Synchronization barriers are inserted (us-
ing __syncthreads()) between each part to maintain memory con-
sistency.

Listing 4: Generated CUDA code for DSL of Listing 3
1 _ _ g l o b a l _ _ vo id j a c o b i ( f l o a t ∗ r e s t r i c t A, . . . ) {
2 / / Dete rmine t h e b l o c k i n d i c e s
3 i n t b l o c k d i m _ i= ( i n t ) ( blockDim . x ) ;
4 i n t i 0 = ( i n t ) ( b l o c k I d x . x ) ∗ ( b lockd im_i −4 ) ;
5 i n t i = i 0 + ( i n t ) ( t h r e a d I d x . x ) ;
6 i n t b l o c k d i m _ j= ( i n t ) ( blockDim . y ) ;
7 i n t j 0 = ( i n t ) ( b l o c k I d x . y ) ∗ ( b lockd im_j −4 ) ;
8 i n t j = j 0 + ( i n t ) ( t h r e a d I d x . y ) ;
9 / / Resource A l l o c a t i o n

10 f l o a t _ _ s h a r e d _ _ shA_c0 [ 3 2 ] [ 3 2 ] ;
11 f l o a t _ _ s h a r e d _ _ shB_m1 [ 3 2 ] [ 3 2 ] ;
12 f l o a t rB_c0=0 , rB_p1=0 , rC_m2=0 , rC_m1=0 , rC_c0=0;
13 f o r ( i n t k=0; k<=L−1; ++k ) {
14 / / F e t c h new p l a n e
15 shA_c0 [ j − j 0 ] [ i − i 0 ] = A[ k∗M∗N + j ∗N + i ] ;
16 _ _ s y n c t h r e a d s ( ) ;
17 i f ( j >= max ( j 0 +1 ,1) & . . . ) {
18 rB_p1 = c ∗ shA_c0 [ j − j 0 ] [ i − i 0 ] ;
19 rB_c0 += s t e n c i l ( shA_c0 ) ;
20 shB_m1 [ j − j 0 ] [ i − i 0 ] += b ∗ shA_c0 [ j − j 0 ] [ i − i 0 ] ;
21 }
22 _ _ s y n c t h r e a d s ( ) ;
23 i f ( j >= max ( j 0 +2 ,1) & . . . ) {
24 rC_c0 = c ∗ shB_m1 [ j − j 0 ] [ i − i 0 ] ;
25 rC_m1 += s t e n c i l ( shB_m1 ) ;
26 rC_m2 += b ∗ shB_m1 [ j − j 0 ] [ i − i 0 ] ;
27 C[ max ( k−2 ,0)∗M∗N + j ∗N + i ] = rC_m2 ;
28 }
29 _ _ s y n c t h r e a d s ( ) ;
30 / / Value r o t a t i o n
31 shB_m1 [ j − j 0 ] [ i − i 0 ] = rB_c0 ;
32 rB_c0 = rB_p1 ; rC_m2 = rC_m1 ; rC_m1 = rC_c0 ;
33 _ _ s y n c t h r e a d s ( ) ;
34 }
35 }

Even though we limit the discussion to accumulative statements,
our code generator can handle the diagonal access-free stencils as
presented in [15, 17, 20] without converting them to accumulations.

6. CASE STUDY AND EVALUATION
In this section we present experimental results comparing per-

formance achieved using other available GPU code generators with
the approach described in this paper. We begin with a case study
using a component stencil from a DOE mini-application, which we
use to illustrate the developed fusion strategy. We follow that by a
presentation of experimental results on a set of benchmarks.

6.1 Case Study: Hypterm
We evaluate the impact of applying the fusion heuristics on the

hypterm routine of the ExpCNS mini-application from DoE that
integrates the Compressible Navier-Stokes (CNS) equations 1. For
the discussion, we set the fusion objective to be minimization of
data movement. The hypterm routine reads from a set of input
arrays (cons and q) to update a set of flux arrays. In the stencil
DAG of hypterm shown in Figure 2, the intermediate and output
nodes (in shades of black) are order-4 stencil operators. There are
15 accumulation statements in the stencil computation, which are
labeled in the figure. Different colored edges in Figure 2 represent
1D stencils along different dimensions. The hypterm routine is not
time-iterated, and thus efficient data reuse across multiple stencils
is crucial for performance. An untiled implementation of hypterm
which does not use shared memory achieves only 35.65 GFlops on
a Tesla K20c device.

q1 q2 q3 q4

cons1 cons2 cons3 cons4

flux0 flux1 flux2 flux3 flux4

s3 s6 s9 s12 s15

: Stencil along x : Stencil along y : Stencil along z

: Accumulation

s1 s4 s7 s10 s13

s2 s5 s8 s11 s14 operators

inputs

Figure 2: The stencil DAG of hypterm routine. cons and q are

the input arrays, flux is the output array.

The fusion approach is applied to this DAG as follows:
− We begin by noting that s12 and s15 (s6 and s9) apply an order-

4 1D stencil along z to three (two) input arrays. The number
of registers used for spatial tiling would be ≥ 24 (≥ 16),
which exceeds Mreg. Therefore, these statements with never
be fused with any other statements.

− Statements s13 and s14 accumulate data to the same array,
and have two common input arrays. Since their fusion would
result in maximum data movement saving among all nodes,
the fusion algorithm merges them.

− The next candidates for fusion are clusters {s10,s11}, and
{s4,s5}. Both clusters result in a data movement saving of
2. However, the algorithm chooses to fuse s10 and s11 first,
since the resulting node requires fewer total shared memory
buffers. Statements s4 and s5 are fused in the next step.

− Fusing clusters {s4,s5} and {s13,s14} will result in a data
movement saving of 3. However, the fusion results in reg-
ister spills in the generated code, violating the fusibility con-
straints. Hence this cluster is not fused.

− Statements s7 and s8 have a common input, and contribute to
the same output. Hence they are fused next.

− Clusters {s4,s5} and {s7,s8} are fused next, since fusing them
saves on data movement without register spills. Statements
s1 and s2 are fused as they contribute to the same array.

− Statement s3 and cluster {s10, s11} are fused next, since they
have a common input. Cluster s{s1,s2} and {s13,s14} are
fused to minimize the number of kernel launches.

1http://exactcodesign.org/proxy-app-software/



Any further fusion violates the fusibility constraints, since the
shared memory usage of the fused cluster would exceed Mshm. The
final nodes in the optimized DAG are: {s1, s2, s13, s14}, {s3, s10, s11},
{s4, s5, s7, s8}, s6, s9, s12, and s14. As mentioned earlier, statements
s6, s9, s12, and s14 apply an order-4 stencil along the streaming di-
mension z on two or more input arrays.

Due to the high register pressure with our tiling scheme, we opt
for naïve tiling with no use of shared memory or explicit regis-
ters for s13 and s14 in the generated code. The optimized code for
the post-fusion DAG achieves 128.98 GFlops on a K20c, a 3.6×
speedup over the base unfused version.

Recompilations. If we set the recompilation-bypass size to 1,
then we perform nine recompilations to detect any violation of the
fusibility constraints – five for clusters of size 2, two for clusters of
size 3, and two for clusters of size 4. If the recompilation-bypass
size is set to 2, then only four recompilations are needed.

Effect of implicit registers on degree of fusion. Since
all the statements in the hypterm stencil are accumulations, a fu-
sion model that does not account for implicit registers will fuse too
many statements together. This will create high register pressure
in the generated kernel, leading to register spills. In Figure 3, we
plot the performance of the generated code for various degrees of
fusion. max-fuse refers to the version with maximum fusion. It re-
quires a 264 byte stack frame, generating 648 bytes of spill stores
and 488 bytes of spill loads. fuse-8 and fuse-6 also generate spills.
fuse-8 requires 72 bytes of stack frame (76 bytes spill stores, 92
bytes spill loads), and fuse-6 requires 16 bytes of stack frame (20
bytes spill stores, 20 bytes spill load). There are no spills gener-
ated for fuse-4 and fuse-2. Any advantages from reduction in data
movement for a degree of fusion higher than 4 is offset by the in-
crease in global memory traffic from register spills. Since our fu-
sion approach checks for register spills in the fusibility constraints,
we generate a code with degree of fusion 4, thereby achieving the
highest performance amongst these variants.

max-fuse no-fuse fuse-8 fuse-6 fuse-4 fuse-2
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Figure 3: Performance of hypterm for varied degree of fusion

6.2 Experimental Evaluation
We evaluate our framework on a set of benchmarks listed in Ta-

ble 3, and compare performance against PPCG-0.04 [24], Overtile-
0.3.2 [9], and Forma [19]. PPCG and Overtile are open source
compilers. All benchmarks use single-precision floating point com-
putations. The code was compiled using NVCC 7.0 with flags ‘–

use_fast_math Xptxas "-v -dlcm=cg" -maxrregcount=32’. The ob-
jective function was chosen to be minimization of data movement,
since the performance of code generated with it was comparable
to or better than the variants using other objective functions. The
recompilation-bypass size was set to 1.

In each case, the time taken to generate the optimized code is
dominated by the time for recompilations. As mentioned earlier,
code versions are recompiled because we cannot effectively esti-
mate the impact of fusion on the number of “implicit” registers used
by the NVCC compiler. Since the compilation time depends on the
host machine on which the code is compiled, instead of reporting
absolute time for code generation, we provide information on the
number of recompilations needed. The additional time to run the
greedy fusion heuristic is negligible compared to the time for the
NVCC recompilations. The number of recompiled variants is not
excessive because of pruning from violation of any of the resource
constraints, and the fact that growth of a fused cluster increases its
resource usage. The most complex of the tested stencils was the
previously discussed hypterm case study – any topological sort is
valid for this stencil DAG, but it required only nine recompilations.

Benchmark Domain T k Flops Arrays

Heat 5123 4 1 15 2

Poisson 5123 4 1 21 2

Chebyshev 5123 4 1 39 6

Denoise 5003 4 2 62 4

MiniGMG 4803 4 1 27 9

Hypterm 3003 1 4 358 13

FDTD 3003 4 1 39 6

Table 3: Characteristics of the 3D benchmarks

Figure 4 presents performance in GFlops, for kernel execution
time of the benchmarks from Table 3, on a Tesla K20c and a GeForce
GTX Titan device. Figure 5 shows the performance on a GeForce
GTX Titan X Maxwell device. For Kepler, the read-only arrays an-
notated with __restrict__ keyword can be loaded through the cache
used by texture pipeline. To exploit this feature, the input and out-
put arrays were annotated in all the codes except for the baseline
PPCG code. PPCG performs default thread coarsening, and the de-
gree of coarsening for the Overtile compiler can be specified as part
of the DSL input. Mapping multiple iterations to a thread exposes
instruction level parallelism. The performance numbers for Over-
tile were measured by coarsening the slowest varying dimension
by a factor of 2. Our code generator does not support thread coars-
ening at present. The tile sizes for all codes were tuned to achieve
maximum occupancy.

The access offsets in Poisson and Chebyshev make them unre-
sponsive to the optimizations proposed in [15, 17]. We are able
to optimize them for storage by associative reordering of opera-
tions. For Chebyshev, which reads from four input arrays, time
tiling would be impossible if all the input is stored in shared mem-
ory. With associative reordering, we are able to offload the storage
of some arrays to registers, thereby allowing fusion. Denoise and
MiniGMG are multi-statement stencils. Despite the high number
of input arrays read, we are able to achieve maximal occupancy
by optimizing them for storage. All benchmarks have RAW depen-
dence between stencil statements. For Heat and Poisson, the degree
of fusion is limited to 2 by the constraints on shared memory and
redundant computations. For MiniGMG, FDTD and Denoise, the
constraints on shared memory buffers and explicit registers are vio-
lated for fusion degree beyond 2. For Chebyshev, the constraint on
explicit registers is violated for a fusion degree beyond 2. For the
benchmarks with T = 4, we recompile clusters of size 2 only twice
to check for a violation of the fusibility constraints.

Since PPCG does classical tiling without utilizing shared mem-
ory, the performance of its generated code is not comparable with
other code generators. The Overtile compiler could not generate
correct code for MiniGMG and Chebyshev. Since hypterm can
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Figure 4: Performance results for 3D benchmarks on Kepler Tesla K20c and GeForce GTX Titan

only be spatially tiled, we do not present the performance numbers
for Forma’s overlap-tiled code for hypterm. Our optimized auto-
generated code achieves 3.6× speedup for hypterm, 2.95× speedup
for Chebyshev, and 2.3× speedup for Denoise. The speedup for
MiniGMG is only 1.5×, due to the high volume of global trans-
actions to read from a large number of input arrays. FDTD per-
forms global writes and reads for six arrays at each time step. Time
tiling reduces global transactions, but increases resource pressure,
thereby reducing the achievable occupancy. If the shared memory
size increases in future GPU architectures, we would be able to
time-tile FDTD without sacrificing occupancy, further improving
its performance.

The performance gap between other frameworks and our frame-
work stems from the following factors: (a) we use a fusion heuris-
tic to reduce data movement across stencil operators; (b) we use
registers along with shared memory to cache the input data – this
not only reduces access latency, but also reduces shared memory
pressure, enabling higher occupancy than the other frameworks as
the order of the stencil goes up; (c) we leverage associative re-
ordering to transform the computation to a form on which the re-
source optimizations can be performed – this allows us to optimize
a wider range of stencil computations than the other frameworks.
As demonstrated by the experimental results, the proposed perspec-
tive on fusion and tiling for 3D stencils on GPUs leads to signif-
icantly better performance than what is possible with previously
developed approaches.

7. RELATED WORK
Loop fusion and time tiling for stencil computations have been

studied for CPUs. Ahmed et al. [1] present a polyhedral model
based approach for synthesizing transformations to enhance data
locality in imperfectly-nested loops. Li et al. [14] present a com-
piler framework for automatic tiling of iterative stencils, with a
cost model to minimize cache misses. Mullapudi et al. present
PolyMage [16], a domain-specific compiler for image processing
pipelines on CPUs. It uses the polyhedral model to develop model-
driven transformations for fusion, tiling, and storage optimization
for image processing pipelines. However, due to architectural dif-
ferences, the performance of tiling approaches on CPUs does not
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Figure 5: Performance results for 3D benchmarks on Maxwell

GeForce GTX Titan X device

necessarily translate well to GPUs, especially for higher-dimensional
stencils. High-performance GPU code generation for stencil com-
putations has been a topic of active research [2, 4, 5, 6, 7, 9, 12,
15, 17, 19, 24, 25]. These research efforts can be grouped into four
categories.

The first category comprises automated code generators, mainly
targeting time-iterated stencils [2, 4, 5, 9, 23, 19, 24]. To achieve
concurrent execution of tiles with time-tiling, these code genera-
tors use some form of non-rectangular tiling, such as overlapped
tiling [9, 19, 16], split tiling [23, 5], or hexagonal tiling [4]. PPCG
[24] is a polyhedral source-to-source compiler that generates classi-
cally time-tiled CUDA code from an annotated sequential program.
Patus [2] generates time-tiled code with varying degree of thread
coarsening, but without any use of shared memory. Overtile [9]
and Forma [19] use shared memory, but do not utilize streaming.
The split tile and hexagonal tile approaches of Grosser et al. [4, 5]
also do not use streaming; the codes are not publicly available for
evaluation. In contrast to our code generator, none of these code



generators use fusion across stencil operators to maximize reuse,
or streaming to reduce the tile footprint. PolyMage [16] performs
fusion across stencils, but does not use streaming and does not
address GPU code generation. Pochoir [23] is a stencil compiler
that uses a cache-oblivious approach to generate split-tiled code
for multi-core CPUs, but does not consider sequences of multiple
stencil statements. With prior GPU code generators [2, 4, 5, 9, 19,
24], while good performance was demonstrated on a variety of 2D
stencils, very few 3D stencils were evaluated, and performance on
any evaluated 3D stencils for large problem sizes was considerably
lower than performance achieved with large 2D stencil computa-
tions.

The second category of research comprises optimized hand-tuned

implementations that target specific computations. Micikevicius
[15] implemented spatial tiling with registers to alleviate shared
memory pressure for a 3D finite difference computation. How-
ever, the optimizations in the implementation are limited to cross-
stencils with a specific access pattern. Nguyen et al. [17] use
the techniques presented in [15] to time-tile a 7-point 3D Jacobi
computation that streams through one dimension. Our prior work
[20] demonstrated high-performance for many 2D and 3D sten-
cils through manual implementation of overlapped tiling with slid-
ing windows, along with associative reordering for effective use of
shared memory and registers.

The third category of research focuses on auto-tuning of certain
parameters to optimize stencil computations. Datta et al. [3] an-
alyze the performance of a 7-point 3D stencil (as implemented by
Nguyen et al. [17]) on an Nvidia GTX280. Kamil et al. [11]
develop a code generator and an auto-tuning framework, but their
code generator does not utilize shared memory for stencil com-
putations. Zhang and Mueller [27] evaluate a code generator and
auto-tuner for 3D stencils on GPU clusters, but do not incorporate
time-tiling. For many bandwidth-bound kernels, just spatial tiling
is insufficient to achieve high performance. Halide [18] decouples
algorithm specification from schedule. Halide schedules can ex-
press spatial tiling and sliding-window optimizations. However,
the performance depends on either manually writing an efficient
schedule, or exploring a vast schedule space with auto-tuning. In-
stead of auto-tuning, our code generator employs a model-driven
approach to choose between fusion configurations.

The fourth category of research addresses the development of
analytical models for the performance of stencil computations on
GPUs. These models are intended for integration into code gener-
ators to guide kernel optimizations. Hong and Kim [10] propose
an analytical model to predict performance of GPU kernels. How-
ever, their model relies on manual gleaning of low-level informa-
tion about the kernel. Lai et al. [13] analyze a performance upper
bound for SGEMM on GPUs, and use register blocking assuming
maximum register reuse. Their model only provides performance
upper-bounds for compute-bound kernels. Su et al. [22] propose
a model that estimates the execution time based on the data traf-
fic between different memory hierarchies. A common limitation of
all these models is the precision in prediction, stemming from the
complexity of the underlying hardware. Wahib and Maruyama [25]
extend the analytical model in [13]. They pose kernel fusion as an
optimization problem, and use a code-less performance model to
choose a near-optimal fusion configuration amongst other possible
variants. The space of feasible solutions is pruned using a search
heuristic based on a hybrid grouping genetic algorithm. Gysi et
al. [6] also propose a model-driven stencil optimization approach.
Like [25], they use a code-less performance model to find the best
fusion configuration among all valid topological sorts of the stencil
DAG. The model has been used to guide kernel fusion in the Stella

library [7]. While these works do model the shared memory con-
straints for kernel fusion, their models cannot accurately account
for the register usage of the final kernel generated by NVCC, since
the register count is highly influenced by the domain-specific op-
timizations first performed on the original code. We address this
issue by splitting the register usage into two classes, explicit and
implicit registers. While the explicit registers are modeled accu-
rately, the implicit register usage is accounted for by limited com-
pilation of a small number of fused configurations.

It is worth noting that the main focus of this work was not to de-
velop a model that could accurately predict kernel performance for
different fusion variants. Instead, our goal was to develop a practi-
cally effective model that incorporated fusion, sliding-window over-
lapped tiling, and associative reordering to enable automated gen-
eration of high-performance GPU kernels for 3D stencils. The
modeling approach was validated by the performance achieved for
many stencil benchmarks. Indeed, if a better model is available
that can more accurately predict the performance of the generated
CUDA kernels, it can be easily incorporated into the compilation
tool-chain.

8. CONCLUSIONS
Several factors are important in enhancing the performance of

a 3D stencil computation on a GPU: (a) maximizing use of the
processing resources; (b) minimizing global memory accesses; (c)
effective use of shared memory and registers; (d) accounting for
the computational redundancy introduced by the tiling scheme. We
present an automated code generator that manages the allocation of
GPU resources, using fusion along with 2D overlapped tiling and
streaming through one unpartitioned spatial dimension. A heuris-
tic for fusion choice seeks to optimize the use of shared memory
and registers. Experimental results on two GPU devices on a set
of resource-intensive benchmarks demonstrate significant perfor-
mance improvement over other available code generators.
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