
Profiling the Responsiveness of Android Applications via
Automated Resource Amplification

Yan Wang
Ohio State University

Atanas Rountev
Ohio State University

ABSTRACT
The responsiveness of the GUI in an Android application is
an important component of the user experience. Android
guidelines recommend that potentially-expensive operations
should not be performed in the GUI thread, but rather in
separate threads. The responsiveness of existing code can
be improved by introducing such asynchronous processing,
either manually or automatically.

One simple view is that all potentially-expensive opera-
tions should be removed from the GUI thread. We demon-
strate that this view is too simplistic, because run-time cost
under reasonable conditions may often be below the thresh-
old for poor responsiveness. We propose a profiling ap-
proach to characterize response times as a function of the
size of a potentially-expensive resource (e.g., shared prefer-
ences store, bitmap, or SQLite database). By manipulating
and “amplifying” such resources automatically, we can ob-
tain a responsiveness profile for each GUI-related callback.
The profiling is based on a static analysis to generate tests
that trigger expensive operations, followed by a dynamic
analysis of amplified test execution. Based on our evalua-
tion, we conclude that many operations can be safely left
in the GUI thread. These results highlight the importance
of choosing carefully—based on profiling information—the
operations that should be removed from the GUI thread, in
order to avoid unnecessary code complexity.

1. INTRODUCTION
The explosive growth in the use of mobile devices such as

smartphones and tablets has led to substantial changes in
the computing industry. Android is one of the major plat-
form for such devices [7]. Since Android applications are
GUI-based, the responsiveness of the GUI is an important
component of the user experience. Poor responsiveness can
be perceived by the user if an application takes more than
200 ms to respond to a GUI event [9]. If the application is
perceived to be sluggish—or, in the worst case, if it leads
to an “Application Not Responding” error reported by the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobileSoft’16, May 16-17, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4178-3/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897073.2897097

Android run-time—the user may decide to uninstall the ap-
plication and/or rate it negatively in the app market.

Android guidelines [9, 6] are very clear on the importance
of designing responsive applications. The general rule is the
following: “In any situation in which your app performs a
potentially lengthy operation, you should not perform the
work on the UI thread, but instead create a worker thread
and do most of the work there.” [9].

There are various mechanisms for achieving this goal. Typ-
ical examples include user-managed threads, AsynchTask,
and IntentService. The responsiveness of existing code
can be improved by introducing these mechanisms either
through manual refactoring or by using automated transfor-
mations (e.g., [12, 11]). A natural question that arises in
this context is the following: which operations should be re-
moved from the GUI thread and placed in a separate thread?
There are several categories of expensive API calls discussed
in prior work: typical examples include network access op-
erations, access to local information stored in shared pref-
erences files and SQLite database files, disk I/O operations,
image processing operations, and inter-process communica-
tion. In developer jargon, such operations are referred to
as “jank” [6]. As we demonstrate, not all janky operations
have to be moved out of the GUI thread because in many
cases their run-time cost under reasonable conditions is well
below the threshold for user-observable poor responsiveness.
Our Proposal. Our goal is to characterize the run-time
cost of potentially-expensive operations, in order to distin-
guish the ones that are harmless to the responsiveness from
the ones that indeed have to be removed from the GUI
thread. The motivation for this characterization is twofold.
First, the use of asynchronous constructs complicates the
application because it requires additional code to manage
the asynchronous work and to communicate with the GUI
thread. What used to be a single API call in the GUI thread
can become several callback methods in multiple classes,
with complex multi-threaded interaction patterns. Further-
more, the increased complexity of the code can lead to de-
fects such as data races, memory leaks, and energy drain
[12, 11]. While automated code refactoring could alleviate
some of these problems, ultimately the simplest and most
desirable solution is to keep in the GUI thread as many of
these operations as possible.

We propose a profiling approach to characterize the range
of response times as a function of operating conditions. Our
focus are potentially-expensive operations whose cost de-
pends on a particular local resource. By manipulating and
“amplifying” this resource automatically, we can obtain a

responsiveness profile for each GUI-related callback in the
application. Specifically, our approach considers operations
that involve shared preferences stores, bitmaps, and SQLite
databases. In all three categories there is a well-defined
application-managed resource whose size is one of the main
factors affecting the cost of janky operations. We amplify
this size automatically and characterize the range of corre-
sponding response times. As a result, it becomes possible
to determine whether the application’s responsiveness is ac-
ceptable under most/all operating conditions.

The profiling is based on a combination of static and dy-
namic analysis. The static analysis component automat-
ically (1) creates a model of GUI structure, (2) identifies
GUI-related callbacks that invoke janky operations, and (3)
generates test cases to execute these callbacks. Subsequently,
the dynamic analysis component automatically (1) executes
the test cases to collect information about resources used
at run time, (2) generates several amplified versions of each
resource, and (3) executes the test cases again to measure
the running time of each relevant callback under different
resource configurations.

Our experimental evaluation and case studies lead to the
following conclusion: for the applications we analyzed, janky
operations related to SQLite databases and shared pref-
erences can be safely left in the GUI thread. Even for
bitmaps, whose processing cost is higher, the response times
under realistic operating conditions may sometimes be ac-
ceptable. These results highlight the importance of choosing
carefully—based on profiling information—the operations
that should be removed from the GUI thread, in order to
avoid unnecessary code complexity. Our approach provides
an automated solution to obtain such profiling information
for some commonly-used operations.

2. OVERVIEW
This section presents an overview of relevant Android fea-

tures together with a high-level description of our approach
for responsiveness profiling through resource amplification.

2.1 Relevant Features of Android GUIs
We first describe the event-driven control flow in the GUI

of the application (i.e., in the main application thread), fol-
lowed by a summary of categories of expensive (“janky”)
operations that may occur along this control flow. Figure 1
contains a code example to illustrate these features. Method
setAsHome (lines 20–24) contains API calls to manipulate
shared preferences. Such calls are one of the standard ex-
amples of janky operations [9, 12].

Our goal in defining these aspects of Android behavior is
to set the foundation for (1) automated generation of GUI
tests that trigger janky behaviors, as well as (2) automated
insertion of instrumentation to obtain a responsiveness pro-
file for run-time behavior.

2.1.1 Windows and Views
Activities are core Android components, defined by sub-

classes of android.app.Activity. An activity displays a
window containing several GUI widgets (“views” in Android
terminology).
. Example: Figure 1 shows an example derived from the

APV PDF reader [2]; for the sake of simplicity, several non-
essential details are elided. Class ChooseFileActivity de-
fines an activity. In this case this is the start activity of

1 public class ChooseFileActivity extends Activity
2 implements OnItemClickListener {
3 private ListView filesListView;
4 private MenuItem setAsHomeContextMenuItem;
5 private MenuItem deleteContextMenuItem;

// --- lifecycle callbacks ---
6 public void onCreate() { ...
7 filesListView = (ListView) findViewById(R.id.files);
8 filesListView.setOnItemClickListener(this);
9 registerForContextMenu(filesListView); }
10 public void onResume() {...}
11 public void onCreateContextMenu(ContextMenu menu) {
12 if (...)
13 setAsHomeContextMenuItem = menu.add(R.string.sethome);
14 if (...)
15 deleteContextMenuItem = menu.add(R.string.delete); }

// --- widget event handler callbacks ---
16 public void onItemClick(View v) { ... }
17 public void onContextItemSelected(MenuItem item) {
18 if (item == setAsHomeContextMenuItem) { setAsHome(); }
19 if (item == deleteContextMenuItem) {...} }
20 public void setAsHome() {
21 SharedPreferences.Editor edit =
22 getSharedPreferences(PREF_TAG, 0).edit();
23 edit.putString(PREF_HOME, currentPath);
24 edit.commit();}}

Figure 1: Example derived from the APV application.

the application: it is started by the Android launcher when
the user launches the application. The onCreate lifecycle
callback (discussed shortly) initializes a widget representing
a list of files and directories (line 7). Field filesListView

refers to this widget object. At line 8, the activity adds itself
as a listener for click events on list items. /

We also consider windows for menus and dialogs, which
are both used for short interactions with the user. Op-
tions menus are associated with activities and context menus
are associated with widgets. Dialogs instantiate android.

app.Dialog or its subclasses.
. Example: In Figure 1, the call at line 9 allows a context

menu to be associated with an element of filesListView.
When the user performs a long-click event on a list item, an
instance of ContextMenu is created and callback onCreate-

ContextMenu is invoked on it by the Android framework. In-
side this callback, two menu items are initialized and added
to the menu. Item setAsHomeContextMenuItem is used to
set a directory as the home directory, while deleteCon-

textMenuItem can be used to delete the selected file. These
menu items will also referred to as “views” (although techni-
cally they are not instances of class View). After the initial-
ization, the context menu is displayed as a floating window
next to the list element that was long-clicked, allowing con-
textual information for this element to be displayed. /

Let Win be the set of run-time windows that correspond
to activities, menus, and dialogs. The set of run-time wid-
gets in w ∈Win will be denoted by View. This and other
related notation is summarized in Figure 2.

2.1.2 Events
A window can be associated with events for the widgets

that appear in this window. Such widget events will be
denoted by e = [v,k] where v is a widget and k is the kind of
event. For the example in Figure 1 we have events [li ,click]
and [li ,longclick] where li is the list item widget on which
the event was triggered by the user. We also have events
[mi ,click] to represent the clicking on a menu item mi from
the context menu.

w ∈ Win window
v ∈ View view

e = [v,k] ∈ Event widget event on v
e = [w,k] ∈ Event default event on w

c ∈ Cb callback method
[c,o] ∈ Cb× (Win ∪View) callback invocation
s ∈ Cbs callback inv. sequence

t = [w,w′] ∈ Trans window transition
ε(t) ∈ Event event that triggered t
σ(t) ∈ Cbs callback inv. sequence for t
T ∈ Trans+ transition sequence

Figure 2: Notation for run-time semantics.

Default events correspond to hardware buttons. For ex-
ample, back represents pressing the BACK button, which
typically returns to some previous window. For example,
if back is triggered on the context menu in Figure 1 before
any menu item is selected, the menu is closed and control
returns back to the activity. Event menu occurs when the
MENU button is pressed to show an options menu (a menu
associated with an activity). Other defaults events corre-
spond to the HOME button (home), the POWER button
(power), or rotating the screen (rotate) [30]. We will use
the notation e = [w,k] ∈ Win × {back ,menu, . . .} for de-
fault events; here w is the current window. In Figure 1, let
a denote the activity and m denote the context menu. Then
we have five default events [a,. . .], as well as default events
[m,. . .] for back , rotate, home, and power .

Let Event be the set of widget events e = [v,k] and default
events e = [w,k] for an Android application. This set of
events—more precisely, a static abstraction of this set—is
the basis for the proposed test/instrumentation generation.

2.1.3 Callbacks
The processing of an event e can result in a sequence

of callback invocations [c1,o1][c2,o2] . . . [cm,om]. Here ci de-
notes an application-defined callback method. This method
is invoked on a run-time object oi by the Android frame-
work code, in response to the GUI event e. Each callback
invocation [ci,oi] completes before the next one starts.

An widget event e = [v,k] is processed by a widget event
handler callback; examples are onItemClick and onContex-

tItemSelected in Figure 1. The lifetime of windows is man-
aged with the help of lifecycle callbacks. For example, in Fig-
ure 1, creation callback onCreate indicates the start of the
activity’s lifetime, and callback onResume indicates a stage
of the lifecycle after the activity is reactivated. Similarly,
onCreateContextMenu in the figure corresponds to the start
of the lifetime of the context menu.
. Example: In Figure 1, consider widget event [li ,click]

on some list item widget li . This event will trigger a call-
back invocation [onItemClick,li] and formal parameter v

of the callback method will refer to li . Similarly, consider
[li ,longclick]. The Android framework defines an internal
event handler for this event; this handler creates a Con-

textMenu instancem and triggers [onCreateContextMenu,m].
Finally, let s be the context menu item referred to by se-

tAsHomeContextMenuItem and d be the context menu item
referred to by deleteContextMenuItem. Event [s,click] trig-
gers [onContextItemSelected,s] and [d,click] triggers a sim-
ilar callback invocation for d. /

In these examples the sequence contains only one invoca-
tion. However, in the general case there can be a complex
callback sequence in response to a single GUI event. For ex-
ample, suppose that onItemClick invoked an Android API
call to start some new activity a′ (which, in fact, is what
the actual code in APV does). In the general case, the
invocation sequence would be [onItemClick,li][onPause,a]
[onCreate,a′][onStart,a′][onResume,a′][onStop,a]; here a de-
notes ChooseFileActivity. Events back , home, etc. also
trigger callbacks. For example, home for an activity may
result in a sequence of lifecycle callbacks onPause, onStop,
onRestart, onStart, onResume being invoked on that activ-
ity. Additional details of the general structure of callback
sequences triggered by GUI events are available in our earlier
work [30, 27].

Each callback invocation that appears in such a sequence
could potentially invoke janky operations that affects re-
sponsiveness. Key steps of our profiling approach include
(1) a static analysis to identify callback invocations that may
trigger janky operations in response to GUI events, (2) test
generation to create sequences of GUI events that execute
all such callback invocations, and (3) insertion of instrumen-
tation to record the execution times of these invocations.

2.1.4 Window Transitions
A run-time window transition is a pair t = [w,w′] ∈

Win ×Win such that when w was active, a GUI event
caused the new active window to become w′. Note that w′

could be the same as w. A transition t is associated with
the event ε(t) that caused it and with the sequence σ(t) of
triggered callback invocations [ci,oi], as discussed earlier. A
window transition t may open new windows and/or close
existing ones. These effects can be captured by a window
stack model, which represents the stack of windows that
are currently active. A transition t performs a sequence of
push/pop operations on the window stack.

Consider T = 〈t1, t2, . . . , tn〉, a sequence of window transi-
tions ti such that the target of ti matches the source of ti+1.
Sequence T is valid if the window push/pop operations along
the transitions are properly matched, as determined by the
state of the window stack [30, 27]. In general, these effects
could involve several windows and can trigger complicated
callback sequences. In the context of our profiling approach,
we perform static analysis of valid transition sequences in or-
der to generate test cases that trigger expensive operations
(e.g., as illustrated in method setAsHome in Figure 1). Each
test case is a valid transition sequence t starting from the
initial activity of the application, such that σ(t) contains at
least one callback invocation [ci,oi] for which the execution
of callback method ci for context oi may trigger (in ci or in
the transitive callees of ci) a janky operation.
. Example: For the code in Figure 1, a few of the possible

transitions t, together with their triggering GUI events ε(t),
are as follows (also shown in Figure 3):

t1 = [launcher ,a] ε(t1) = [a,launch]
t2 = [a,a′] ε(t2) = [li ,click]
t3 = [a,m] ε(t3) = [li ,longclick]
t4 = [m,a] ε(t4) = [s,click]
t5 = [m,a] ε(t5) = [d ,click]

where a represents ChooseFileActivity, a′ represents an-
other activity opened by a, li is an item in the list dis-
played by a, m is the context menu, s is the set-home-

launcher

a :ChooseFileActivity

 t1:[a,launch]

 [onCreate,a]

 [onResume,a]

a':OpenFileActivity

 t2:[li,click]

 [onItemClick,li]

 [onCreate,a'] ...

m :ContextMenu

 t3:[li,longclick]

 [onCreateContextMenu,m]

 t4:[s,click]

 [onContextItemSelected,s]

 t5:[d,click]

 [onContextItemSelected,d]

Figure 3: Window transition graph for the running example.

menu-item, and d is the delete-menu-item. Transition t1
is artificial and represents the starting of the application
from the Android application launcher. Transition sequence
T = 〈t1, t3, t4〉 is valid because t1 pushes a on top of the win-
dow stack, t3 pushes m on top of a, and t4 pops m and leads
back to a. The callback invocations for T are [onCreate,a],
[onResume,a], [onItemClick,li], [onCreateContextMenu,m],
[onContextItemSelected,s] and janky method setAsHome is
invoked by the last callback. Thus, T could be one of the
test cases generated by our approach. Note that a similar
valid sequence T ′ = 〈t1, t3, t5〉 will not be selected as a test
case by our technique, since no callback invocation along T ′

invokes janky operations: when onContextItemSelected is
invoked on d, method setAsHome is not called. /

Figure 3 shows the window transition graph (WTG) for
the running example. The WTG is a static representation
of the possible run-time window transitions, introduced in
our prior work [30]. The figure shows the event that trig-
gers each transition, together with the callbacks invoked as
part of the transition. For edge t2, additional lifecycle call-
backs (denoted by . . .) are omitted for brevity. The WTG
representation can be used to statically identify (1) callback
invocations that invoke janky operations, and (2) valid win-
dow transition sequences that trigger such callbacks. In the
example, transition sequence T = 〈t1, t3, t4〉 will be detected
and used to generate a test case, as described later.

2.2 Expensive Operations in the UI Thread
The callbacks and window transitions described above are

executed in the UI thread of the application. This is the
main application thread and it is responsible for dispatch-
ing and handling of GUI events (clicks, etc.) as well as
events related to other device features (e.g., location aware-
ness, battery state changes, etc.). We aim to identify win-
dow transitions t = [w,w′] that may trigger expensive oper-
ations. The main categories of janky operations discussed
in prior work [9, 6, 28, 12] are as follows: (1) network ac-
cess operations, such as connecting to a network, storing
and retrieving data from a web-based server, etc.; (2) shared
preferences operations, which store and retrieve data from a
key-value store; (3) bitmap operations such as loading and
decoding an image from a file; (4) SQLite database opera-
tions to store and retrieve data from a database; (5) storage
access operations, which read or write a file in internal or
external flash storage; (6) RPC calls between two processes;
(7) content provider operations, which access a structured
set of data managed by a provider component, and are used
to share data among processes.

Network operations are the canonical example of janky
operations and Android developer guidelines suggest that
they should be moved out of the UI thread because their
cost depends on factors outside of the application’s control.
The guidelines for the remaining categories of operations are
less clear. Although database operations and bitmap oper-
ations are given as other typical examples of jank [9], in
many cases their cost is actually predictable and harmless.
To gain understanding of performance implications, stan-
dard profiling can be applied to such operations: any call-
back that invokes (directly or transitively) a janky operation
can be instrumented before execution, and the running time
from callback-entry to callback-exit can be measured and
compared against guidelines for good responsiveness: “gen-
erally, 100 to 200 ms is the threshold beyond which users
will perceive slowness in an application” [9].

Our profiling approach aims to go beyond standard pro-
filing, and to characterize the range of response times as a
function of different operating conditions. In particular, we
are interested in janky operations whose cost depends on a
particular resource we can manipulate and “amplify” auto-
matically. Thus, we focus on operations that involve shared
preferences, bitmaps, and SQLite databases. In all three
categories there is a well-defined resource, managed by the
application, such that the size of the resource affects the cost
of janky operations. As we discuss later, this size is one of
the main factors that determine the cost of janky API calls.
By amplifying the size automatically we can characterize
the range of acceptable response times and can determine
whether the application remains in this range under most
(or even all) realistic operating conditions.
. Example: For the code in Figure 1 we can determine

that the execution time of onContextItemSelected, when
executed on the set-home menu item, will remain under 200
ms even when the size of the shared preferences (i.e., the
number of pairs in the key-value store) is amplified to around
60,000 pairs. The application uses the shared preferences to
save the path of the home folder. This path is a string value,
associated with the string key "Home". Method setAsHome

stores this pair into a shared preferences XML file located in
the application’s shared preferences folder. There does not
exist an execution scenario in which this shared preferences
store contains any other key-value pair. Since the threshold
for bad responsiveness is around 60,000 pairs, clearly it is
unnecessary to remove setAsHome from the UI thread. /

Note the three categories of operations we consider access
files that are stored on the device’s flash storage: XML files
for shared preferences, image files for bitmaps, and database
files for SQLite operations. For these categories of files au-
tomated amplification is possible by increasing the file size.
A similar amplification may also be possible for general files
stored in flash storage. However, being able to increase the
size of a file in a meaningful way, and to reorganize the data
in it to trigger different run-time access patterns, requires
knowledge of the meaning of the application-specific data
being stored in that file. In future work we plan to inves-
tigate how such knowledge could be provided (with little
effort) by the programmer.

2.2.1 Shared Preferences
Shared preferences is a general mechanism in Android

to facilitate saving and retrieving a collection of key-value
pairs. It can be used to store any primitive data includ-

Figure 4: Workflow for responsiveness profiling.

ing booleans, ints, floats, longs, and strings. The data will
persist across user sessions in an XML file under the applica-
tion’s private data directory. This is one of the most widely
used techniques to store a small amount of persistent data in
Android applications. Before using the store, a SharedPref-

erences object has to be obtained either by providing a file
name or by using the default one for the application. When
this happens, our approach (through instrumentation) can
record which file is being used and later can amplify the file,
as described shortly.

To read values, methods such as getString, getBoolean,
etc. in class SharedPreferences are invoked, with a string
key provided as an actual parameter. To perform a write op-
eration, a SharedPreferences.Editor has to be used (see
lines 21–24 in Figure 1). The values are added using corre-
sponding put methods such as putString, putBoolean, etc.
The new values are written with a call to commit. If the size
of the shared preferences store is large, the cost of some of
these operations can affect responsiveness. The experiments
described in Section 4 provide further details on the rela-
tionship between the size of the store and the response time
for GUI events.

2.2.2 Bitmap Processing
A bitmap is one of the drawable resources in Android.

Normally, it is a graphic file that can be drawn on the screen.
There are several possible formats for a bitmap (e.g., PNG).
In order to load and decode an image from a file, Android
provides a helper class BitmapFactory. Inside this class,
methods decodeResource and decodeFile will load images
from the resource folder of the application and the file sys-
tem, respectively. Such decoding operations, as well as other
related operations such as re-sizing, can be expensive for
large images. Our technique determines which graphics files
are accessed by the application and amplifies them by au-
tomatically creating larger versions (e.g., by increasing the
number of pixels in both dimensions). The effects on GUI
event handling response time are then characterized as a
function of image size.

2.2.3 SQLite Database
Android provides SQLite databases as a convenient mech-

anism to save structured data. Two classes are used to ma-
nipulate such databases. Helper class SQLiteOpenHelper

manages database creation and versioning. Class SQLite-

Database contains APIs to perform database reads and writes.

Generally, these APIs can be divided into two categories.
One category is intended to work on a single table. For ex-
ample, SQLiteDatabase provides a method query(...) to
query a given table and return a Cursor to the result set.
As another example, methods insert, delete, and update

perform inserting, deleting, and updating for a certain table.
The second category contains general operations that could
work on several tables; for example, an SQL command could
be executed using execSQL(String sql).

We are interested in the common scenario where the appli-
cation creates and manages its own database. During initial
testing, we execute a freshly-installed application copy which
creates the database file. By instrumenting the relevant API
calls we can determine the file being created and the struc-
ture of each database table. The tables are then amplified,
by adding additional rows, before the profiling runs. The
cost of a database operation depends on several factors: for
example, table sizes, query type and complexity, and size
of the result. However, there is evidence that the typical
pattern of database usage in Android applications is rather
simple [10]. As a result, one would expect that database size
would be the main factor affecting cost. This observation is
supported by the results presented in Section 4.

3. PROFILING APPROACH
As outlined earlier, our profiling approach is a combina-

tion of static and dynamic analysis. Figure 4 illustrates
the overall process. The static analysis component identifies
callbacks that invoke janky operations and generates test
cases to trigger these callbacks. The dynamic analysis uses
the output of the static analysis to (1) collect the list of
resources used at run time, (2) generate several amplified
versions of each resource, and (3) measure the running time
of each relevant callback.

3.1 Input
The source code of the application is the input of the static

analysis and the corresponding APK file is the input of the
dynamic analysis. Note that the static analysis is capable
of processing APKs instead of source code [19], but for our
case studies we wanted to examine manually the internals of
the application to understand better the patterns of usage
of janky operations. An additional input to both analyses is
a specification of the janky API calls for shared preferences,
bitmaps, and SQLite databases [9, 6, 28, 12]. Both the
static analysis and the instrumentation component of the

Algorithm 1: GeneratePaths

Input: wtg = (N,E) : window transition graph
Input: Relevant ⊆ N : set of relevant nodes
Input: Cover : set of janky [ci,oi] to be covered

1 t← [launcher ,main] ∈ E
2 path ← 〈 t 〉
3 stack ← 〈 main 〉
4 UpdateTests(Cover , t, path)
5 Traverse(main, path, stack)

6 procedure Traverse(w, path, stack)
7 foreach edge t = [w,w′] such that t /∈ path do
8 if w′ ∈ Relevant ∧CanAppend(t, path, stack)

then
9 DoAppend(t, path, stack)

10 UpdateTests(Cover , t, path)
11 Traverse(w′, path, stack)
12 UndoAppend(t, path, stack)

13 procedure UpdateTests(Cover , t, path)
14 Expensive ← set of janky [ci,oi] executed by t
15 if Expensive ∩ Cover 6= ∅ then
16 record path for subsequent test generation
17 Cover ← Cover − Expensive
18 if Cover = ∅ then
19 terminate traversal

dynamic analysis utilize the Soot framework [23] and the
Gator analysis toolkit for Android [19].

3.2 Static Analysis
The first step of the static analysis builds the WTG out-

lined at the end of Section 2.1.4. Next, each callback invoca-
tion in the WTG is analyzed to determine whether it invokes
expensive operations. For example, the WTG in Figure 3
shows 7 distinct callback invocations [ci,oi], including both
widget event handlers such as onContextItemSelected and
lifecycle callbacks such as onCreate. Each unique [ci,oi] is
analyzed separately. An inter-procedural control-flow graph
(ICFG) [21] is constructed for ci and its transitive callees
in the application code. Then, a constant propagation anal-
ysis is performed to identify and remove infeasible ICFG
edges, based on the knowledge that the calling context of
ci is oi. This analysis is defined in prior work [29], where
it was shown to produce more precise control-flow models.
For the example in Figure 1, this analysis will determine that
when onContextItemSelected is invoked on menu item se-

tAsHomeContextMenuItem, the body of the first if-statement
(line 13) is executed but the body of the second one (line 15)
is not. Similarly, the analysis determines that when this call-
back method is invoked on deleteContextMenuItem, janky
method setAsHome is not executed.

Next, a backward traversal of the WTG is performed from
the source nodes of all edges that contain expensive call-
backs. In the WTG from Figure 3, t4 is such an edge. The
goal of the traversal is to identify all WTG nodes w that
may belong to paths leading to edges that need to be cov-
ered during profiling. We refer to such nodes as relevant
nodes. In the running example, a backward traversal from m
(which is the source node of t4) identifies m, a, and launcher
as relevant nodes. The shortest distance from the launcher
node to each relevant node can then be computed with a

simple breadth-first traversal. The largest such distance is
used during path traversal (described next) as a threshold
for path length.

Next, a forward traversal of the WTG is used to iden-
tify a set of valid WTG paths (validity was defined in Sec-
tion 2.1.4) that start from the launcher node, contain only
relevant nodes, and cover each janky [ci,oi] at least once.
During the traversal, the current path is recorded and a new
edge e is appended to T only if (1) e /∈ T , (2) the target node
of e is relevant, and (3) the resulting path is valid. If a path
T covers a pair [ci,oi] that has not been covered already, T is
recorded and later used to create a test case. In the running
example, T = 〈t1, t3, t4〉 is a path that is constructed during
the traversal and is recorded for test case generation.

Algorithm 1 provides further details on this approach.
The current WTG path path and the corresponding win-
dow stack stack are maintained during the traversal. For
brevity, the threshold on path length mentioned above is not
shown. Helper function CanAppend determines whether
the window push/pop operations for t = [w,w′] can be ap-
plied to the window stack—that is, whether the sequence of
push/pop operations along path appended with t is valid. If
this is the case, helper function DoAppend appends t and
modifies stack accordingly. After the recursive traversal is
finished, helper function UndoAppend removes t from path
and reverts the stack changes performed by DoAppend.

During the traversal, set Cover contains the janky call-
back invocations [ci,oi] that remain to be covered. This set
is updated as new paths are constructed, and the traver-
sal terminates when the set becomes empty. Given a set of
paths T1, T2, . . . recorded at line 16, the test case generator
creates a test case for each Ti. The test cases are imple-
mented in the Robotium testing framework [18]. For each
transition t in a path Ti, event ε(t) is mapped to a corre-
sponding Robotium API call. This process is automated,
but in some circumstances may have to be followed by man-
ual setup steps—for example, introducing certain files in the
file system, mocking the camera (i.e., to simulate scanning
of barcodes), providing login/password information, etc.

The output of Algorithm 1 depends on the order in which
successor nodes w′ are visited at line 7. To ensure that the
set of generated test cases is deterministic, we impose an
ordering of successors, and use that same ordering for each
run of the algorithm.

3.3 Dynamic Analysis
The dynamic analysis has three components. First, the

test cases are executed without amplification, in order to
obtain information about the resources they utilize. This is
done by a resource collector component through appropriate
instrumentation at certain API calls. Next, a resource am-
plifier component creates several versions of each resource,
with a range of different sizes. Finally, a test executor ex-
ecutes again the test cases, using the amplified resources,
and gathers measurements about the execution times of call-
backs that may invoke janky operations.

3.3.1 Resource Collector
The first component is the resource collector. Its purpose

is to get the actual resources used by the expensive opera-
tions at run time. For shared preferences, the resource is the
name of the XML file. There are several methods to obtain a
SharedPreferences object; an example is getSharedPref-

App Shared Preferences Bitmap SQLite Database Test Cases
read write read write

APV 7 5 0 2 2 6
BarcodeScanner 4 0 1 6 3 9
OpenManager 2 1 0 0 0 1
SuperGenPass 2 4 0 0 0 3
TippyTipper 17 0 0 0 0 10
VuDroid 3 2 1 0 0 2

Table 1: Number of callbacks and test cases

erences. The shared preference XML file can be obtained
by instrumenting such call sites and recording the file name
at run time. For bitmaps, the Android libraries provide a
helper class BitmapFactory, which is used to decode and
load images from an input source. We analyze two kinds of
sources. One is the name of an image file, which is used as a
parameter of method decodeFile. The other source uses the
resource folder of the application. Here method decodeRe-

source takes as input an integer parameter id to identify the
desired resource. In Android each resource id is represented
by a constant field in an automatically-generated class R. A
field name gives the corresponding file name. For example, if
field R.drawable.arrowup is initialized with 0x7f020000 in
the application code, and parameter id of decodeResource

has that same value at run time, the image file name is ar-

rowup in the resource folder in the application.
For SQLite databases, Android provides an abstract class

SQLiteOpenHelper to manage database creation; applica-
tions override certain methods defined in this class. The
name of the database file is provided as input to the class
constructor. A related callback onCreate is defined by sub-
classes in the application code and is invoked when the
database is created for the first time. This method is in-
tended to be used to create database tables using an API
call execSQL(String sql) where sql is a string with an SQL
statement. An example of such a string is CREATE TABLE

bookmark VALUES(id integer primary key, name text).
Here bookmark is a table with two columns id and name. By
instrumenting the relevant call sites, we gather the name
of the database file and the name/structure of individual
tables. An underlying assumption is that the application is
responsible for creating its own database; although this does
not have to be the case, in all examples we have seen so far
this assumption is satisfied.

The instrumentation is performed by decompiling the ap-
plication’s APK file to Soot’s intermediate representation,
adding appropriate additional statements in this IR, and
then reconstructing the APK file. The test cases generated
by the static analysis are then executed and the gathered
resource information is used for resource amplification.

3.3.2 Resource Amplifier
After gathering all accessed resources, the next step is

to amplify them. For shared preferences, a given num-
ber of random key-value pairs is inserted in the XML file.
For bitmaps, an image file can be enlarged using the stan-
dard ImageMagick tools. For each database file, a simple
JDBC client is used to insert random rows in the database
tables, using the structural information (number/type of
columns) extracted by the resource collector. The modified
store/image/database files are created off-line and are then

used by the test harness during test execution. In our cur-
rent implementation we perform per-category amplification:
in one set of experiments only (and all) shared preferences
for an application are amplified, another set of experiments
amplifies only the bitmaps, and a third set considers only
the databases. Of course, more fine-grained amplification
can be easily achieved.

3.3.3 Test Executor
After amplification, the same set of test cases is executed

over a range of amplification sizes. Before execution, instru-
mentation is inserted at the entry and exit of each callback
method ci that was identified by the static analysis as po-
tentially invoking expensive operations. Before each test
run, the application is uninstalled and then reinstalled to
ensure that the same starting state is used. For a particu-
lar run of the test cases, with a particular set of amplified
resources, the average execution time of each callback ci is
measured. Each test run typically takes one to two min-
utes; we perform three runs and record the average of the
three measurements. When firing a GUI event through a
Robotium call, it is necessary to wait until the effects of
the event are processed and shown in the GUI, so that the
next event can be fired. We automatically introduce a de-
lay after each event in the test cases, which is the reason a
test run can take up to two minutes. Since the overall cost
ultimately depends on the number of amplified sizes, the
execution time can be controlled by choosing that number.
These amplified sizes could be selected by various criteria.
For example, as described in the next section, we used 100
amplified versions of the shared preference stores, with the
first version containing 1000 additional key-value pairs in
each store, the second one containing 2000 additional pairs,
and the last one containing 100,000 additional pairs.

4. EXPERIMENTAL EVALUATION
We evaluated the profiling approach on six open-source

applications. These applications were chosen to reduce the
manual effort needed to interpret the results: in prior work
[29, 30] we have investigated parts of their source code, for
purposes unrelated to performance analysis. The applica-
tions are from several domains: PDF and e-book reader
(APV, VuDroid), file management (OpenManager), password
generation (SuperGenPass), barcode processing (Barcode-
Scanner), and simple calculations (TippyTipper).

Application characteristics are shown in Table 1. For each
of the three categories, the table shows the number of call-
back methods that may invoke (directly or transitively) ex-
pensive APIs from this category. For shared preferences and
databases, there is separation into read operations (that do
not modify the resource) and write operations (that modify

0 20000 40000 60000 80000 100000
resource amplification

0

5

10

15

20

25

30

35

ti
m

e(
m

ill
is

ec
on

d
s)

(a) Preferences read

0 20000 40000 60000 80000 100000
resource amplification

0

100

200

300

400

500

600

700

ti
m

e(
m

ill
is

ec
on

d
s)

(b) Preferences read (first read)

0 20000 40000 60000 80000 100000
resource amplification

0

50

100

150

200

250

300

350

ti
m

e(
m

ill
is

ec
on

d
s)

(c) Preferences write

1 2 3 4 5 6 7 8 9 10 11
resource amplification

0

100

200

300

400

500

600

ti
m

e(
m

ill
is

ec
on

d
s)

(d) Bitmap

0 100000 200000 300000 400000 500000
resource amplification

0

50

100

150

200

250

ti
m

e(
m

ill
is

ec
on

d
s)

(e) Database read

0 100000 200000 300000 400000 500000
resource amplification

0

50

100

150

200

ti
m

e(
m

ill
is

ec
on

d
s)

(f) Database write

Figure 5: Representative sample of profiling results.

the resource). We make this distinction in order to inves-
tigate whether the run-time cost is different for these two
sub-categories. The last column is the number of test cases
generated to trigger all these callbacks. For all programs
but one, the time to analyze the WTG and generate all test
cases is around one second. BarcodeScanner takes 47 sec-
onds because the WTG has a large number of edges, caused
by the high degree of polymorphism in the type of barcodes:
eleven types of barcodes are possible, as discussed in [30].
As a result, the number of paths is more than two orders of
magnitude larger than that for the other applications.

4.1 Experimental Results
We executed the generated test cases, with amplified re-

sources, on a Nexus 5X smartphone with a 1.8GHz 64-bit
Qualcomm Snapdragon 808 CPU and 32GB storage. The
Android SDK version is 6.0 (Marshmallow). A representa-
tive sample of the profiling results is shown in Figure 5. The
other results observed in our experiments exhibit the same
trends as the ones shown in the figure.

4.1.1 Shared Preferences
Figure 5 shows three charts for the responsiveness of call-

backs that access shared preferences in application APV. Fig-
ure 5a and Figure 5b are for callback onCreate in class
ChooseFileActivity, while Figure 5c is for callback on-

ContextItemSelected which was illustrated in the running
example (Figure 1). The y-axis represents the average ex-
ecution time of potentially-expensive callbacks (in millisec-
onds) and the x-axis shows the number of key-value pairs
added to the store before running the test cases. As dis-
cussed in Section 3.3.3, 100 amplified runs were executed
and the number of added key-value pairs was increased by
1000 in each run. Thus, the largest amplification is 100,000
key-value pairs. We also performed measurements to ensure
that the number of callback invocations (i.e., the denomi-
nator in the computation of the average callback execution
time) does not change from run to run.

Figure 5a and Figure 5b show different execution times,
although both are for the same callback method. This is be-
cause Figure 5b corresponds to the first run of this method
while Figure 5a shows the average of the remaining (not
first) invocations of this method during the same run of the
test cases. We make this distinction because the behavior
is significantly different in the two cases. In Android, the
shared preferences will be loaded into memory when the ap-
plication calls getSharedPreferences (or as few other sim-
ilar APIs) for the first time. The key-value pairs will be
stored in a new hash map. The building of this map is done
by separate thread. However, if the call to getSharedPref-

erences is followed by a read operation (i.e., getBoolean),
this read has to wait for the completion of the map. This

is exactly what happens in onCreate in class ChooseFile-

Activity: a read operation is invoked immediately after a
call to getSharedPreferences. When onCreate is invoked
for the first time, its execution time is proportional to the
size of the store. Any subsequent invocation of onCreate di-
rectly uses the in-memory hash map, and its read operation
has very low O(1) running time as illustrated by Figure 5a.

Figure 5c shows the cost of onContextItemSelected from
the running example. This callback method invokes commit

(line 24 in method setHome), which internally writes the
hash map to the XML file. Although this writing is done
in a separate thread, commit waits for its completion. As a
result, the cost of the write operation is proportional to the
number of key-value pairs.

4.1.2 Bitmap Processing
Figure 5d shows the response time for callback onCreate

in class BaseViewerActivity from VuDroid. The format of
the input image is PNG, which is the default one used by
the application. The y-axis is again the average callback
execution time in milliseconds and the x-axis is the size of
the image in each dimension, relative to the original size.
For example, 1 on the x-axis corresponds to the original
size, while 2 means the image size is twice as large in each
dimension. The application was executed several times, with
amplification factors of 1.2, 1.4, etc., until the value on the
y-axis significantly exceeded 200 ms (i.e., the threshold for
user-observable slow GUI response). For this chart, there are
three relevant images whose original sizes are 64×54, 216×
54, and 300× 15. Their final sizes are 704× 594, 2376× 594
and 3300×165, respectively.1 Clearly, the execution time of
the callback grows significantly as the image size increases.

Android accepts three formats of image files: PNG, JPEG,
and GIF. According to the documentation, PNG is pre-
ferred, JPEG is acceptable, and GIF is discouraged. We
automatically generated each of the formats for each image
file used by the application. However, our experiments in-
dicate that the choice of format does not have significant
effect on the response time (less than 10% difference). We
conclude that it is unnecessary to add the format choice as
an additional dimension of amplification.

4.1.3 SQLite Database
Database operations can also be divided into two major

categories: read operations and write operations. One ex-
ample of the performance of reading is shown in Figure 5e
for callback onCreate from class OpenFileActivity in APV.
A similar example for write operations is presented in Fig-
ure 5f for callback onPause from the same class. The x-axis
shows the number of rows we insert in each of the tables
of this database before the test cases are executed. The
database is empty when the original application is installed.
We increase the size of each table by 5000 rows in each run,
for a total of 140 runs.

For this onCreate callback method, the database is ac-
cessed to read the contents of one single tuple from table
bookmark. Similarly, onPause updates one tuple from the
same table. As the measurements show, the cost of these
operations is proportional to the number of tuples in the
database table. It takes a table size of over 400,000 tuples
for the callback execution time to exceed 200 ms.

1For comparison, the built-in camera in the smartphone used for
the experiments takes 3024× 4032 photos.

4.1.4 Flash Storage State
Android guidelines [6] suggest that the performance of I/O

operations for the flash storage depends on how full that
storage is. Since all our resources are ultimately represented
as files on this storage, we performed additional amplifica-
tion experiments on the state of the storage, starting from
about 10% full to 99.9% full. In each experiment, the test
cases were executed on the original application, without any
resource amplification. We did not see any significant change
in callback execution time across different states of the flash
storage. One possible explanation is that the applications
we analyzed are not write-intensive. Significant volumes of
write operations may lead to different performance profiles
[6] and this dimension of amplification may still be useful
for certain categories of applications.

4.2 Findings
Based on the experimental results, we can reach the fol-

lowing conclusions. First, some of the so-called janky oper-
ations are not expensive. For example, reading from shared
preferences is not expensive even for large stores and for first-
read operations. For first-read operations and for write op-
erations, the cost grows linearly but still remains under 200
ms when the number of key-value pairs is less than 25,000.
Android documentation suggests the use of shared prefer-
ences for a “relatively small collection of key-values” [20].
In our experiments, no application has more than 100 pairs
in its store. Our conclusion is that in realistic scenarios,
the uses of shared preference APIs can remain in the GUI
thread. Although the cut-off point for store size may be
somewhat different across devices and platform versions, it
is highly unlikely that this overall conclusion will change for
other execution environments.

Clearly, the profiling results may also help the developer
to estimate whether janky operations are indeed harmful.
This is illustrated by the case study of bitmap operations in
VuDroid (Figure 5d). At amplification factor of around 4,
the response time exceeds the threshold of 200 ms. However,
in this particular application, when image sizes are about
3.9 times the original ones in each dimension, the layout be-
comes corrupted since one image will be completely covered
and invisible. One can argue that in our experimental setup,
the janky bitmap operations under realistic conditions are
still not harmful. In contrast, consider BarcodeScanner. Al-
though the profiling trends are similar to the ones for Vu-

Droid, the application’s layout is resilient to large images
because it scales the image to fit the available display. Thus,
realistic executions may include large images, and refactor-
ing will be needed to move the API calls out of the GUI
thread. In all likelihood, the developer’s knowledge of the
application will be enough to distinguish between such sce-
narios: for example, there may be application-specific con-
straints on the size of images that will ever be loaded in the
application. With the help of profiling information, the de-
veloper can make informed decisions whether it is necessary
to perform transformations for improved responsiveness.

The results for database operations (Figures 5e and 5f)
indicate that the relevant API calls often do not have to
be moved out of the GUI thread. It is likely that most ap-
plications do not need 400,000 rows to be stored in each
table of the database. For applications that do require large
databases, the profiling can provide information about size
thresholds beyond which one may need to refactor the code

[12] or offload/purge the data. It is also important to note
that the cost of database operations depends not only on the
size of database tables but also on the inherent complexity of
the SQL commands. However, as described in recent work
[10], the vast majority of Android SQLite database work-
loads involve simple, small requests for data that touch a
small number of tables. Thus, the natural characterization
of database operation cost is as a function of database size.
We manually analyzed the SQL operations in our bench-
marks, and made similar observations: most queries involved
reading or updating a single tuple in a table, and the remain-
ing ones involved the selection of a simple subset of tuples
from one database table. Our conclusion is that for many
applications, database operations could likely remain in the
GUI thread.

Using the profiling results gathered by the proposed ap-
proach, together with knowledge of expected operating con-
ditions, a developer could make a decision about the poten-
tial for poor responsiveness and the need to move some oper-
ations out of the GUI thread. As illustrated by our results,
in many cases such invasive changes may be unnecessary.

5. RELATED WORK
Performance analysis for mobile software. Yang et
al. [28] propose a technique to detect potential ”Application
Not Responding” defects by inserting artificial long delays
at janky operations. Nistor and Ravindranath [16] predict
performance problems in smartphone applications from a
given small input. They summarize a prioritized list of rep-
etition patterns by logging callbacks at run time and check-
ing for potential problems by adding time delays in suspi-
cious methods which are identified from the patterns. Lin
et al. [12] study performance problems in Android applica-
tions and build a tool to address poor responsiveness defects
by refactoring potentially-expensive operations out from the
UI thread. Their follow-up work [11] studies mechanisms
for asynchronous execution in Android and proposes an ap-
proach to transform between these mechanisms. Thanaporn
and Shingo [17] detect janky operations in Android by ex-
amining a static control-flow model. Their static analysis is
much less general than ours and does not consider sequences
of callbacks or automated test generation. Kennedy et al.
[10] survey the usage of SQLite databases in Android appli-
cations, including the performance of database operations.

In all prior work on responsiveness analysis for Android,
the focus is on detection and removal of potentially-expensive
operations. The novel contributions of our work are twofold.
First, our static analysis not only detects janky operations
but also identifies which sequences of GUI events may trig-
ger them; this is essential for subsequent test generation.
Second, the presence of janky operations by itself is not suf-
ficient to justify the maintenance effort and increased code
complexity that result from moving these operations out of
the GUI thread. As illustrated by our experimental results,
a more nuanced analysis is needed, guided by run-time pro-
filing and knowledge of the typical operating conditions of
the application. Our proposal for profiling based on resource
amplification is a first step in this direction.
Test amplification. Amplification can be used to detect
potential problems during testing. Zhang and Elbaum [31]
apply test amplification techniques for exception-handling
code, which is necessary due to unreliable environment fac-
tors such as network connectivity. Their approach amplifies

existing test cases by injecting exceptions, while in our pro-
filing we do not change test execution code paths but rather
the run-time cost of the execution. Fang et al. [5] develop a
tool to quickly find memory-related performance problems
in managed languages by amplifying the size of allocated
objects.
Test generation for Android. A recent study by Choud-
hary et al. [4] summarizes the state of the art in automated
test generation for Android. A few representative examples
are discussed below. The standard Monkey tool [15] uses a
simple random strategy for generating UI events. GUIRip-
per [24] generates test cases based on a dynamically built
GUI model using depth-first-search exploration. ORBIT
[25] uses a similar exploration strategy but combined with
static code analysis to determine which UI events are rele-
vant for a specific activity. The A3E GUI exploration tool
[3] employs two strategies: purely-dynamic depth-first ex-
ploration and targeted exploration based on a control-flow
model from a static taint-like analysis. ACTEve [1] is a
concolic testing tool which symbolically tracks events from
their generation to their handling. Jensen et al. [8] use
symbolic analysis to create event handler summaries and to
build event sequences using the summaries and a UI model.
Other examples of testing tools for Android include Dyn-
odroid [13], SwiftHand [26], EvoDroid [14], and PUMA [22].

The WTG is a more general GUI control-flow represen-
tation than any of the static models used in prior work on
test generation, because it models the complex interplay be-
tween event sequences, callbacks triggered by them, and the
corresponding changes to the window stack. Although our
WTG-based test generation aims to cover janky operations,
the underlying approach could easily be adapted to target
testing of other interesting aspects of application behavior.

6. CONCLUSIONS
Our results strongly indicate that a more nuanced ap-

proach is needed when handling potentially-expensive oper-
ations in the GUI thread. Some operations are harmless and
moving them out of the GUI thread creates unnecessary code
complexity without many performance benefits. Using the
proposed automated test generation and resource amplifica-
tion, a developer can better understand these trade-offs and
can reach informed conclusions about application respon-
siveness and whether code transformations are necessary to
improve it.

Acknowledgement
We thank the MOBILESoft reviewers for their valuable feed-
back. This material is based upon work supported by the
U.S. National Science Foundation under CCF-1319695 and
CCF-1526459, and by a Google Faculty Research Award.

7. REFERENCES
[1] S. Anand, M. Naik, M. J. Harrold, and H. Yang.

Automated concolic testing of smartphone apps. In
FSE, pages 1–11, 2012.

[2] APV PDF viewer. code.google.com/p/apv.

[3] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of Android apps. In
OOPSLA, pages 641–660, 2013.

[4] S. R. Choudhary, A. Gorla, and A. Orso. Automated
test input generation for Android: Are we there yet?
In ASE, pages 429–440, 2015.

[5] L. Fang, L. Dou, and G. Xu. Perfblower: Quickly
detecting memory-related performance problems via
amplification. In ECOOP, pages 296–320, 2015.

[6] B. Fitzpatrick. Writing zippy Android apps. In Google
I/O Developers Conference, 2010.

[7] Gartner, Inc. Worldwide traditional PC, tablet,
ultramobile and mobile phone shipments, Mar. 2014.
www.gartner.com/newsroom/id/ 2692318.

[8] C. S. Jensen, M. R. Prasad, and A. Møller.
Automated testing with targeted event sequence
generation. In ISSTA, pages 67–77, 2013.

[9] Keeping your app responsive. developer.android.
com/training/articles/perf-anr.html.

[10] O. Kennedy, J. A. Ajay, G. Challen, and L. Ziarek.
Pocket data: The need for TPC-MOBILE. In TCPTC,
pages 282–292, 2015.

[11] Y. Lin, S. Okur, and D. Dig. Study and refactoring of
Android asynchronous programming. In ASE, pages
224–235, 2015.

[12] Y. Lin, C. Radoi, and D. Dig. Retrofitting
concurrency for Android applications through
refactoring. In FSE, pages 341–352, 2014.

[13] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid:
An input generation system for Android apps. In FSE,
pages 224–234, 2013.

[14] R. Mahmood, N. Mirzaei, and S. Malek. EvoDroid:
Segmented evolutionary testing of Android apps. In
FSE, 2014.

[15] Monkey: UI/Application exerciser for Android.
developer.android.com/ tools/help/monkey.html.

[16] A. Nistor and L. Ravindranath. SunCat: Helping
developers understand and predict performance
problems in smartphone applications. In ISSTA, pages
282–292, 2014.

[17] T. Ongkosit and S. Takada. Responsiveness analysis
tool for Android application. In DeMobile, pages 1–4,
2014.

[18] Robotium testing framework for Android. code.
google.com/p/robotium.

[19] A. Rountev, D. Yan, S. Yang, H. Wu, Y. Wang, and
H. Zhang. Gator: Program analysis toolkit for
Android. web.cse.ohio-state.edu/presto/software.

[20] Saving key-value sets. developer.android.com/
training/basics/data-storage/shared-

preferences.html.

[21] M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis. In S. Muchnick and
N. Jones, editors, Program Flow Analysis: Theory and
Applications, pages 189–234. Prentice Hall, 1981.

[22] H. Shuai, L. Bin, N. Suman, G. H. William, and
G. Ramesh. PUMA: Programmable UI-automation for
large scale dynamic analysis of mobile apps. In
MobiSys, pages 204–217, 2014.

[23] Soot Analysis Framework. http://www.sable.mcgill.
ca/soot.

[24] P. Tramontana. Android GUI Ripper.
wpage.unina.it/ptramont/GUIRipperWiki.htm.

[25] Y. Wei, R. P. Mukul, and X. Tao. A grey-box

approach for automated GUI-model generation of
mobile applications. In FASE, pages 250–265, 2013.

[26] C. Wontae, N. George, and S. Koushik. Guided GUI
testing of Android apps with minimal restart and
approximate learning. In OOPSLA, pages 623–640,
2013.

[27] S. Yang. Static Analyses of GUI Behavior in Android
Applications. PhD thesis, Ohio State University, Sept.
2015.

[28] S. Yang, D. Yan, and A. Rountev. Testing for poor
responsiveness in Android applications. In MOBS,
pages 1–6, 2013.

[29] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev.
Static control-flow analysis of user-driven callbacks in
Android applications. In ICSE, pages 89–99, 2015.

[30] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and
A. Rountev. Static window transition graphs for
Android. In ASE, pages 658–668, 2015.

[31] P. Zhang and S. Elbaum. Amplifying tests to validate
exception handling code. In ICSE, pages 595–605,
2012.

