
Orlis: Obfuscation-Resilient Library Detection for Android
Yan Wang

Ohio State University
Haowei Wu

Ohio State University

Hailong Zhang
Ohio State University

Atanas Rountev
Ohio State University

ABSTRACT
Android apps often contain third-party libraries. For many pro-
gram analyses, it is important to identify the library code in a given
closed-source Android app. There are several clients of such library
detection, including security analysis, clone/repackage detection,
and library removal/isolation. However, library detection is compli-
cated significantly by commonly-used code obfuscation techniques
for Android. Although some of the state-of-the-art library detection
tools are intended to be resilient to obfuscation, there is still room
to improve recall, precision, and analysis cost.

We propose a new approach to detect third-party libraries in
obfuscated apps. The approach relies on obfuscation-resilient code
features derived from the interprocedural structure and behavior of
the app (e.g., call graphs of methods). The design of our approach
is informed by close examination of the code features preserved
by typical Android obfuscators. To reduce analysis cost, we use
similarity digests as an efficient mechanism for identifying a small
number of likely matches. We implemented this approach in the
Orlis library detection tool. As demonstrated by our experimental
results, Orlis advances the state of the art and presents an attractive
choice for detection of third-party libraries in Android apps.

KEYWORDS
Android, library detection, library identification, obfuscation, static
analysis
ACM Reference Format:
Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev. 2018. Orlis:
Obfuscation-Resilient Library Detection for Android. In MOBILESoft ’18:
MOBILESoft ’18: 5th IEEE/ACM International Conference on Mobile Software
Engineering and Systems , May 27–28, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3197231.3197248

1 INTRODUCTION
The mobile app market has grown rapidly in the past decade. An-
droid has become one of the largest mobile application platforms,
with about 3.5 million apps in the Google Play Store [3], generat-
ing about 31 billion USD revenue [8]. Some apps contain sensitive
private information or valuable business logic. Due to security con-
siderations, as well as intellectual property concerns, developers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5712-8/18/05. . . $15.00
https://doi.org/10.1145/3197231.3197248

often release closed-source application. To further hinder decompi-
lation tools and manual reverse engineering, apps are additionally
protected using obfuscation. There are several available choices
of obfuscation tools, including an obfuscation component in the
default Android IDE. An earlier study [55] estimates that about
15% of Google Play apps are obfuscated, and more recent studies
indicate even wider use of obfuscation [55].

Android apps often contain third-party libraries. Some usage
statistics gathered commercially track 450 popular libraries [2] and
show that many of them have significant usage in the Android
ecosystem. For example, advertisement libraries, social networking
libraries, and mobile analytics libraries are very popular. Some apps
use more than 20 third-party libraries [35]. Developers use these
components to monetize their apps, integrate with social media,
include single-sign-on services, or simply leverage the utility and
convenience of libraries developed by others.

Program analysis of Android apps often requires detecting or
removing third-party library code as a pre-processing step, since the
libraries could introduce significant noise and could substantially
affect the results of many analyses. Such library detection may
be needed for security analysis [4, 6, 21, 27, 41, 43, 58, 59], clone
and repackaging detection [14, 26, 61], and library removal and
isolation [49, 60]. The use of libraries can also have security and
privacy implications [5, 9, 20, 22, 28, 42, 43, 49, 52–54]—for example,
malicious libraries or unintended security vulnerabilities in library
code could lead to leaks of sensitive data.

Library detection is complicated significantly by app obfuscation.
Attempts to match package/class names or method signatures with
ones from known libraries are easily thwarted by the renaming
typically done by Android app obfuscators. It is highly desirable to
develop obfuscation-resilient third-party library detection. There
have been several efforts and research tools aiming to solve this
problem. However, as discussed in the next section, these tools have
various limitations.
Our contributions. We performed an investigation of popular
obfuscators and characterized their features that hinder library de-
tection. We then studied how existing advanced publicly-available
library detection tools perform in the presence of such features.
Although some of the state-of-the-art tools are intended to be re-
silient to obfuscation, we argue that there is still room to improve
recall, precision, and analysis cost.

Based on these observations, we propose a new approach to
detect third-party libraries in obfuscated apps. The approach relies
on obfuscation-resilient method-level and class-level information.
The richness of this information is significantly higher than what is
commonly used by library detection tools—for example, it consid-
ers transitive calling relationships between methods, as well as the
structural relationships in class hierarchies and methods defined

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev

in them. These features capture the inter-procedural structure and
behavior of the app. This is in contrast with existing approaches,
which conceptually consider analysis of each separate method but
not the relationship between methods—that is, intra-procedural
analysis. The design of our approach is informed by close examina-
tion of the code features preserved by typical Android obfuscators.
The resulting library detection approach exhibits higher precision
and recall than prior work of similar nature.

Library detection may have to be performed at large scale—for
example, when app-market-scale analyses are applied for clone de-
tection and security analysis. To reduce the cost of the analysis, we
use the machinery of similarity digests [16, 32, 39, 45]. Such digests
are similar to cryptographic hashes such as MD5 and SHA, but with
the additional property that a small change in the data object being
hashed results in a small change to the hash itself. In our context,
similarity digests provide an efficient mechanism for identifying
a small number of likely matches. The use of such digests, rather
than more traditional hashes, is critical: due to obfuscation, the
library code that is preserved in the obfuscated app does not match
precisely the code in the original library; thus, direct comparison of
hash codes is not possible. We explore several similarity digests and
demonstrate empirically that different ones are needed for different
aspects of the library detection process.

We implemented this approach in the Orlis tool, which per-
forms obfuscation-resilient library detection using interprocedural
code features and similarity digests. Our experimental evaluation
studies the effects of various choices in the analysis implemen-
tation, and then compares precision/recall with the state-of-the-
art LibDetect tool [26]. As demonstrated by our results, Orlis
presents an attractive choice for detection of third-party libraries
in Android apps. Our tool and benchmarks are available at http:
//web.cse.ohio-state.edu/presto/, for the benefit of other researchers
and tool builders.

2 BACKGROUND
2.1 Android Obfuscation
Code obfuscation is commonly used to protect against reverse en-
gineering. A variety of obfuscation tools for Android are available—
for example, the ProGuard tool included in the Android Studio IDE
from Google. Many released Android apps are obfuscated [55] since
the unobfuscated bytecode is relatively easy to decompile using a
number of existing tools (e.g., [50]). When obfuscation is applied,
reverse engineering becomes much harder [30].

In our study we investigated three obfuscators: ProGuard [44],
Allatori [1] and DashO [18]. They are widely used in Android devel-
opment. As mentioned earlier, ProGuard is part of Google’s Android
Studio. Allatori is a tool developed by a Russian company, with
corporate clients such as Amazon, Fujitsu, and Motorola. DashO is
another commercial tool, produced by a company with thousands
of corporate clients.

The features of each obfuscator is summarized in Table 1. All
three can obscure identifier names, method names, class names,
and package names. Moreover, the values of the new names can
be customized, which means that developers can have their own
unique renaming schemes. In addition, the tools can modify the
package hierarchy, in particular (1) repackaging classes from several

Table 1: Obfuscator features.

ProGuard Allatori DashO
Identifier renaming Yes Yes Yes
Method renaming Yes Yes Yes
Class renaming Yes Yes Yes
Package renaming Yes Yes Yes
Code addition Yes Yes Yes
Code removal Yes Yes Yes
String encryption No Yes Yes
Repackaging/Package flattening Yes Yes Yes
Control flow modifications No Yes Yes
Customized configuration Yes Yes Yes

packages into a new, different package and (2) flattening the package
hierarchy. Both Allatori and DashO can modify the code’s control
flow and encrypt the constant strings in the program. Finally, the
tools can remove unused code (“Code removal” in the table) and
add their own utility methods in the new code (“Code addition”).

Note that all three tools can be easily configured to merge the app
code with the code of included third-party libraries, and obfuscate
this combined code. Such a setup obfuscates the interfaces between
the app and its libraries, hides the library features being used by the
app, and reduces code size (e.g., unused library classes/methods can
be removed). However, this obfuscation makes library detection
significantly harder, as described below.

2.2 Existing Library Detection Tools
Given the APK for an (obfuscated) Android app, the goal of library
detection is to determine which components of the app belong
to some third-party library that was used by the app developers.
The granularity of the answer is typically considered at two levels:
package level and class level. In package-level matching, a package
in the package tree of the app is determined to be from some library.
In class-level matching, a class in the app code is detected to be a
library class. Package-level matching has a number of limitations,
as described below. For the purposes of subsequent analyses (e.g.,
app clone detection [26]), class-level matching is both more general
and more useful.

There are currently two approaches for recognizing third-party
libraries in Android apps. The first is to identify a component that
occurs in many apps, and to consider it to be an instance of some
unknown library. The specific library that was the original source
of the component remains undetermined. The second approach is
based on a database of known libraries. In this case, given an never-
before-seen app, the analysis determines which libraries from the
database are present in the app.

2.2.1 Detection of unknown libraries. Several approaches per-
form library detection without having a database of known libraries.
Such approaches divide an app into components which are regarded
as library candidates. Then a similarity metric or a feature-based
hashing algorithm is used to classify these candidates. If a group
of similar candidates exists in many different apps, components in
that group are considered instances of the same unknown library.

Orlis: Obfuscation-Resilient Library Detection for Android MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

An advantage of this approach is that there is no need tomaintain
a library database. One example from this category is the approach
used by Chen et al. [12], which mined libraries from a large number
of apps. However, when obfuscation is considered, this approach
cannot perform well because several key assumptions are violated.
The first assumption is that all instances of a library included by
different apps have the same package name. This assumption is
the basis of clustering algorithms used in similarity-based library
identification. However, using off-the-shelf obfuscators, it is easy
to violate this assumption.

Some researchers have considered the possibility that using pack-
age names makes library identification less robust. A recent tool
called LibRadar [37] uses an algorithm that takes obfuscated pack-
age names into consideration. LibRadar classifies library candidates
through feature hashing and therefore does not need package-name-
based clustering. However, LibRadar recognizes library candidates
according to the directory structures of packages. In particular, it
requires a library candidate to be a subtree in the package hier-
archy. This is another assumption that is easily violated through
standard transformations available in obfuscation tools (as illus-
trated in Table 1). LibD [34] is another tool that does not rely on
the hierarchy of the package tree, but instead uses the relationships
among packages—e.g., inclusion and the inheritance relationships
between classes across different packages. However, these relation-
ships can be dramatically changed by obfuscation because classes
from several packages may be merged into one single package.

Tools from this category (e.g., WuKong [56] and AnDarwin [15])
may also use features such as the number of different types of
instructions, a method’s control-flow graph, or the number of API
calls, in order to define hashes for methods or classes. These hashes
are compared during matching, with hash equality used as evidence
of a precise match. This is problematic because obfuscation may (1)
modify a method’s control-flow graph, (2) remove unused methods
and classes, and (3) add new utility methods. All three of these
changes are illustrated in Table 1. Such changes modify method
hashes and class hashes. To summarize, existing work on detection
of unknown libraries is not resilient to obfuscation because it lacks
prior knowledge of possible libraries and the detection is entirely
based on obfuscation-sensitive similarity metrics.

2.2.2 Detection using a repository of known libraries. The alter-
native approach, which relies on knowledge of existing libraries
(using some pre-assembled repository of such libraries), is more
promising when dealing with obfuscation. A representative exam-
ple of a tool from this category is LibScout [5]. This tool’s matching
is based on the package structure and hashes of classes in the
package. Class hashes themselves are based on hashes of simpli-
fied (“fuzzy”) forms of method signatures. Although robust against
control flow modification and package/class/identifier renaming,
LibScout is not fully resilient to obfuscation. For example, flattening
the package hierarchy would still defeat this approach because the
package hierarchy is modified and the boundaries between app and
library code become blurred. Another problem is the removal of
unused library code, or the addition of obfuscation-tool-specific
utility methods. As a result of these changes, it is common for an
app to contain a strict subset of the set of classes and methods that
are observed in the library code inside the database. This happens

when the obfuscation tool removes library methods and classes
that are not used, directly or transitively, by the app code. This
causes mismatches for class hashes and the ultimate failure of li-
brary detection. Our experience with various obfuscation tools [57]
confirms that such code changes are common in practice.

Currently, the most sophisticated tool in this category is LibDe-
tect, which is a component of the CodeMatch tool for app clone
and repackage detection [26]. The evaluation of LibDetect indicates
that it outperforms alternative approaches [33, 37]. This approach
uses five different abstract representations of a method’s bytecode
to match app methods against library methods. Then a mapping
between an app class and a library class is established according
to method matches. The approach is resilient to many obfuscation
techniques, including package renaming and removal of unused
library code. However, the bytecode in a method’s body can the
changed in a variety of ways during obfuscation. A few examples of
such changes are adding dead code (unreachable statements as well
as spurious conditionals with dead branches), replacing statements
with equivalent constructs (e.g., changing an if-then to a try-catch),
and modifying expressions to use different operators (e.g., replacing
multiplication with bitshift). These bytecode changes can affect the
code representations used by LibDetect and the matching based
on them. Section 4 presents a detailed comparison of the library
detection performance of LibDetect and Orlis.

There are other studies that use pre-computed information about
known libraries to detect libraries in Android apps. For example,
AdRisk [28] proposes to identify potential risks posed by advertise-
ment libraries; they use a whitelist of such libraries. Book et al. [9]
also use a whitelist of advertisement libraries to investigate library
changes over time. For Android app clone detection, Chen et al. [11]
use a library whitelist to filter third-party libraries when detecting
app clones. Because such approaches only compare package names,
they cannot handle aggressive obfuscation.

To summarize, none of the existing tools are highly resilient
against the code modification features that are easily available in
popular obfuscators. This motivates our work to develop a new
library detection approach with better resilience to a wide range of
obfuscation transformations.

3 ORLIS: AN OBFUSCATION-RESILIENT
APPROACH FOR LIBRARY DETECTION

We developed a library detection approach that belongs to the
second category described in the previous section: a given obfus-
cated app is compared against a repository of known libraries, and
high-likelihood matches are reported to the user. However, unlike
existing tools, we do not consider the app package structure and
the detailed method body bytecode, because they can be modified
significantly by obfuscation. The output of our approach is class-
level mapping between application code and library code: for each
app class, the analysis reports (1) whether this class likely origi-
nated from one of the libraries in the repository, and (2) the specific
library class that is the most likely match for the app class. As dis-
cussed earlier, class-level matching provides essential information
for subsequent analyses such as app clone/repackaging detection.
Furthermore, the reported app-to-library matching is injective: at
most one app class is matched with a particular library class.

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev

3.1 Assumptions About Obfuscation
Our approach is based on several assumptions derived from our
studies of Android obfuscators (Section 2). Prior work on library
detection typically does not define or validate its assumptions on
the properties of obfuscation. As a result, it is hard to reason about
the generality of various techniques and to perform systematic
comparisons between them.

3.1.1 Method-level assumptions. We assume that a method from
a library is either included in the app as a separate entity, or not
included at all. This means that during obfuscation, a method is
neither split into several new methods, nor merged with another
method. We also assume that the number and types of method for-
mal parameters are preserved, as well as the return type. Of course,
we need to assume that the name of the method could have been
modified by the obfuscator. Similarly, if a method parameter/return
type is defined by a library class, it is possible that this class was
renamed by the obfuscator—both in the class definition and in the
method signature.

Our approach also assumes that regardless of changes to the
method body (e.g., modifications to themethod’s control-flow graph,
changes to statements and expressions, addition of unused code),
the calling relationships between two library methods are preserved.
Specifically, we assume that if methodm1 contains a call site that
may call m2 at run time, and the obfuscator includes m1 in the
app, it will also include m2 and will preserve the corresponding
call site insidem1. We have not observed obfuscators that violate
this assumption; one reason may be that removal of such call sites
(e.g., via inlining) is complex to implement and could introduce
semantic errors due to polymorphic calls, reflection, and dynamic
class loading.

3.1.2 Class-level assumptions. Another group of assumptions
relates to the properties of library classes. As with methods, we
assume that a library class is either fully excluded from the app,
or included as a separate entity and not split/merged. We also
assume that library classes may have been renamed, but the class
hierarchy is preserved—that is, if a library classC is included in the
app, so is the chain of C’s transitive superclasses. In addition, we
assume that some methods from C may have been removed by the
obfuscator, but the ones that are preserved are still members of C
after obfuscation. Note that the obfuscator may have added new
methods toC—for example, we have seen cases where an obfuscator
adds utility methods for string decryption.

3.2 Code Features and Detection Workflow
Based on these assumptions, we define a set of code features used
for library detection. First, for each method in a library or in an an-
alyzed app, we use a fuzzy signature as defined by others [5]. These
signatures are used to build a fuzzy call graph for each method,
which is then mapped to a string feature for the method (Section 3.3).
The method features for a library are used to create a library digest;
a similar app digest is built from the features of app methods (Sec-
tion 3.4). Method features are also used to compute a class digest
for each class, based on the methods appearing in the class and in
its transitive superclasses. In all cases, similarity digests are used
(Section 3.5).

Libs

Candidate Libs

a

b

c

d

e

f

class mapping

Stage 1

Stage 2

Apps

Lib digest

Class digest

App digest

Class digest

Figure 1: Workflow for library detection.

Using this approach, for each library from the repository we can
pre-compute a library digest as well as class digests for its classes.
Given an unknown obfuscated app, its app digest and class digests
are computed. Based on this information, the library detection
workflow proceeds in two stages, as shown in Figure 1. Stage 1
compares the app digest with each library digest. Libraries that are
highly unlikely to be included in the app are removed from further
consideration. This decision is based on similarity scores derived
from the digests. After this stage, only a small number of libraries
from the repository are left as candidates. In Stage 2, an injective
mapping from app classes to library classes is determined, based
on the similarity of class digests. Only classes from the candidate
libraries are considered for this mapping.

3.3 String Features for Methods
Fuzzy signatures are computed as follows. Given amethod signature
containing a name, parameter types, and return type, a simplified
signature is created by (1) removing themethod name and (2) replac-
ing all classes defined in the library/app with a single placeholder
name. Names of Android framework classes and Java standard
library classes remain unchanged. For example, if we consider a
library method with signature int methodA(android.view.View,
ClassA,int,java.lang.String), the corresponding fuzzy signa-
ture is int(android.view.View,X,int,java.lang.String). Here
View and String are standard library classes that would not be re-
named by an obfuscator, while library class ClassA is replaced with
a placeholder X because obfuscation may change its name when
the library is included in an app and that app is obfuscated.

Recall the assumption that (transitive) calling relationships be-
tween methods would not be affected by obfuscation. If a library

Orlis: Obfuscation-Resilient Library Detection for Android MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

fᵢ for mᵢ

f₂ for m₂

f₁ for m₁

f₀ for m₀

.

.

.

alphabet
 order

(a) String feature for an
app or a library

sᵢ for cᵢ

s₂ for c₂

s₁ for c₁

s₀ for c₀

.

.

.

Inheritance
 hierarchy

feature of method₀ in M₀

feature of method₁ in M₀
.
.
.

feature of methodᵢ in M₀

Alphabet
order

(b) String feature for a class C0

Figure 2: String features used for matching.

methodm is included in an obfuscated app,m’s call graph in the li-
brary (i.e.,m, its transitive callees, and the call edges between them)
would be a subgraph ofm′ call graph in the app. Note that we can-
not claim that the two call graphs are identical: it is possible that
there are extra callees ofm in the app, due to (1) app subclasses that
override methods defined in library superclasses, and (2) calls to
utility methods inserted by the obfuscator. One can try to determine
whetherm is present in a given obfuscated app by (1) constructing
m’s call graph in the library, (2) constructing the app’s call graph, (3)
replacing each method in the graphs with its fuzzy signature, and
(4) searching for an isomorphic subgraph. Unfortunately, subgraph
isomorphism is a classic NP-complete problem.

Instead, we use a string representation of the fuzzy call graph
of each method in a library or an app to define features that are
then used to create similarity digests. Specifically, consider a library
with a set of methods {m1,m2, . . . ,mn }. For each methodmi , we
compute a feature fi : a string containing the fuzzy signatures of all
methods reachable frommi in the library call graph, includingmi
itself. To make fi deterministic, the fuzzy signatures are sorted al-
phabetically and then concatenated to create the final string feature
fi . The same approach is used to define a feature fj for a method
mj in a given obfuscated app.

3.4 Stage 1: App-Library Similarity
As described earlier, the purpose of this stage is to determine the
similarity between an app and a library in order to filter out libraries
that are unlikely to be included in the app. For each app (or library),
a string feature fapp (or flib) is computed based on the method
string features described above. The string features for the methods
are sorted alphabetically and then concatenated, as illustrated in
Figure 2a. A digest is computed from this feature. The pre-computed
digests in the library repository are compared for similarity with the
digest of the given obfuscated app. Experimental results presented
in Section 4 show that this approach is very effective in filtering
out a large number of libraries.

Algorithm 1: Class-level mapping
Input: SortedPairs: list of ⟨aci , lcj ⟩ sorted by si j

1 Result ← { }
2 AppClasses ← { }
3 LibClasses ← { }
4 foreach ⟨aci , lcj ⟩ ∈ SortedPairs in order do
5 if si j < threshold then
6 break
7 if aci ∈ AppClasses then
8 continue
9 if lcj ∈ LibClasses then

10 continue
11 AppClasses ← AppClasses ∪ {aci }
12 LibClasses ← LibClasses ∪ {lcj }
13 Result ← Result ∪ {⟨aci , lcj ⟩}

3.5 Stage 2: Class Similarity
Stage 2 determines a mapping from app classes to library classes.
Suppose an app has a set of classes Sapp = {ac1, ac2, . . . , acn } and
a set of candidate libraries {lib1, lib2, . . . , libk } as determined by
Stage 1. Let Slib = {lc1, lc2 . . . , lcm } be the union of the set of classes
in libi over all i .

For each class in Sapp or Slib, a string feature is computed as
illustrated in Figure 2b. Consider a class C0 and the chain of its
superclasses C1,C2, . . . ,Ck , accounting only for classes that are
defined in the app (or the library)—that is, excluding classes such
as java.lang.Object. As discussed earlier, we assume that if C0
is included in the app, so are all Ci in this list. LetMi be the set of
methods defined in Ci . We consider the string features of all meth-
ods inMi , sort them alphabetically, and concatenate them to obtain
a string si (0 ≤ i ≤ k). Then the concatenation of s0, s1, . . . , sk (in
that order) defines the string feature for C0. Finally, a digest of this
string is computed.

A pair-wise similarity score si j is computed for classes aci and lcj
by comparing their class digests. Then all pairs ⟨aci , lcj ⟩ are sorted
based on si j and the sorted list is processed using Algorithm 1. The
resulting class-level mapping is clearly injective.

3.6 Implementation
To evaluate this approach, we implemented it in the Orlis tool.
The library/app bytecode is analyzed using the Soot [50] analysis
framework. The call graph is computed using class hierarchy anal-
ysis to resolve polymorphic call sites. Digest sdhash [48] is used in
Stage 1, while digest ssdeep [51] is used in Stage 2. This choice of
digests is discussed in Section 4.

To determine the set of transitive callees for each method, we
first identify the strongly-connected components (SCC) in the call
graph. They are used to create the SCC-DAG, in which nodes are
SCCs and an edge represents the existence of a call graph edge
that connects two SCCs. Reverse topological sort order traversal
of the SCC-DAG is then used to compute, for each SCC, the SCCs
transitively reachable from it. The method features are derived from
this information.

4 EVALUATION
Our experimental evaluation had two main goals: (1) to study the
effects of design choices in the performance of Orlis, and (2) to

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev

Table 2: Apps in FDroidData

ProGuard DashO Allatori
#Apps 203 215 241

compare Orlis with the state-of-the-art LibDetect tool. Evaluation
considered precision, recall, and analysis running time. All exper-
iments were performed on a machine with an Intel Core i7-4770
3.40GHz CPU and 16GB RAM. The reported running time is the
sum of user CPU time and system CPU time.

4.1 Evaluation with Open-Source Apps
Two different data sets were used in our evaluation. The first one, de-
noted by FDroidData, is obtained from the F-Droid repository [23].
The second data set, denoted by LibDetectData, is based on the data
used in the evaluation of the LibDetect tool [26]; details of this data
set and its uses are presented in Section 4.2.

To collect FDroidData, we gathered apps with available source
code from a variety of app categories and tried to build them with
the Gradle tool; 282 apps were built and used to construct our data
set. A total of 453 unique library jars were included in this set of
apps. These jars formed the library repository for this data set. The
apps were then obfuscated by us. The app source code is necessary
because (1) the obfuscators are applied to Java bytecode constructed
from the source code, and (2) we can determine which third-party
library jar files are included in the build process.

We attempted to obfuscate each app using the tools described in
Section 2: ProGuard, DashO, and Allatori. The number of resulting
apps is shown in Table 2. The numbers differ across obfuscators
because sometimes an obfuscator may fail to obfuscate an app. The
obfuscators were executed in a configuration that includes the third-
party libraries in the scope of obfuscation, and performs package
flattening and renaming. As discussed in Section 2, such obfuscation
is not handled by many library detection tools. LibDetect [26],
which according to its evaluation represents the most advanced
current approach in terms of precision and recall, is designed to
handle this issue. We used FDroidData (which contains the total of
659 apps from Table 2) to compare the performance of Orlis and
LibDetect. In addition, this data set was used to study the effects of
various similarity digests and thresholds in the design of Orlis.

4.1.1 Comparison with LibDetect. For each obfuscated app in
this set, we established the ground-truthmapping from app-included
library classes to the library classes in the library repository, using
the logs provided by the obfuscation tools. We then considered the
sets of pairs (app class,library class) reported by Orlis. For each app,
the precision for this app was computed as the ratio of the number
of reported true pairs to the total number of reported pairs. Recall
for an app was computed as the ratio of the number of reported
true pairs to the total number of true pairs. The F1 score for each
app was also computed (2 times the product of recall and precision,
divided by the sum of recall and precision). Similar metrics were
computed for LibDetect. That tool outputs information at the pack-
age level (i.e., pairs of packages). We modified the tool to print the
set of class-level pairs used to compute the package-level pairs, and
used those class-level pairs to compute recall and precision.

Table 3: Comparison with LibDetect on FDroidData

recall precision F1
LibDetect 0.10 0.63 0.17
Orlis 0.63 0.71 0.67

Table 4: Similarity score metrics

Similarity digest sdhash ssdeep TLSH nilsimsa

Score range 0–100 0–100 0–∞ 0–128
No similarity 0 0 N/A 0
Identical 100 100 0 128

The results of this experiment are presented in Table 3. Each
cell in the table shows the average value across all apps in the data
set. In these experiments Orlis was configured with sdhash for
Stage 1 and ssdeep for Stage 2, as described below. We examined
manually the output of LibDetect to determine the reasons for the
reported low recall. We observed that the tool computes a relatively
small number of matching class pairs; a possible explanation is
that the approach does not consider methods whose size is below a
certain threshold. When mapped to package-level information, the
recall increases significantly. This can be observed in the results
presented in Section 4.2, which describes another comparison with
LibDetect.

4.1.2 Selection of similarity digests. At present, there are four
popular public implementations of similarity digests that could be
used for our purposes: sdhash [45], ssdeep [32] , TLSH [40], and
nilsimsa [16]. All of them are able to (1) generate a digest for a
given byte array, and (2) compute a similarity score between two
digests to indicate the similarity of the represented byte data. Their
similarity score metrics are shown in Table 4. The scores for sdhash,
ssdeep and nilsimsa are in a fixed range. For data without any
similarity, the similarity score is 0. TLSH uses a similarity score
of 0 to indicate that the compared digests are identical. As the
digest difference increases, so does the similarity score, without
any pre-defined bound.

Figure 3a shows how Stage 1 filtering performs when using
these digests. Recall that this stage compares an app digest with
each library digest in the repository, in order to determine which
libraries are likely to have been included in the app. Conservatively,
the tool reports a library as a possible candidate if there is any
similarity between the digests. For sdhash, ssdeep, and nilsimsa
this means a similarity score greater than zero. TLSH does not have
a pre-defined value to represent no similarity; we used 300 because
this is the value used in the tool’s own evaluation [39]. Given the
reported candidate library jars, we can compute precision, recall,
and F1 score for each app. The averages of these measurements
over the apps in the data set are presented in Figure 3a. When
gathering and analyzing these measurements, we found that the
results were skewed if the repository contained several versions
of the same library, and each was treated as a separate library
for computing these metrics. Thus, for Figure 3a, we computed
the metrics by treating different versions of the same library as
being the same entity (in the numerator and denominator of recall

Orlis: Obfuscation-Resilient Library Detection for Android MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

(a) Precision, recall and F1 for stage I (b) Precision, recall and F1 for stage II

Figure 3: Performance of similarity digests for FDroidData

and precision). This produced metrics that faithfully represent the
relevant properties of the similarity digests.

Among the four choices, sdhash exhibits the highest F1 value
and the best trade-off between recall and precision. Thus, we used
this choice for the remaining experiments described in this section.
The average number of candidate library jars per app is around 22,
which is only 5% of the total number of libraries in the repository.
The results are similar for the LibDetectData dataset described later:
the average number of candidate library jars per app is also around
22, for a repository containing 7519 library jars. This is a promis-
ing indication that the number of candidate libraries produced by
Stage 1 is independent of the total number of libraries. Note that
depending on the desired trade-offs of the tool, another choice of a
similarity digest could be made. For example, recall can be increased
with TLSH and nilsimsa, at the expense of precision; as a result,
fewer libraries would be filtered and the cost of subsequent Stage 2
matching would increase.

Figure 3b shows the performance of Stage 2. This stage com-
pares app classes with classes in the candidate library jars. Recall
from Algorithm 1 that class pairs are processed in sorted order of
their similarity scores: decreasing order for sdhash, ssdeep, and
nilsimsa and increasing order for TLSH. In addition, a pair is con-
sidered only if its similarity score exceeds a pre-defined threshold
(or is below that threshold, for TLSH). The default thresholds are the
same as the ones for Stage 1: 0 for sdhash, ssdeep, and nilsimsa
and 300 for TLSH. The effect of different threshold values is studied
further in Section 4.3. For each app in FDroidData, we computed
precision and recall as described earlier. The results for ssdeep
in the figure match those in Table 3. As the measurements show,
ssdeep has the best recall, precision, and F1 score.

It is worth noting that sdhash and TLSH require certain amount
of data: in order to compute a digest, the data size should exceed
512 bytes and 256 bytes, respectively. In FDroidData, only about
40% of library class features exceed the 512 byte threshold and
about 51% exceed the 256 byte threshold. Classes for which this
threshold is not met do not have digests and do not appear in the
reported mapping. This causes the low recall for sdhash and TLSH.

Figure 4: Running time for FDroidData

We further examined various missing andmis-mapped classes. Most
of them have very simple call graphs; some even have no callees
at all. As a result, their string features are very short and likely to
be similar. This leads to a high chance of digest similarity (or no
digest at all) and makes them indistinguishable.

We also measured the running time of the four digest functions.
There are two components to this cost. The first one is digest build-
ing, which is the time to calculate the digest value based on the
given string feature. The second component is digest comparison,
which computes a similarity score based on the digest values. Fig-
ure 4 shows measurements for both components. “Digest building”
represents the time to calculate digests for the 659 apps and 453
libraries in FDroidData, while “digest comparison” is the time to
compute the similarity scores between apps and libraries in Stage 1
and between app classes and library classes in Stage 2. The results
show that nilsimsa is significantly more expensive than the re-
maining digests. For digest building, the other three choices do not
show substantial differences: all three complete in around 5–6 min-
utes. For digest comparison there are more significant differences in
running time. Although slower than TLSH, sdhash and ssdeep can
complete the digest comparison in less than 200 minutes. Taking

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev

(a) Recall, precision and F2 (b) Running time

Figure 5: Comparison with LibDetect

into account the recall, precision, and cost of each digest function,
we decided to use sdhash in Stage 1 and ssdeep in Stage 2 of Orlis.

4.2 Evaluation with Closed-Source Apps
The second dataset we used, denoted by LibDetectData, is based
on the data set used for the evaluation of the LibDetect tool [26].
As mentioned earlier, this tool presents the state of art in Android
library detection. In order to compare the performance of Orlis
with LibDetect, we used data made publicly available by the au-
thors of this work.1 We tried to collect the same data used in the
evaluation of LibDetect and to use the exact same metrics. In this
prior work, 1000 apps were collected from five different app stores.
Then, the ground truth for those apps was constructed manually.
Since the authors of LibDetect were unable to distribute these apps,
we searched for and downloaded the apps with the same names. To
ensure that the app is the same as the one used in the evaluation of
LibDetect, we matched all app packages with ones in the ground
truth from LibDetect’s web site [13]. If any package name did not
match, we considered this as evidence that we may have a different
version of the app, and removed that app from the data set. As a
result, we were able to obtain 712 apps that matched ones used in
this prior work. To gather the libraries used in the repository, we
attempted to download all libraries used in LibDetect’s experiments,
based on the library URL from the same web site. We successfully
obtained 7519 libraries out of the 8000 listed at the web site. Some
libraries are missing because the corresponding URLs are no longer
available. The evaluation of LibDetect uses F2 scores, and we also
computed the F2 scores for our evaluation.

The metrics presented in the evaluation of LibDetect are at the
package level: the ground truth is a set of library packages for each
app. The class-level pairs computed by the analysis are used to
construct the corresponding package sets; we did the same for the
output of Orlis. Recall and precision are computed based on these
package sets. Following the metrics used in this prior work, both
precision and recall were computed by using the average number
of true positives, false positives, and false negatives across all apps.
1We sincerely thank the authors of LibDetect for their valuable help with providing
information about their experiments and benchmarks.

For the i-th analyzed app, let the number of true positives, false
positives, and false negatives be tpi , fpi , and fni respectively. The
average number of true positives tp is the average of all tpi . The
average number of false positives fp and the average number of
false negatives fn are defined similarly. The overall precision, recall,
and F2 score are computed as follows:

recall =
tp

tp + fn

precision =
tp

tp + fp

F2 =
5 × precision × recall
4 × precision + recall

We computed the same metrics in our evaluation. Since the
ground truth provided at LibDetect’s web site does not contain
class-level mappings, we were unable to compute precision and
recall at the class level (unlike for FDroidData, where we know
the class-level ground truth). The results from this experiment are
shown in Figure 5a. Overall, Orlis exhibits higher precision and
recall. This indicates that using interprocedural features such as
call graphs and class hierarchies is a viable approach for library
detection.

We also measured the running time for both tools. LibDetect
needs to parse each known library and store the necessary informa-
tion in a database. Similarly, Orlis processes each known library,
builds call graphs, derives string features and digests, and stores
them in its repository. Repository building is a one-time cost; it is
also highly parallelizable. Typically, the number of known libraries
is smaller than the number of apps that would be analyzed against
the repository. Figure 5b shows the time for both repository building
(“pre-process”) and app analysis (“computation”). Orlis takes more
time to construct its repository, but the cost of app analysis is lower.
Besides the time cost, both LibDetect and Orlis have to store the
library information to disk. For the libraries in the LibDetectData
data set, LibDetect uses 8812 MB space in a MySQL database, while
Orlis uses 460 MB of files on disk. These measurements do not
include the space to store the library jars.

Orlis: Obfuscation-Resilient Library Detection for Android MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

(a) Changes of recall in Stage 1 (b) Changes of precision in Stage 1

(c) Changes of recall in Stage 2 (d) Changes of precision in Stage 2

Figure 6: Effect of thresholds for FDroidData

4.3 Effect of Thresholds
In our approach, it is possible to set a cut-off threshold in Stage 1
or Stage 2. Pairs whose similarity score does not exceed the thresh-
old (or, for TLSH, is not smaller than the threshold) are considered
non-matching by default. The experiments described so far use the
threshold of 300 for TLSH and 0 for the remaining digest functions.
It is interesting to see how different threshold values affect both
stages. We selected 10 thresholds, equally spaced, from the “least
restrictive” end to the “most restrictive” end of the similarity score
range. Figure 6 shows the changes of the recall and precision for
Stage 1 and Stage 2 using FDroidData. As expected, recall in Fig-
ure 6a and Figure 6c decreases while the precision in Figure 6b and
Figure 6d increases when the threshold becomes more restrictive.
Depending on the use case, the desired trade-off may be selected
by choosing the appropriate threshold. For example, when using
library detection as a pre-processing step in clone/repackage de-
tection (to remove library classes from further consideration), a
relatively loose threshold may be more appropriate in order to
detect as many as library classes as possible.

5 RELATEDWORK
Android obfuscation. There is a small but growing body of work
related to Android obfuscation. One representative example is a new
obfuscation approach that integrates several techniques including
native code, variable packing, and dead code insertionc̃itekovacheva-
iait13. Another study considered several obfuscation techniques

and their properties (e.g., monotonicity) [24]. De-obfuscation ap-
proaches have also been proposed. One recent example is an ap-
proach based on a probabilistic model [7]. ProGuard is the only
obfuscator considered in that work; further, the technique considers
only the renaming of program elements (e.g., methods and classes),
but not repackaging or control-flow modifications. Wang et al. [57]
propose a machine learning approach to identify the obfuscator
used to modify a given obfuscated app. Hammad et al. [29] studied
the impact of obfuscation on Android anti-malware products by
investigating 7 obfuscators and 29 obfuscation techniques. This
work aimed to analyze the influence of obfuscation on existing
tools. Garcia et al. [25] proposed a machine learning approach to
identify the family of Android malware even in the presence of
obfuscation, by using Android APIs, reflection, and native calls as
features. This study focused on anti-malware analysis and consid-
ered obfuscation-resilient properties different from the ones used
in our work. We also investigate popular obfuscators and the tech-
niques they employ, but our goal is to identify code features that
can be used to identify third-party libraries.
Third-party library detection in Android. As discussed earlier,
there is a body of work on library detection for Android [5, 9, 11, 12,
15, 26, 28, 34, 37, 56]. Some of these techniques have obfuscation-
resilient aspects, but as described in Section 2, several assumptions

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev

used in these tools are violated by commonly-used Android obfus-
cators. Our approach is specifically designed to exploit obfuscation-
resilient features. AdDetect [38] and PEDAL [36] use machine learn-
ing to detect advertisement libraries in Android apps. However,
these approaches can only handle this particular category of li-
braries, while our approach is applicable to any library. Li et al. [33]
investigated the common libraries used in Android apps by mining
libraries in a large number of apps. The purpose of this work is to
study popular Android libraries. The resulting library package list
is not aimed at detecting libraries for a given obfuscated app.
Similarity digests. Similarity digests are somewhat similar to stan-
dard hashes, but allow one to measure the similarity between two
data objects based on comparison of their digests. Several differ-
ent techniques have been developed in this area. One scheme is
based on feature extraction (e.g., sdhash [45]), which is a statis-
tical approach for selecting fingerprinting features that are most
likely to be unique to a data object. Another scheme is fuzzy hash-
ing (e.g., ssddep [32]), which uses rolling hashes and produces
a pseudo-random value where each part of the digest only de-
pends on a fragment of the input. The result is treated as a string
and is compared with other digests on the basis of edit distance.
Roussev et al. [46] proposed a similarity approach that uses par-
tial knowledge of the internal object structure and Bloom filters.
Follow-up work [47] attempts to balance performance and accuracy
by maintaining hash values at several resolutions, but requires un-
derstanding of the syntactic structure of data objects, which affects
its generality. Locality sensitive hashing is also a type of similarity
digest. Locality-sensitive hashing [31] was originally used for a ran-
domized hashing framework for efficiently approximating nearest
neighbor search in high dimensional space. Since then, it has be-
come one of the most popular solutions for this type of problem. In
general, there are two approaches: (1) approximating the distance
between data objects by comparing their hashes, and (2) mapping
similar objects to the same bucket in a hash table, after which search
is performed within a bucket. The hashing functions TLSH [40] and
nilsimsa [16] discussed in Section 4 belong to the former category.
For the second category, many hash functions (e.g., [10, 17, 19])
have been developed for Euclidean distance, angle-based distance,
Hamming distance, etc. However, such distance metrics cannot be
applied directly to our data.

6 CONCLUSIONS
Identification of third-party libraries in Android apps is of signif-
icant interest for a variety of clients. Existing library detection
techniques do not handle well the variety of code transformations
employed by current Android obfuscators. We propose to use call
graphs and class hierarchies as the basis for library matching, to-
gether with similarity digests for efficiency. Our experimental re-
sults indicate that the proposed Orlis tool advances the state of
the art in obfuscation-resilient library detection for Android.
Acknowledgements.We thank the MOBILESoft reviewers for their
valuable feedback. This material is based upon work supported
by the U.S. National Science Foundation under CCF-1319695 and
CCF-1526459, and by a Google Faculty Research Award.

REFERENCES
[1] Allatori 2017. Allatori. www.allatori.com.
[2] Appbrain 2018. Appbrain: Android library statistics. www.appbrain.com/stats/

libraries.
[3] Appbrain 2018. Appbrain: Number of Android applications. www.appbrain.com/

stats/number-of-android-apps.
[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android Apps. In PLDI. 259–269.

[5] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library
detection in Android and its security applications. In CCS. 356–367.

[6] Michael Backes, Sven Bugiel, Erik Derr, Sebastian Gerling, and Christian Hammer.
2016. R-Droid: Leveraging Android app analysis with static slice optimization.
In ASIACCS. 129–140.

[7] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin T. Vechev. 2016.
Statistical deobfuscation of Android applications. In CCS. 343–355.

[8] Bloomberg 2017. Google’s Android generates 31 billion revenue. www.bloomberg.
com/news/articles/2016-01-21/google-s-android-generates-31-billion-revenue-
oracle-says-ijor8hvt.

[9] Theodore Book, Adam Pridgen, and Dan S. Wallach. 2013. Longitudinal analysis
of Android ad library permissions. CoRR abs/1303.0857 (2013).

[10] Moses Charikar. 2002. Similarity estimation techniques from rounding algorithms.
In STOC. 380–388.

[11] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability
simultaneously in detecting application clones on Android markets. In ICSE.
175–186.

[12] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,
Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou. 2016. Following devil’s
footprints: Cross-platform analysis of potentially harmful libraries on Android
and iOS. In IEEE S&P. 357–376.

[13] CodeMatch 2017. CodeMatch. http://www.st.informatik.tu-darmstadt.de/artifacts/
codematch/.

[14] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the clones:
Detecting cloned applications on Android markets. In ESORICS. 37–54.

[15] Jonathan Crussell, Clint Gibler, and Hao Chen. 2015. AnDarwin: Scalable de-
tection of Android application clones based on semantics. IEEE Trans. Mobile
Computing 14 (2015), 2007–2019.

[16] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and
Pierangela Samarati. 2004. An open digest-based technique for spam detection.
In ISCA. 559–564.

[17] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. 2011. Fast locality-sensitive
hashing. In KDD. 1073–1081.

[18] DashO 2017. DashO. www.preemptive.com/company.
[19] MayurDatar, Nicole Immorlica, Piotr Indyk, and Vahab S.Mirrokni. 2004. Locality-

sensitive hashing scheme based on p-stable distributions. In SoCG. 253–262.
[20] Dropbox Blog 2017. Security bug resolved in the Dropbox SDKs for Android.

blogs.dropbox .com/developers/2015/03/security-bug-resolved-in-the-dropbox-sdks-
for-android.

[21] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013.
An empirical study of cryptographic misuse in Android applications. In CCS.
73–84.

[22] William Enck, Damien Octeau, Patrick D. McDaniel, and Swarat Chaudhuri. 2011.
A study of Android application security. In USENIX Security.

[23] F-Droid 2017. F-Droid Repository. f-droid.org.
[24] Felix C. Freiling, Mykola Protsenko, and Yan Zhuang. 2014. An empirical eval-

uation of software obfuscation techniques applied to Android APKs. In ICST.
315–328.

[25] Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2018. Lightweight,
obfuscation-resilient detection and family identification of Android malware.
TOSEM 26, 3 (2018), 11:1–11:29.

[26] Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann,
Johannes Lerch, and Mira Mezini. 2017. CodeMatch: Obfuscation won’t conceal
your repackaged app. In FSE. 638–648.

[27] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C. Rinard. 2015. Information flow analysis of Android
applications in DroidSafe. In NDSS.

[28] Michael C. Grace,Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe
exposure analysis of mobile in-app advertisements. In WiSec. 101–112.

[29] Mahmoud Hammad, Joshua Garcia, and SamMalek. 2018. A large-scale empirical
study on the effects of code obfuscations on Android apps and anti-malware
products. In ICSE.

[30] Rowena Harrison. 2015. Investigating the effectiveness of obfuscation against
Android application reverse engineering. Technical Report RHUL-MA-2015-7.
Royal Holloway University of London.

[31] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In STOC. 604–613.

Orlis: Obfuscation-Resilient Library Detection for Android MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

[32] Jesse D. Kornblum. 2006. Identifying almost identical files using context triggered
piecewise hashing. Digital Investigation 3 (2006), 91–97.

[33] Li Li, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016. An
investigation into the use of common libraries in Android apps. In SANER. 403–
414.

[34] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,
and Wei Huo. 2017. LibD: Scalable and precise third-party library detection in
Android markets. In ICSE. 357–376.

[35] Library 2017. Apps with most 3rd party libraries. www.privacygrade.org/stats.
[36] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Efficient privilege

de-escalation for ad libraries in mobile apps. In MobiSys. 89–103.
[37] Ziang Ma, HaoyuWang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Detecting

third-party libraries in Android apps. In ICSE. 641–644.
[38] Annamalai Narayanan, Lihui Chen, and Chee Keong Chan. 2014. AdDetect:

Automated detection of Android ad libraries using semantic analysis. In ISSNIP.
1–6.

[39] Jonathan Oliver, Chun Cheng, and Yanggui Chen. 2013. TLSH–A locality sensitive
hash. In Cybercrime and Trustworthy Computing Workshop. 7–13.

[40] Jonathan Oliver, Scott Forman, and Chun Cheng. 2014. Using randomization to at-
tack similarity digests. In International Conference on Applications and Techniques
in Information Security. 199–210.

[41] Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew Smith, and Sascha
Fahl. 2015. To pin or not to pin—Helping app developers bullet proof their TLS
connections. In USENIX Security. 239–254.

[42] Parse Blog 2017. Discovering a major security hole in Facebook’s Android SDK.
blog.parse.com /learn/engineering/discovering-a-major-security-hole-in-facebooks-
android-sdk/.

[43] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute this! Analyzing unsafe and malicious dynamic
code loading in Android applications. In NDSS.

[44] Proguard 2017. ProGuard. developer.android.com/studio/build/shrink-code.html.
[45] Vassil Roussev. 2009. Hashing and data fingerprinting in digital forensics. IEEE

Security & Privacy 7 (2009), 49–55.
[46] Vassil Roussev, Yixin Chen, Timothy Bourg, and Golden G. Richard III. 2006.

md5bloom: Forensic filesystem hashing revisited. Digital Investigation 3 (2006),
82–90.

[47] Vassil Roussev, Golden G Richard, and Lodovico Marziale. 2007. Multi-resolution
similarity hashing. Digital Investigation 4 (2007), 105–113.

[48] sdhash 2017. sdhash. http://roussev.net/sdhash/sdhash.html.
[49] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin, and Taesoo Kim. 2016.

FlexDroid: Enforcing in-app privilege separation in Android. In NDSS.
[50] Soot Framework 2017. Soot Analysis Framework. www.sable.mcgill.ca/soot.
[51] ssdeep 2017. ssdeep. https://ssdeep-project.github.io/ssdeep/index.html.
[52] The Hacker News 2017. Backdoor in Baidu Android SDK puts 100 million devices

at risk. www.thehackernews.com/2015/11/android-malware-backdoor.html.
[53] The Hacker News 2017. Facebook SDK vulnerability puts millions of smart-

phone users’ accounts at risk. www.thehackernews.com/2014/07/facebook-sdk-
vulnerability-puts.html.

[54] The Hacker News 2017. Warning: 18,000 Android apps contains code that spy on
your text messages. www.thehackernews.com/2015/10/android-apps-steal-sms.html.

[55] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study of
Google Play. In SIGMETRICS. 221–233.

[56] HaoyuWang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. WuKong: A scalable
and accurate two-phase approach to Android app clone detection. In ISSTA. 71–
82.

[57] Yan Wang and Atanas Rountev. 2017. Who changed you? Obfuscator identifica-
tion for Android. In MobileSoft. 154–164.

[58] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A
precise and general inter-component data flow analysis framework for security
vetting of Android apps. In CCS. 1329–1341.

[59] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David Wag-
ner, and Konstantin Beznosov. 2015. Android permissions remystified: A field
study on contextual integrity. In USENIX Security. 499–514.

[60] Wenbo Yang, Juanru Li, Yuanyuan Zhang, Yong Li, Junliang Shu, and Dawu
Gu. 2014. APKLancet: Tumor payload diagnosis and purification for Android
applications. In ASIACCS. 483–494.

[61] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged
smartphone applications in third-party Android marketplaces. In CODASPY.
317–326.

