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Abstract—Android developers commonly use app obfuscation
to secure their apps and intellectual property. Although obfus-
cation provides protection, it presents an obstacle for a number
of legitimate program analyses such as detection of app cloning
and repackaging, malware detection, identification of third-party
libraries, provenance analysis for digital forensics, and reverse
engineering for test generation and performance analysis. If the
obfuscator used to create an app can be identified, and if some
details of the obfuscation process can be inferred, subsequent
analyses can exploit this knowledge. Thus, it is desirable to be
able to automatically analyze a given app and determine (1)
whether it was obfuscated, (2) which obfuscator was used, and
(3) how the obfuscator was configured.

We have developed novel techniques to identify the obfuscator
of an Android app for several widely-used obfuscation tools
and for a number of their configuration options. We define the
obfuscator identification problem and propose a solution based
on machine learning. To the best of our knowledge, this is the
first work to formulate and solve this problem. We identify a
feature vector that represents the characteristics of the obfuscated
code. We then implement a tool that extracts this feature vector
from Dalvik bytecode and uses it to identify the obfuscator
provenance information. We evaluate the proposed approach on
real-world Android apps obfuscated with different obfuscators,
under several configurations. Our experiments indicate that the
approach identifies the obfuscator with about 97% accuracy and
recognizes the configuration with more than 90% accuracy.
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I. INTRODUCTION

The explosive growth in the use of mobile devices such
as smartphones and tablets has led to substantial changes in
the computing industry. Android is one of the major platform
for such devices [1]. Because of commercial interests and
security concerns, many companies and individual developers
are reluctant to make public the Android app source code. But
even without source code, these apps can be easily decompiled
and pirated. Developers have to use additional protections to
secure their apps and intellectual property.

One widely used approach for app protection is obfuscation.
Obfuscation hides informative data in the software and makes
it hard to understand for both humans and decompilation
tools. Obfuscation is easy to use: a number of obfuscators
have been developed and their deployment is fairly simple.
For example, the Android IDE provided for free by Google
integrates the ProGuard [2] obfuscation tool. Due to this ease
of use, obfuscation is becoming more popular. For example,
according to a study published in 2014 [3], about 15% of the
apps in the Google Play app store are obfuscated, for both

free and paid apps. In our studies we observed a percentage
that is substantially higher.

Although obfuscation provides desirable protection, it
presents an obstacle for legitimate program analyses. Consider
the detection of app cloning and repackaging. At least 25%
of apps in Google Play are clones of other apps [3] and
almost 80% of the top 50 free apps have fake versions
because of repackaging [4]. Obfuscation may impair clone
and repackage detection tools because an obfuscated clone
app may appear to be different from the original app [5],
[6]. Another consideration is malware detection using static
analysis. Analysis of obfuscated malicious code presents a
number of challenges [7], [8]. As yet another example, iden-
tifying the third-party libraries included in an Android app is
a well-known problem important for general static analysis,
security analysis, testing, and detection of performance bugs.
Obfuscation hinders such library identification [9], [10], [11].

In all these examples, one possible approach is to develop
obfuscator-tailored techniques. If the specific obfuscator used
to create the final app code can be identified, and if some
details of the obfuscation process can be inferred, the sub-
sequent analyses can exploit this knowledge. However, a key
prerequisite is to be able to analyze a given app and determine
(1) whether it was obfuscated, (2) which obfuscator was used,
and (3) how the obfuscator was configured.

These questions are also important for provenance analysis.
The app is the result of a process that starts with the source
code and produces the final distributed APK file. The prove-
nance details of this process and the toolchain that implements
it are important for a number of reasons. For example, such
details are useful for digital forensics [12] and for reverse
engineering of models used for test generation (e.g., [13], [14])
and code instrumentation for performance analysis (e.g., [15]).
Knowledge of the obfuscator and the configuration options
used by it reveal aspects of the app toolchain provenance,
similarly to provenance analysis for binary code [12].

We have developed novel techniques to identify the obfus-
cator of an Android app for several widely-used obfuscation
tools and for a number of their configuration options. The
approach relies only on the Dalvik bytecode in the app
APK. The identification problem is formulated as a machine
learning task, based on a model of various properties of the
bytecode (e.g., different categories of strings). This model
reflects characteristics of the code that may be modified by the
obfuscators—in particular, names of program entities as well
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Fig. 1: Workflow of Android compilation.

1.new-instance v4,Landroid/content/ComponentName; // type@0033
2.move-result-object v1
3.if-nez v1,000d // +0004
4.const/4 v2,#int 0 // #0
5.return-object v2
6.invoke-static {v3},Landroid/support/v4/content/IntentCompat;
.makeMainActivity:(Landroid/content/ComponentName;)
Landroid/content/Intent; // method@0e03
7.invoke-direct {v4},Landroid/content/Intent;.<init>:()V
// method@013a

Fig. 2: Example of Dalvik bytecode.

as sequences of instructions. The main insight of our approach
is that relatively simple code features are sufficient to infer
precise provenance information. The specific contributions of
this work are:
• We define the obfuscator identification problem for An-

droid and propose a solution based on machine learning
techniques. To the best of our knowledge, this is the first
work to formulate and solve this problem.

• We identify a feature vector that represents the character-
istics of the obfuscated code. We then implement a tool
that extracts this feature vector from Dalvik bytecode and
uses it to identify the obfuscator provenance information.

• We evaluate the proposed approach on Android apps
obfuscated with different obfuscators, under several con-
figurations. Our experiments indicate that the approach
identifies the obfuscator with 97% accuracy and recog-
nizes the configuration with more than 90% accuracy.

II. OVERVIEW

This section presents an overview of Android obfuscation
and a high-level description of our analysis approach.

A. Software Obfuscation

Software obfuscation is a well-known technique for pro-
tecting software from reverse engineering attacks [16]. Ob-
fuscation transforms the input code to generate new target
code. At a high level, we have T = f(I) where I is the
input code that needs obfuscation; it can be source code,
bytecode, or machine code. T is the target code and f is
an obfuscating transformation. I and T must have the same
observable behavior: for the same valid input, both should
terminate and generate the same output. Obfuscation cannot
achieve a “virtual black box” [17]—in other words, perfect
obfuscation is impossible. Nevertheless, in practice it is still
an effective approach to protect the code from humans and
from code analysis and reverse engineering tools [18].

B. Android Obfuscation

Obfuscation for Android is both easy to use (e.g., using the
ProGuard tool available in Android Studio) and observed for
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Fig. 3: Workflow of an obfuscator.
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many applications in the Google Play app store [3]. Android
apps are released as APK (“Application PacKage”) files. The
process of obtaining an APK file is shown in Figure 1. The
developer builds the app using Java. The Java source code
is compiled into .class files using some Java compiler. The
.class files contain standard Java bytecode. Android uses its
own format of bytecode called Dalvik bytecode. Figure 2 is
a snippet of such bytecode. The Java bytecode is compiled
into a file classes.dex (“Dalvik Executable”), which contains
all the Dalvik bytecode together with other .jar files that may
come from third-party libraries. In most cases, there is only
one classes.dex file, although a large app can be split into
multiple dex files. In addition to the dex file(s), the APK also
contains resource files (e.g., images). At installation time, the
Android runtime will compile classes.dex using the dex2oat
tool. The output will be executable code for target device,
which achieves better performance than the Dalvik bytecode.

In Android, obfuscation happens before releasing the app.
Without obfuscation, the Dalvik bytecode is relatively easy
to reverse engineer, using tools such as Soot [19], Andro-
guard [20], Baksmali [21], Apktool [22], Dex2jar [23], Dex-
dump [24], etc. If the app is obfuscated, even just using Pro-
Guard (which only provides basic obfuscation), the changes
will affect these tools and hinder reverse engineering [25].

Although obfuscation may protect intellectual property, it
may also affect other legitimate uses of reverse engineering
and app analysis. As discussed earlier, one such example
is the detection of cloning and repackaging. Several studies
have shown the negative influence of obfuscation on such
detection [5], [6]. Obfuscation is also an obstacle for some
anti-malware tools [7], [8] because the pattern matching used
by these tools requires static analysis that is not resilient to
obfuscation changes. Obfuscation also causes problems for the
identification of third-party libraries because it may change the
content of library classes [9], [10], [11].



1 public static void initSetting(Editor editor){
2 editor.remove("deviceSalt");
3 editor.remove("encryptedKeyPass");
4 editor.commit();
5 }
6 private void goNextStage(){
7 gotoStage(this.stage + 1);
8 }

(a) Original classes.dex.

1 public static void a(Editor arg0){
2 arg0.remove(R.a("o\u0018}\u0014h\u0018X\u001cg\t"));
3 arg0.remove(android.support.v7.appcompat.R.a(

"u,s0i2d’t\tu;@#c1"));
4 arg0.commit();
5 }
6 private void a(){
7 a(this.l + 1);
8 }

(b) Obfuscated classes.dex.

Fig. 5: Example of obfuscation performed by Allatori.

C. Two Categories of Obfuscators

Various obfuscators are available to Android developers.
These tools can be broadly classified in two categories. An
obfuscator in the first category performs code transforma-
tions. In most cases it will transform Java bytecode, and has
almost the same behavior as a Java obfuscator except for
considerations related to Android features. Examples of tools
from this category are ProGuard, Allatori, DashO, DexGuard,
and Shield4J. Figure 3 illustrates the workflow of this type
of obfuscator. One typical technique is name obfuscation,
which replaces the names of packages, classes, methods, and
fields with meaningless sequences of characters. Sometimes
the package structure is also modified, which further obscures
the names of packages and classes. Other techniques include
flow obfuscation, which modifies code order or the control-
flow graph, and string encryption, which encrypts the constant
strings in the code. Some tools may go further and obfuscate
the XML files in the resource part of the APK.

Example: Figure 5b illustrates obfuscation with Allatori, one
of the tools used in our experiments. Figure 5a shows the orig-
inal code. For illustration purposes, the figures show the equiv-
alent Java source code rather than the actual bytecode. Names
are obfuscated and the constant strings are encrypted. For
example, methods initSetting and goNextStage are
renamed to a. The encrypted strings are decrypted using meth-
ods R.a and android.support.v7.appcompat.R.a.
These methods are created by the obfuscator in the corre-
sponding R resource classes. The tool uses multiple decryp-
tion methods because it employs several different encryption
options and seems to arbitrarily pick one to encode a string.

The second category of tools contains packers. A packer
encrypts the original classes.dex file, then decrypts this file
in memory at run time and executes it via reflection using
DexClassLoader. Tools such as APKProtect, Bangcle,
and Legu belong to this category. They will not perform
any bytecode modifications—rather, they hide the entire dex
file. Figure 4 shows the corresponding process. The original

(a) Original class structure. (b) Legu class structure.

Fig. 6: Example of obfuscation performed by Legu.

classes.dex will be packed and an artificial classes.dex file will
be generated. The new file loads the original file in memory.
The packed classes.dex is encrypted. Figure 6b shows the
package and class structure after obfuscation with Legu. The
original structure is shown in Figure 6a. New helper classes
are created and the original classes are hidden.

A tool may provide choices to its users. For example, both
ProGuard and Allatori have a configuration to specify whether
to perform different levels of obfuscation, and/or to provide a
user-defined renaming style to replace the default one.

D. Machine Learning Model

The goal of our work is to identify the specific obfuscator
that was used to create a given APK file. This information may
enable the creation of obfuscation-tailored analysis, testing,
and instrumentation, as well as provenance analysis for digital
forensics. While the internal details of various obfuscation
tools are not public, these tools are developed by unrelated
development teams and are likely to differ substantially in low-
level details. Our premise is that these differences manifest
themselves in the obfuscated code. Thus, we aim to select suit-
able code features and to apply machine learning techniques
based on them. In particular, we use labeled data to train a
classifier. The classifier will map a vector of code features to
a label representing one of several known obfuscation tools.
Details of this approach are presented in Section III.

E. Obfuscators Used in Our Study

There are many obfuscators and most of them are commer-
cial. The cost of these tools is relatively high. As a result, in
this study we selected free tools or free versions of paid tools.
We used five different tools. ProGuard is provided by Google,
Allatori is developed by a Russian company, and DashO is a
product from an U.S. company. Legu and Bangcle are packers
from China. ProGuard is integrated with Android Studio, the
official IDE from Google. Allatori is a commercial tool, but it
has a free educational version. Amazon, Fujitsu, Motorola, and
hundreds of other companies worldwide have used Allatori to
protect their software products from being reverse-engineered
by business rivals [26]. The company developing DashO [27]
has over 5, 000 corporate clients in over 100 countries. Legu
is developed by Tencent, one of the largest IT companies in
China. Currently there are more than 5 million developers
using this company’s platform and apps released by them
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will be protected by Legu [28]. Bangcle is developed by a
company with the same name that provides security services
to individuals, enterprises, and governments. The tool has
served seventy thousand companies and has protected more
than seven hundred thousand apps, which are installed on
about seven hundred million devices [29].

III. MACHINE LEARNING FOR OBFUSCATOR
IDENTIFICATION

We use supervised learning in which a training set is used to
create several classifiers. Later, a given APK (with unknown
obfuscator provenance) is classified using these classifiers. The
processing of an unknown APK is shown in Figure 7. In
the first stage, the APK is classified in one of six categories
based on obfuscator type. For the three obfuscators that allow
customized configurations (ProGuard, Allatori, and DashO), a
second stage gathers information about the configuration under
which the APK was obfuscated. This section describes how
a classifier is generated for the first stage. The next section
describes additional classifiers used in the second stage.

A. Training Set

For training, we obtained open-source apps from the F-
Droid repository [30] and attempted to build them with An-
droid Studio, which uses the Gradle build tool. A total of 282
apps were successfully built with Gradle. These apps were then
obfuscated by us using various obfuscators and configurations.
The source code was required because some obfuscators work
on .class files. For each app, we created 6 baseline APKs: (1)
without obfuscation, (2) obfuscated with ProGuard’s default
configuration, (3) obfuscated with Allatori’s default configu-
ration, (4) obfuscated with DashO’s default configuration, (5)
obfuscated with Legu, and (6) obfuscated with Bangcle. Since
ProgGuard, Allatori, and DashO allow customization, we
also created customized APKs. Using different configurations
of ProGuard, 6 customized APKs were obtained per app.
Similarly, 3 customized APKs per app were obtained using
configurations of Allatori, and another 3 customized APKs
were built using DashO. Details of the configurations used for
training are presented in the next section.
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Fig. 8: Structure of feature dictionary.

Each APK is labeled with a label from set Labels =
{ProGuard , Allatori , DashO , Legu, Bangcle, Other} where
the last label was used for the unobfuscated APKs.1 The
features of each APK (described below) together with its label
are used as input to the training phase.

B. Feature Dictionary

Features are obtained from the bytecode in classes.dex. The
structure of this file is shown in Figure 8a. Many parts of the
file are irrelevant for our purposes. For example, the structure
of the header is shown Figure 8b; it contains the magic
number, checksum number, file size, etc. This information
varies across apps regardless of obfuscation.

In our approach we focus on the data section. We choose the
strings in this section as candidates for features. These strings
have different roles. For example, some are names of program
entities such as classes and methods. For the code shown in
Figure 5b, the set of class names is {"Editor"} and the set
of method names is {"a","remove","commit"}. These
distinctions between strings are informative.

The feature dictionary is a collection of 10 sets of strings,
as shown in Figure 8. All strings except file names are from
the data section in the dex file. Four sets correspond to
names of packages, classes, methods, and fields, respectively.
These are program entities that are defined by the APK
code. We also consider four corresponding sets, but for
external entities defined by code outside of the dex file
(e.g., by the Android framework). The reason for this
separation is that an obfuscator may treat internal and
external names differently. Finally, any other string occurring
in the code is considered to be in the set of “other” strings.

1If the classifier produces Other (Figure 7), this means that the unknown
APK was either unobfuscated or was obfuscated by an unknown tool.



For the code from Figure 5b, this “other” set is {"this",
"arg0", "o\u0018}\u0014h\u0018X\u001cg\t",
"u,s0i2d’t\tu;@#c1"}.

We developed a dex parser to collect this information from a
given APK, based on the mapping relationship between ids and
the strings in the dex file. The location and size of the ids can
be obtained from the header. The file names are obtained from
the structure of the APK archive, which can be examined using
the standard aapt tool (“Android Asset Packaging Tool”,
used for Zip-compatible archives such as APK files). This
information may be useful when the obfuscator adds its own
helper library files.

For each obfuscated APK Ai from the training set, 10 sets
Si,j of strings are extracted (1 ≤ j ≤ 10) based on the
categories described above (illustrated in Figure 8). The fol-
lowing processing of these sets is performed to obtain the final
feature dictionary. First, if several APKs Ai1 , Ai2 , . . . , Aik

are obtained from the same original app a using the same
obfuscator l, their corresponding string sets are merged using
set intersection. The result is a collection of 10 sets Sa,l

j for
1 ≤ j ≤ 10, where Sa,l

j = ∩k
p=1Sip,j . The intent is to use

strings that are configuration-independent. After this step, for
each pair (a, l) where a is an app and l is an obfuscator, there
is a collection of 10 string sets Sa,l

j .
The next step is to trim these string sets as follows. For each

obfuscator l and each string category j, we consider the union
of all Sa,l

j . The resulting set F l
j can be thought of as a feature

dictionary specific to this obfuscator l and this string category
j (e.g., class names). Each such F l

j is trimmed by removing
rarely-occurring strings. Specifically, if the percentage of sets
Sa,l

j containing a string s is less than a particular threshold, s is
removed from F l

j . Our experiments indicated that a threshold
of 15% produces substantial reduction in the size of the feature
vector without significant reduction in prediction accuracy.

To further reduce dimensionality, features that are covered
by other ones will be ignored. Specifically, consider two string
s, s′ ∈ F l

j . If the set of apps {a | s ∈ Sa,l
j } is a proper subset

of {a | s′ ∈ Sa,l
j }, then s is less informative than s′ and will

be removed from F l
j .

After these trimming techniques are applied, the feature
dictionaries for all obfuscators are reduced from thousands
of elements to hundreds of elements. Trimming also reduces
the training time for the classifier by about a factor of two.

The final feature dictionary is a collection of 10 string sets
F̂j for 1 ≤ j ≤ 10. Each set is computed as

F̂j =
⋃
l

F l
j −

⋂
l

F l
j

The second term removes strings that always appear regardless
of the obfuscator l, since such strings are not useful for
distinguishing among obfuscators.

The feature vector used for training and subsequent classi-
fication has 10 sub-vectors, each corresponding to one set F̂j .
If a string s ∈ F̂j occurs in category j inside an APK, the
corresponding element of the j-th sub-vector of the feature
vector is 1; otherwise the element is 0.

C. Training a Classifier

After constructing the feature vector for each APK in
the training set, we build a corresponding classifier. In our
scenario, we have a multi-class classification problem— that
is, APKs are classified into one of several (more than two)
classes. The classes are defined by set Labels described earlier.
We do not consider the case when more than one obfuscator
is used for the same APK, because typically in practice
developers will adopt one obfuscator tool. Therefore, a one-
vs-rest classifier is appropriate for our purposes. This strategy
trains a single classifier per class. Each class is fitted against
all other classes. The concrete type of classifier we use is
linear Support Vector Machine (SVM). A SVM finds a weight
vector w that defines a decision boundary in the feature space
which best separates two different classes. The distance from
a particular example to that boundary is the margin and is
defined as wT x, where x is the feature vector. In such a
binary classifier, each instance is assigned to class +1 or −1
depending on the sign of the margin.

For one-vs-rest classification, a binary classifier can be
extended to n classes. This standard approach determines n
weight vectors {w1, . . . , wn} by partitioning the data into two
groups, one for the current class and the other for everything
else. Given these vectors and a new instance with feature
vector x, we choose the class that maximizes the margin:

argmax1≤k≤n wT
k x

In addition to linear SVM, we also experimented with other
kinds of classifiers; details are presented in the evaluation
section. Our experience is that linear SVM provides a good
balance between accuracy and running time.

IV. OBFUSCATOR CONFIGURATION

After obtaining the type of obfuscator, we determine charac-
teristics of the obfuscator configuration, if applicable. Because
the configuration may significantly change the behavior of an
obfuscator, this knowledge may be useful for APK analysis
and reverse engineering. In our case, ProGuard, Allatori, and
DashO provide customization: the obfuscator user can define
an XML file to modify the default tool behavior.

A. ProGuard Configuration

The configuration analysis for ProGuard is shown in Fig-
ure 9a. In the first step, three types of configurations are
differentiated. The default one and the default-opt one are pro-
vided directly in Android Studio. The difference is that the opt
configuration performs aggressive optimizations of the APK
to reduce code size and to improve run-time performance.
The third option other means the developer customized the
configuration. There are four kinds of possible modifications:
(1) customizing field and method names, (2) changing class
names, (3) package flattening, which moves all packages into
a single user-specified parent package, and (4) repackaging
classes, which moves all classes into a single user-specified
package. The last two transformations will change the structure
of the package hierarchy and we treat them as one category in
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the classification process. All modifications depend on user-
defined values. For example, the tool user can provide a list of
arbitrary strings as candidates for class names, or can specify
a custom package name.

During training we can only observe specific instances of
these user-defined names. The resulting classifiers can subse-
quently determine, for a given (never-seen-before) ProgGuard-
obfuscated APK, which settings have been customized. As
shown in Figure 9a, the approach first identifies whether
the configuration is one of the two default ones or is user-
customized. In the third case, we determine which specific
settings have been changed.

The training process for both stages is similar to what was
described in the previous section, but with different feature
vectors. For each app a, we constructed 6 APKs using Prog-
Guard: default, default-opt, customized field/method names,
customized class names, package flattening, and repackaging.
The labels used to label these APKs are from set {default ,
default-opt , field&method , class, package}. The last label is
used for both package-related transformations. In our training
set, APKs with the last 3 labels are constructed with arbitrary
new names defined by us. The resulting classifiers are used
to process future APKs in which the user-specified names are
different from the ones used during training.

We consider a feature dictionary which is a combination
of the features of APKs with labels default and default-opt .
The remaining APKs are not used because they are depen-
dent on customizable user-defined names. For defining the
first classifier in Figure 9a, the APK labels are mapped to
the simplified label set {default , default-opt , other}. For the
remaining three classifiers shown in Figure 9a, the APK labels
are mapped to the two labels true and false , based on whether
the particular setting is the default one or not. As before, linear
SVMs are used for the classifiers.

B. Allatori/DashO Configuration

The analyses of Allatori and DashO configurations are
shown in Figure 9b. The two tools are very similar in terms
of configuration options and are analyzed using the same
approach; below we describe only Allatori processing.

We identified three categories of customization settings. The
rename switch controls whether the tool will obfuscate the
names of packages, classes, etc. This setting is different from

Algorithm 1: FeatureDictionaryForAllatoriOrDashO
Input: APKs = {apk i} : APKs obfuscated by Allatori/DashO with

and without flow obfuscation
Input: N

1 featureInstSequences ← ∅
2 foreach apk ∈ APKs do
3 foreach class ∈ apk do
4 foreach method ∈ class do
5 featureInstSequences ← featureInstSequences ∪

all instruction sequences of length N

the one used in ProGuard as it does not require used-defined
names. If turned on, the identifiers will be obfuscated using
logic internal to the tool and the package hierarchy will also be
changed. The process of identifying this property is the same
as with ProGuard. String encryption is a setting to determine
whether the constant strings in the code are encrypted. If
turned on, the tool will identify all string data and encode
it as illustrated in the earlier example from Figure 5b. The
tool also adds code to decode the strings at run time. Our
learning cannot handle this case well, because the approach
does not model the “naturalness” of constant strings. One
simple approach to detect this setting could be to examine
the code for calls to tool-specific string decoding methods.

Another customization category is related to flow obfusca-
tion. If set, the tool will change control-flow features of loops
and branches. Here we need a different feature dictionary,
constructed as described in Algorithm 1. The process is similar
to considering N -grams in natural language processing.

For each obfuscated APK we compute the set of consecutive
instruction sequences with length N . Since the obfuscation
may affect the names of instruction operands, only the operator
is considered. The sequences are obtained using the Andro-
guard tool. Consider an app a, its baseline obfuscated APK,
and its 3 APKs obtained from customized configurations. Each
APK defines a set of sequences. We consider the union of these
4 sets and remove from it the intersection of the 4 sets. The
result is a set Sa of configuration-dependent sequences. Next,
rarely-occuring sequences are filtered. If, over the entire set of
apps a, the percentage of sets Sa containing a sequence s is
less than the threshold from Section III-A, s is removed from
all Sa. The union of the final Sa is the feature dictionary.



V. EVALUATION

We evaluated our approach on a number of Android apps.
The evaluation considers the following questions: (1) Do the
selected features represent the characteristics of these four
obfuscators so that the classifiers can predict the correct label
with high accuracy? (2) Are linear SVMs suitable in terms of
accuracy and time cost, compared to other possible classifiers?

A. Data Set

We obtained 282 apps from F-Droid [30] and created several
APKs for each app, as described in Section III-A. In total, we
successfully generated about 2600 APK files, because in some
cases the obfuscator(s) failed.

B. Methodology

The data set has to be split into training set and testing set.
The training set is used to build the parameters of the model,
while the testing set is chosen for evaluating the performance.
Using standard 10-fold cross validation, we randomly divides
the apps into 10 equally-sized subsets Appsi for 1 ≤ i ≤ 10.
The experiment is executed 10 times, once for each i. In each
run, set Appsi is used as the testing set and the remaining
apps are used as the training set. The predicted labels are
then compared with the actual ones. The machine learning
framework used in our evaluation is scikit-learn [31]. This
toolkit provides various classifiers, including linear SVMs.

C. Obfuscator Identification

Table I shows the accuracy and F1 score measurements
obtained using 10-fold cross validation. The table shows the
mean values and standard deviations of the 10 runs. The
accuracy, for one run, is the ratio of number of testing APKs
with correctly-predicted labels to the total number of testing
APKs. For multi-class classification, two types of F1 scores are
typically computed: micro and macro [32]. The micro F1 score
considers the total number of true positives, false negatives,
and false positives. The macro metric computes a value for
each label and uses the unweighted mean. The corresponding
equations are shown below.

precision =
TP

TP + FP
recall =

TP
TP + FN

F1 = 2 ∗ precision ∗ recall
precision + recall

F1macro =
∑N

i=1 F1i

N

precisionmicro =
∑N

i=1 TPi∑N
i=1 TPi +

∑N
i=1 FPi

recallmicro =
∑N

i=1 TPi∑N
i=1 TPi +

∑N
i=1 FNi

F1micro = 2 ∗ precisionmicro ∗ recallmicro

precisionmicro + recallmicro

where TP is the number of true positives, FP is the number
of false positives, FN is the number of false negatives, and N

Accuracy F1 micro F1 macro
mean 0.975 0.975 0.968
SD 0.007 0.007 0.009

TABLE I: Accuracy and F1 score for obfuscator identification.

Precision
ProGuard Allatori DashO Legu Bangcle Other

mean 0.977 0.979 0.993 1.000 1.000 1.000
SD 0.005 0.003 0.008 0.000 0.000 0.000

Recall
ProGuard Allatori DashO Legu Bangcle Other

mean 0.976 0.977 0.996 1.000 1.000 1.000
SD 0.005 0.004 0,007 0.000 0.000 0.000

TABLE II: Precision and recall for obfuscator identification.

is the number of labels. The results indicate that our approach
has high accuracy and F1 score.

To evaluate the performance for each individual obfuscator,
we also collected data about precision and recall for each label.
The results are shown in Table II and can be summarized as
follows. Apps that are not obfuscated are detected correctly.
Legu and Bangcle seem to have unique characteristics and our
approach identifies them correctly. For ProGuard, Allatori, and
DashO the model achieves very high accuracy. Since these
tools have some similar obfuscation strategies, in rare cases
the classifier may be unable to distinguish them correctly.
Nevertheless, the overall measurements indicate that our model
has a very high chance to correctly identify the type of
obfuscator, for the five types covered by our implementation.

D. ProGuard Configuration Identification

If the obfuscator is identified as ProGuard, the next step is
to characterize its configuration as illustrated in Figure 9a.
In the first stage, we determine how the configuration is
mapped to a label from {default , default-opt , other}. For
“other”, a second stage determines a true/false label in each of
the following 3 categories: field&method, class, and package.
Here true means that the category was customized by the
ProGuard user. The accuracy and F1 scores for both stages
are shown in Table III. Since there are three labels in the
first stage, we consider both micro and macro F1 score. The
labels in the second stage are binary and there is only one F1

score. The results shown in the table indicate that our approach
characterizes the ProGuard configuration with high accuracy.

The precision and recall of each stage are shown in Ta-
ble IV. The recall of default-opt is relatively low. By com-
paring the ProGuard XML configuration files of default and
default-opt, we observed that the difference between them is
not very significant. Configuration default-opt will perform
further performance optimizations and some related small code
changes. In some scenarios, the optimization may not be
available or it cannot cause an apparent difference. This may
be the reason why for some apps this configuration is not
identified. In addition, some apps are very simple and have few
classes. For correctness, ProGuard will preserve some classes.
For example, the app entry class defined in the manifest.xml
file will not be obfuscated. As another example, subclasses of



Precision
ProGuard stage I ProGuard stage II

default default-opt other field&method class package
mean 0.984 0.939 0.936 0.995 0.998 0.905
SD 0.048 0.069 0.028 0.014 0.015 0.032

Recall
ProGuard stage I ProGuard stage II

default default-opt other field&method class package
mean 0.940 0.783 0.979 0.942 0.935 0.923
SD 0.073 0.088 0.016 0.056 0.064 0.040

TABLE IV: Precision and recall for ProGuard configuration.

ProGuard stage I
Acc. F1 micro F1 macro

mean 0.938 0.938 0.917
SD 0.022 0.022 0.031

ProGuard stage II
field&method class package
Acc. F1 Acc. F1 Acc. F1

mean 0.988 0.963 0.989 0.967 0.940 0.909
SD 0.012 0.039 0.006 0.020 0.030 0.045

TABLE III: Accuracy and F1 for ProGuard configuration.

field&method class package
mean 0.957 0.960 0.945
SD 0.006 0.002 0.005

TABLE V: Accuracy with never-seen custom names.

framework class android.view.View require some class
members to be unchanged. If the app is simple, the differences
between default and default-opt may be insignificant and
unrecognizable, which may cause some misclassification.

ProGuard allows the user to specify custom strings for
class names, field names, method names, or package names.
In the training process, we use a specific set of random
strings (defined by us) for these values. To ensure that the
classification can be successfully applied to APKs in which
different user-defined obfuscated names were used, we per-
formed the following experiment. We created another set of
random strings, different from the string set used for training.
During each run of the cross validation, the model is also
tested against APKs obfuscated with this second set of string
(i.e., with strings that have not been observed during training).
The mean and standard deviation of the accuracy are shown
in Table V. The accuracy is high for all three categories of
names, indicating that our model is able to detect the change
of these configuration settings regardless of the specific string
values being used.

E. Allatori and DashO Configurations

The configuration characterization for Allatori and DashO
has only one stage. As mentioned earlier, we do not consider
string encryption, but focus on renaming and control-flow
modifications. For both of these categories, a true/false label
is determined to indicate that the configuration setting has
been changed by the user. To compute the feature vector for
the control-flow configuration, we define a feature dictionary
containing all instruction subsequences of length 2, 3, and 4.

Allatori
Rename Flow

Accuracy F1 Accuracy F1
mean 0.994 0.987 0.933 0.931
SD 0.007 0.014 0.003 0.033

DashO
Rename Flow

Accuracy F1 Accuracy F1
mean 0.981 0.981 0.979 0.984
SD 0.014 0.013 0.015 0.015

TABLE VI: Accuracy and F1 for Allatori/DashO config.

Allatori
Precision Recall

Renam Flow Rename Flow
mean 0.993 0.936 0.989 0.929
SD 0.015 0.053 0.017 0.035

DashO
Precision Recall

Rename Flow Rename Flow
mean 0.977 0.974 0.986 0.976
SD 0.023 0.034 0.021 0.024

TABLE VII: Precision and recall for Allatori/DashO config.

The accuracy and F1 scores are shown in Table VI. The results
indicate that with high confidence we can identify whether
these two Allatori and DashO configuration options have been
modified.

The precision and recall are shown in Table VII. The high
values indicate that model typically correctly identifies the
Allatori and DashO configuration settings. Misclassifications
have the same root causes as with ProGuard. For example,
for correctness, the tool has to preserve some elements of the
original code. As another example, the tool will change the
order of instructions inside a loop; if there are no loops in the
code, no control-flow changes will be observed.

F. Comparison of Classifiers

Linear SVMs are only one of many available approaches
that can be used for classification. To compare different
classifiers, we considered 8 popular options: k-nearest neigh-
bors, decision trees, linear SVMs, random forests, multi-layer
perception, AdaBoost, Gaussian naive Bayes, and logistic
regression. All are available as part of the scikit-learn machine
learning toolkit used in our experiments. The experimental
machine uses Ubuntu 16.04 with Intel Core i7-4770 CPU
3.40GHz and 16GB RAM. The accuracy for different clas-



(a) Accuracy of classifiers. (b) Running time of classifiers.

Fig. 10: Performance of different classifiers.

sifiers is shown in Figure 10a. The y-axis is the mean of
accuracy for each stage including both obfuscator and config-
uration identification. The x-axis is the type of classifier. The
results indicate that the proposed feature vector works well
for most classifiers. Among them, linear SVMs and logistic
regression have the best performance. Figure 10b illustrates
the total running time of 10-fold cross validation for both
obfuscator and configuration identification. This includes the
time to create the classifier (in training) and to apply it (in
testing), given the feature vectors. The y-axis is the time in
seconds. Based on these measurements, linear SVMs has the
best accuracy while still exhibiting good efficiency. The time
to extract the feature dictionary and feature vectors from the
APKs (total for all 10 runs in 10-fold cross validation) is about
12 hours.

G. Case Study: Google Play Apps
We performed a case study of applying our classifiers to

a set of popular apps from the Google Play store, which is
the largest and most influential app store. We do not have
ground truth to measure the quality of our classification, since
we do not know the obfuscator provenance of apps from the
store. Nevertheless, under the assumption that the classification
has high accuracy, this study presents insights into the use of
obfuscation techniques in widely-used apps. The apps were
crawled from the Play store from May 2016 through August
2016. We collected the top 100 free apps for each store
category (e.g., education, finance, etc.) and obtained a total
of 2389 APKs; some apps appear in multiple categories.

The analysis of these APKs is summarized in Table VIII.
The number in each column is the number of apps classified
as being obfuscated by the corresponding tool. More than 55%
of the APKs (1330) are identified as being obfuscated by one
of the tools we consider. The remaining 1059 APKs may be
obfuscated by other obfuscators or not obfuscated at all. The
number of obfuscated apps is relatively high. One reason may
be that most of the top popular apps are developed by com-
panies instead of individuals. Companies pay more attention

ProGuard Allatori DashO Legu Bangcle Other
Num. 1170 145 0 15 0 1059

TABLE VIII: Obfuscators for Google Play apps.

to security and intellectual property. For the relative usage of
obfuscators, ProGuard is the most widely used tool (about 88%
of the APKs). This is not surprising, since ProGuard is already
integrated with Android Studio and requires little extra effort
to configure and use. Moreover, Google provides an official
tutorial on ProGuard and recommends the developers to use it
before releasing their apps. The two Chinese tools Legu and
Bangcle are rarely used in the Google Play store. The reason
may be that most of their users are from China since both
tools only have interfaces written in Chinese. The audiences
of these Chinese developers are mainly from China. However,
app users in China cannot access Google Play.

For apps using ProGuard and Allatori, we further analyzed
their configurations. The results for ProGuard are shown in
Table IX. About 70% of the apps use the default or default-opt
configuration. The default configuration is the most frequently
used. This may be because the default-opt setting is well
known to be unsafe due to code optimizations that are not
correct in all situations. Table IX also shows the number of
apps that customize the corresponding settings. About 65%
of apps that do not use default/default-opt employ package
modifications. This setting is the most convenient one to use,
because it does not require a full list of candidate values, but
only a customized package name. The other two settings are
not frequently customized. From the 145 apps obfuscated with
Allatori, 26 change the renaming and 18 use the flow option.

H. Limitations

The generality of the experimental observations should be
interpreted in the context of several limitations of the proposed
techniques. First, we only consider five obfuscators. There
are other tools that may use different obfuscation techniques.
Second, our training data may have limited generality that does



ProGuard stage I
default default-opt other

Num. 555 236 379
ProGuard stage II

package class field&method
Num. 246 41 54

TABLE IX: Apps obfuscated with ProGuard.

not allow some characteristics of the obfuscators to emerge.
Although the open-source F-Droid apps used for training
cover a wide range of target domains and developers, they
may differ from closed-source apps in some characteristics
that affect the accuracy of the approach. Finally, because we
focus on features from the string tables of the dex files, other
relevant program properties are not represented. For example,
obfuscation features such as function merging and string
encryption cannot be captured by the proposed approach.
Despite these limitations, we consider these experimental
results to be promising initial evidence that automated and
precise obfuscator provenance analysis for Android is feasible
and efficient.

VI. RELATED WORK

As far as we know, there is no prior work on techniques to
identify the provenance of obfuscated Android apps. Studies
have been performed on the general topic of software obfus-
cation, and some work focuses on obfuscation for Android.
General software obfuscation. Researchers have explored
various questions related to obfuscation. Schrittwieser et al.
[33] measured the performance of different program analyses
against obfuscation. Barak et al. [17] theoretically proved that
a perfect “virtual black box” obfuscation is impossible. Coll-
berg et al. [16] summarized the existing popular techniques
used in obfuscation. The follow-up work of Collberg et al.
[18] detailed how obfuscation is used to protect software
programs, and discussed the differences among obfuscation,
watermarking, and tamper-proofing. Some work has been
done on evaluating the quality of obfuscation. Ceccato et al.
[34] proposed an approach to assess the difficulty attackers
have in understanding and modifying obfuscated code through
controlled experiments involving human subjects. Anckaert et
al. [35] developed a framework based on software complexity
metrics measuring four program properties including code,
control flow, data, and data flow. Some studies focus on
de-obfuscation. Coogan et al. [36] considered instructions
that will impact the interaction between the program and
the system and built a program analysis for these important
instruction. Madou et al. [37] proposed a graphical and inter-
active framework for code obfuscation and de-obfuscation.

All studies outlined above focus on general software ob-
fuscation rather than programs for the Android platform. Al-
though such general techniques may be applicable to Android
apps, Android software has its own characteristics that make
it different from “plain” Java and impose some constraints on
the use of obfuscation.

Android obfuscation. Several studies have been performed on
how to obfuscate Android apps. Kovacheva [38] studied the
Android platform and proposed an obfuscator implementation
for Android programs by adding native code wrappers, pack-
ing numeric variables, and adding bad code. For the evaluation
of obfuscation, Freiling et al. [39] evaluated 7 methods on
240 APKs and showed that these methods are idempotent or
monotonic. For Android program de-obfuscation, Bichsel et
al. [40] built a probabilistic learning model to perform the
de-obfuscation and predict the obfuscated items. Even though
these studies focus on Android, none of them attempt to
explore the differences between Android obfuscators for the
purposes of provenance analysis: Freiling et al. consider the
basic techniques of one particular tool, while Bichsel et al.
only explore ProGuard.
Impact of Android obfuscation. As discussed earlier, obfus-
cation of Android apps will affect many legitimate program
analyses. Work on clone/repackage detection [41], [42], [43],
[5], [44], [45], [46], [47], [48], [49], [50], [51], [52], [6],
[53] finds that obfuscation impairs detection results. Studies
of malware detection [54], [8], [55], [7], [56], [57], [58] also
show that obfuscation is an obstacle to malware analysis.
Researchers working on detection of third-party libraries [9],
[10], [11] discuss the negative impact of obfuscation on their
techniques. Although some of these tools claim to still work
well in the presence of obfuscation, none could completely
eliminate the obfuscation effects in their experimental evalua-
tions. This highlights the importance of understanding obfus-
cation, and designing obfuscator-tailored analysis techniques.
Provenance analysis. There is some work on identifying the
toolchain used in compiling a given program. Rosenblum et
al. [12] propose a machine learning approach to discover the
type of compiler, based on properties of the resulting binary
code. We also adopt a machine learning method, but for the
purpose of obfuscator identification for Android apps. Due to
these different targets, the details of the two techniques are
significantly different.

VII. CONCLUSIONS

We propose a simple, efficient, and effective approach for
provenance analysis of obfuscated Android applications. Using
features extracted from APKs, we construct several classifiers
that determine which obfuscator was used and how it was
configured. Although the approach has some limitations, it
exhibits high accuracy on apps from F-Droid, and provides
insights about the use of obfuscation in popular Google Play
apps. The information extracted with the proposed techniques
can be potentially used to improve and refine a variety of
existing analyses and tools for Android.
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