
Introducing Differential Privacy Mechanisms for Mobile App
Analytics of Dynamic Content

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Sufian Latif

Graduate Program in Computer Science and Engineering

The Ohio State University

2021

Dissertation Committee:

Atanas Rountev, Advisor

Raef Bassily

Michael D. Bond

c© Copyright by

Sufian Latif

2021

Abstract

Mobile app analytics gathers detailed data about millions of app users. Both customers

and governments are becoming increasingly concerned about the privacy implications of

such data gathering. Thus, it is highly desirable to design privacy-preserving versions of

mobile app analytics. We aim to achieve this goal using differential privacy, a leading

algorithm design framework for privacy-preserving data analysis.

We apply differential privacy to dynamically-created content that is retrieved from a

content server and is displayed to the app user. User interactions with this content are

then reported to the app analytics infrastructure. Unlike problems considered in related

prior work, such analytics could potentially convey a wealth of sensitive information—

for example, about an app user’s political beliefs, dietary choices, health conditions, or

travel interests. To provide rigorous privacy protections for this information, we design a

differentially-private solution for such data gathering.

Our first contribution is a differentially-private scheme for mobile app analytics of

such content. We first present a conceptual design for this data collection. Since existing

approaches cannot be used to solve this problem, we develop a new design to determine

how the app gathers data at run time and how it randomizes it to achieve the differential

privacy guarantee. We then instantiate this design for Android apps that use Google Firebase.

This approach keeps privacy logic separate from the app code, and uses code rewriting

to automate the introduction and evolution of privacy-related code. Finally, we develop

ii

techniques for automated design space characterization. By simulating different execution

scenarios and characterizing their privacy/accuracy trade-offs, our analysis provides critical

pre-deployment insights to app developers. Our experimental evaluation demonstrates that,

with sufficient number of app users, high-accuracy frequency estimates can be obtained

using the proposed techniques.

The second contribution of this work is a refined version of the above data collection.

Our goal now is to ensure that information about which items were retrieved by the app is

not shared with the analytics server, since this information could convey sensitive knowledge

about the user. To achieve this, we need a randomization scheme which operates without

knowledge of the entire set of content items that were produced (or will be produced in the

future) by the content server. We design a randomization approach which maps each item

into a smaller pre-defined domain, using a well-known hashing-based data summarization

approach referred to as count sketch. We next develop a technique for efficient randomization

of the count sketch data, by randomizing the accumulated contributions of different events

rather than randomizing each of the events separately. Our evaluation shows that, despite the

mapping to a hashing-based data structure which in general may reduce accuracy, frequency

estimates can still be obtained with high accuracy, especially for items with high frequency.

The third contribution is a generalization of the previous contribution, where the data

collection technique using a count sketch is explored under variable space budgets. The

effect of space constraints on the count sketch mechanism is observed for individual content

items as well as for the pairs of items reported by the users. We provide a characterization

study of designing differentially-private sketching data structures for frequent items and

itempairs. The experimental evaluation of the study demonstrates the trade-off between

space and accuracy of the scheme.

iii

To my family and friends

iv

Acknowledgments

This work could not be completed without the support and assistance from a number of

individuals and organizations.

First and foremost, I would express my sincerest gratitude towards my advisor, Prof.

Atanas Rountev. This dissertation would not have been possible without his support,

guidance and patience. I consider myself fortunate to have him as my mentor, and I could

not ask for a better supervisor for my PhD.

I would also like to thank Prof. Raef Bassily and Prof. Mike Bond for being in my

candidacy and dissertation committees. Also thanks to the Department of Computer Science

and Engineering of The Ohio State University, for the continuous support throughout my

stay here.

I have received immense help from the members of the PRESTO research group: Yu

Hao, Yan Wang, Haowei Wu, and of course Hailong Zhang. They helped me in numerous

ways since the first day in the lab till the end.

I am grateful to my family– my mother Sufia Khatun, my father Abdul Latif Molla,

my sister Shaon Sharmin, and my brother-in-law Khalid Hussain. Their love, support, and

sacrifices paved the path of my life - not just up to this point, but also into the future. I

should also mention my niece Nameera Nurjahan, as I missed to be with her when she grew

up from a toddler into a wonderful kid while I was away. A special thanks goes to my wife

Swagota Islam for her love and patience.

v

Last but not least, I would like to thank the Bangladeshi graduate students of OSU. This

community created a family outside my family, which turned Columbus into a home away

from home.

The material presented in this dissertation is based upon work supported by the National

Science Foundation under Grant CCF-1907715. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

vi

Vita

April 2012 .B.Sc., Computer Science and Engineering,
Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh.

Publications

Research Publications

Yu Hao∗, Sufian Latif∗, Hailong Zhang, Raef Bassily, and Atanas Rountev. Differential
Privacy for Call Chain Coverage Analysis of Deployed Software (*co-leads with equal
contributions). In European Conference on Object-Oriented Programming (ECOOP), July
2021.

Hailong Zhang, Yu Hao, Sufian Latif, Raef Bassily, Atanas Rountev. Differentially-Private
Software Frequency Profiling Under Linear Constraints. In Object-Oriented Programming,
Systems, Languages and Applications, November 2020.

Sufian Latif, Yu Hao, Hailong Zhang, Raef Bassily, and Atanas Rountev. Introducing
Differential Privacy Mechanisms for Mobile App Analytics of Dynamic Content. In IEEE
International Conference on Software Maintenance and Evolution, September 2020.

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev. Differentially-Private
Control-Flow Node Coverage for Software Usage Analysis. In USENIX Security Sympo-
sium, August 2020.

Hailong Zhang, Yu Hao, Sufian Latif, Raef Bassily, and Atanas Rountev. A Study of Event
Frequency Profiling with Differential Privacy. In ACM SIGPLAN International Conference
on Compiler Construction, February 2020.

vii

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev. Introducing Privacy in
Screen Event Frequency Analysis for Android Apps. In International Working Conference
on Source Code Analysis and Manipulation, September 2019.

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev. Differentially-Private
Software Analytics for Mobile Apps: Opportunities and Challenges. In International
Workshop on Software Analytics, November 2018.

Fields of Study

Major Field: Computer Science and Engineering

Studies in:

Programming Language and Software Engineering Prof. Atanas Rountev
Machine Learning and Data Mining Prof. S. Parthasarathy
Security and Privacy Prof. R. Bassily

viii

Table of Contents

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Tables . xii

List of Figures . xiv

1. Introduction . 1

1.1 Overview and Outline . 2

2. Background . 5

2.1 Mobile App Analytics . 5
2.1.1 Example . 7

2.2 Differential Privacy . 8

3. Introducing Differential Privacy Mechanisms for Mobile App Analytics of
Dynamic Content . 11

3.1 Introduction . 11
3.1.1 Challenges . 12
3.1.2 Contributions . 13

3.2 Problem Definition and Solution Design 14
3.2.1 Problem Statement . 14
3.2.2 Threat Model . 17

ix

3.2.3 Design of a Differentially-Private Scheme 17
3.2.4 Limitations . 20

3.3 Implementation for Firebase Apps . 21
3.3.1 Overview . 22
3.3.2 Code Instrumentation . 24
3.3.3 Pre-Deployment Characterization of Accuracy 25

3.4 Experimental Evaluation . 27
3.4.1 Study Subjects . 27
3.4.2 Simulating User Behavior . 28
3.4.3 Accuracy of Frequency Estimates 29
3.4.4 Precision and Recall for Hot Items 31
3.4.5 Effects of Content Similarity on Accuracy 34

3.5 Summary . 36

4. Stronger Privacy for Dynamic Content in App Analytics via Randomized Sketches 37

4.1 Challenges and Contributions . 38
4.2 Background . 40
4.3 Randomized Count Sketch for Dynamic Content Frequencies 41

4.3.1 Count Sketch Without Privacy 42
4.3.2 Count Sketch With Privacy . 45
4.3.3 Efficient Construction of the Randomized Local Sketch 47

4.4 Experimental Evaluation . 50
4.4.1 Synthesizing User Data . 50
4.4.2 Efficiency of Optimization using Binomial Distribution 50
4.4.3 Accuracy of Frequency Estimates 51
4.4.4 Precision and Recall for Hot Items 57
4.4.5 Effects of Sketch Size on Accuracy 58

4.5 Summary . 62

5. Differentially-Private Analysis of Frequent Items and Frequent Itempairs Using
Randomized Sketches . 63

5.1 Analysis of Frequent Items . 64
5.1.1 Characterization Study of Sketch Size and Shape 64
5.1.2 Sketch Shape under Space Constraints 65

5.2 Analysis of Frequent Itempairs . 67
5.2.1 Design of LDP Analysis of Frequent Itempairs 68
5.2.2 Selecting Sketch Size and Shape 71

5.3 Experimental Evaluation . 72
5.3.1 Analysis of Frequent Items . 72
5.3.2 Analysis of Frequent Itempairs 73

x

5.3.3 Summary of Experimental Evaluation 81

6. Related Work . 83

7. Conclusions . 86

Bibliography . 88

xi

List of Tables

Table Page

3.1 Study subjects . 28

4.1 Average time taken (in seconds) to count all events in Ei for a user with
ε = ln(9) . 51

5.1 Number of all content items and number of sketch rows/columns for 256Kb
space budget. 67

5.2 Number of possible pairs constructed from the estimated hot items and the
number of sketch rows/columns for a space budget of 4Mb. 72

5.3 Number of estimated hot items, and relative error, precision and recall of
identification of estimated hot items with a 256Kb space budget and 1000
users. 73

5.4 Number of estimated hot items, and relative error, precision and recall of
identification of estimated hot items with a 256Kb space budget and 10000
users. 74

5.5 Number of true and estimated hot pairs, and relative error, precision and
recall of identification of estimated hot pairs with a 4Mb space budget and
1000 users. 76

5.6 Number of true and estimated hot pairs, and relative error, precision and
recall of identification of estimated hot pairs with a 4Mb space budget and
10000 users. 77

5.7 Number of true and estimated hot pairs, and relative error, precision and
recall of identification of estimated hot pairs with a 16Mb space budget and
1000 users. 78

xii

5.8 Total number of itempairs reported over 1000 users. 78

5.9 Relative error, precision and recall for 1000 users of shipmate with various
sketch sizes and no randomization. 81

5.10 Relative error, precision and recall for 1000 users of shipmate with various
sketch sizes and randomization for ε = ln(9). 81

xiii

List of Figures

Figure Page

2.1 Code derived from the cookbook app. 7

3.1 Data collection using Firebase, without differential privacy. 16

3.2 Data collection using Firebase, with differential privacy. 18

3.3 Accuracy of frequency estimates. Shown are the mean values of the relative
error from 30 runs, together with the 95% confidence interval. 30

3.4 Precision of identification of hot items. 32

3.5 Recall of identification of hot items. 33

3.6 Accuracy for high-similarity and low-similarity subsets of users 35

4.1 Count sketch illustration, with m = 8 and t = 3 44

4.2 Randomized Count sketch illustration, with ε = ln(3), m = 8 and t = 3 . . . 46

4.3 Accuracy of private count sketch over items retrieved by all users (∪iCi). . . 52

4.4 Accuracy of private count sketch over items observed by all users (∪iEi). . . 54

4.5 Accuracy over hot items: those with estimated frequency ≥ 10% of n. . . . 55

4.6 Accuracy of private count sketch for 10000 users over three sets of items. . 56

4.7 Accuracy of frequency estimation vs the scheme defined in Chapter 3. . . . 57

4.8 Precision of identification of hot items. 59

xiv

4.9 Recall of identification of hot items. 60

4.10 Comparison of different numbers of sketch columns, with 10000 users. . . . 61

5.1 Relative error of frequency estimates over the set of estimated hot items for
app apartmentguide, with 1000 and 10000 users and different numbers of
sketch rows and columns. 65

5.2 Workflow for determining the most frequent itempairs. 69

5.3 Precision and recall of frequency estimates of the estimated hot items under
a space budget of 256Kb. 75

5.4 Precision and recall of frequency estimates of the estimated hot pairs under
a space budget of 4Mb. 79

5.5 Precision and recall of frequency estimates of the estimated hot pairs under
space budgets of 4Mb and 16Mb. 80

xv

Chapter 1: Introduction

Android apps commonly use app analytics infrastructures provided by companies such as

Google and Facebook. For example, Google Firebase [27] is used by 48% of the thousands

of apps investigated in a recent study [21]. Such analytics machinery gathers a wealth of

data about the app user, typically without clarity or guarantees on the intended use of this

data. Millions of app users are regularly subjected to such poorly-understood/regulated data

gathering and analysis. Powerful data mining can be applied to this data and to other sources

of information about the same user, giving significant powers of inference and learning

to entities whose intentions are unclear at best and malicious at worst. Not surprisingly,

both customers and governments are becoming increasingly concerned about the privacy

implications of such widespread data gathering.

In this technological and societal context, a promising direction for research and practice

is to design privacy-preserving data gathering. While many mechanisms have been pro-

posed to achieve this goal, in this work we focus on differential privacy [17]. This theoretical

approach has emerged as a leading algorithm design framework for privacy-preserving data

analysis, due to its rigorous privacy definitions, extensive body of powerful algorithmic solu-

tions, and a number of practical applications in industry and government. With differential

privacy, useful statistics can be collected about a population, without revealing details about

any individual member of the population. These privacy protections are achieved by adding

1

random noise to the raw data, and reporting and analyzing only this perturbed data. This

approach is appealing as it provides well-defined probabilistic guarantees about the privacy

protection of individual user’s data, even in the presence of unknown additional data about

this user, and regardless of any powerful and unanticipated statistical analyses that may be

applied to the data by adversarial entities.

1.1 Overview and Outline

The goal of this dissertation is to study several problems related to differentially-private

mobile app analytics. We aim to formulate these novel problem definitions as well as design

and evaluate effective and efficient solutions for them. Next, we present the overview and

outline of this dissertation.

Background. Chapter 2 provides necessary background on mobile app analytics. In

particular, we focus on the key distinction between app-specific data and dynamic user-

specific data, and argue that user-specific data is more revealing and thus a natural target

for privacy-protection mechanisms. We then describe briefly the key ideas of differential

privacy and illustrate them with a classic exemplar problem related to frequency estimation.

Privacy for dynamic content in mobile app analytics. Chapter 3 defines our first prob-

lem related to mobile app analytics. We consider a scenario where dynamic content items

are retrived by an app and the user interacts with some subset of these items. This scenario is

motivated by our studies of a number of real-world Android apps, whose operation follows

this pattern. We then formulate the problem of differentially-private data collection to gather

the population-wide frequencies of such events. We then define a data randomizer that

achieves the differential privacy guarantees. To achieve ease of practical use, we propose

2

code rewriting techniques to introduce the privacy-preserving code into the code of an app

that already uses Google Firebase. The rewriting introduces calls to our run-time wrapper

around Firebase libraries. This makes it easy to add the privacy-related functionality to an

existing app and to evolve it with the evolution of the app. Finally, we develop techniques to

characterize the space of tunable parameters for the approach. We aim to provide insights

to app developer who deploy our approach, by simulating different execution scenarios

and characterizing the resulting trade-offs between privacy and accuracy. Our experimental

evaluation demonstrates that, with sufficient number of app users, high-accuracy frequency

estimates can be obtained using the proposed techniques.

Stronger privacy via count sketch. Chapter 4 presents a refined version of the above

data collection. The approach from Chapter 3 shares with the analytics server the set

of items that were retrieved by a user’s app. In some scenarios this could leak sensitive

information—for example, that the user engaged with the app in a certain time period, or

that that particular user-defined searches of content were initiated to retrieve the data from

the content server. Our next goal is to ensure that information about retrieved items is

not shared with the analytics server. This requires a randomizer which operates without

knowledge of the entire set of content items that were produced (or will be produced in the

future) by the content server. To solve this problem, we design a randomization approach

which maps each item into a smaller pre-defined domain, using a well-known hashing-based

data summarization approach referred to as count sketch. To randomize the count-sketch

data, one could randomize each individual contribution to the sketch, which occurs every

time an event is observed. However, this approach has high run-time cost. Instead, we

propose an efficient approach which first accumulates all contributions to the sketch, and

3

then randomizes the result by drawing random values from the Binomial distribution. We

evaluated these techniques on data from the same Android apps that were used in the

experimental evaluation from Chapter 3. Despite the expected loss of accuracy due to the

use of the hashing-based count sketch, our results indicate that frequency estimates can still

be obtained with high accuracy, especially for items with high frequency.

Analysis of frequent items and frequent itempairs. For real-world deployment of the

data collection described in Chapter 4, there are limitations on the amount of data that can

be transferred from a user to the analytics server. In Chapter 5 we consider the design of

differentially-private sketching under a given space budget for the sketching data structure.

This design is explored for the analysis of frequent items described in Chapter 4. In addition,

we consider the problem of identifying pairs of frequently co-occurring content items, which

is an instance of the more general problem of frequent itemset mining [3]. We present

a characterization study that provides insights needed to design an effective scheme for

differentially-private sketching data structures for frequent items and itempairs. Based on

the results of this study, we propose a design for such frequency analysis under given space

constraints for the sketches. Finally, we present an experimental evaluation of the proposed

design and identify its intrinsic trade-offs between space and accuracy.

4

Chapter 2: Background

2.1 Mobile App Analytics

Developers of Android apps can use several analytics infrastructures to record and

analyze run-time app execution data. Currently the most popular such infrastructure is

Google Firebase (“Firebase” for short) [27]. Based on recent statistics of thousands of

popular apps, Firebase is used by 48% of the analyzed apps [21]. We focus our work on

Firebase, but the core techniques we develop also apply to other app analytics frameworks

such as Facebook Analytics [22] and Flurry [42]. In the following discussion we consider

event frequencies, which are the most basic and popular form of mobile app analytics

provided by Firebase and similar infrastructures.

There are two broad categories of data that are collected via app analytics. One category

is app-specific data. One simple example of such data are events of the form “the app user

has viewed screen s” where s is a structural element of the app (e.g., an Android activity).

The set of all such possible events is known ahead of time, before the app is distributed to

users. Frequencies of such events, gathered over a large number of app users, can help the

app developers understand what are the most common features of the app, and how users

typically navigate through app functionality.

5

A second category of data—the one studied in our work—is dynamic user-specific data.

Such data is not known ahead of time before app deployment; it is dynamically created

over time and the user’s interactions with it are logged by mobile app analytics. Such data

is much more revealing. For example, consider the infowars app which was included as

a subject in our studies. The dynamic content here is a set of news articles posted at the

controversial infowars.com website. Each article has a unique publicly-available identifier

inside the app. The articles available at the website changes over time. When the app user

views an article retrieved from the website, and clicks the “Favorite” button, an event is

sent to Firebase to log this action. This event includes the identifier for the article. Such

information can be used to infer the political inclinations of the specific app user being

tracked.

As another example, app cookbook, which was also used in our study, allows users to

browse and view a large collection of recipes. The content items are the recipes. When the

user selects a recipe to view its details, this event is sent to Firebase together with the recipe

identifier. By observing such information, it is possible to infer information about user’s diet

(e.g., vegetarian or gluten-free) and underlying health conditions (e.g., high blood pressure,

which is correlated with low-sodium recipes). As a last example, consider two of the other

apps we studied: reststops and opensnow. The first one displays details about rest stops

along highways. The second one shows information about skiing locations. Using Firebase,

the apps collect the ids of viewed content items. This information could potentially be used

to infer the user’s travel interests and plans.

Firebase does have high-level guidelines to avoid collecting user-identifiable informa-

tion [25]. However, there is no enforcement of such guidelines. Even if such protections

were rigorously defined and enforced, the “leaking” of user-specific information still makes

6

class SparkRecipesBaseActivity ... {
FrebaseAnalytics f;
public void onCreate (...) {
...
f = FirebaseAnalytics.getInstance(this);

}
public void DoFireBaseSelectContent(String id) {
Bundle b = new Bundle();
b.putString(FirebaseAnalytics.Param.ITEM_ID ,id);
f.logEvent(FirebaseAnalytics.Event.SELECT_CONTENT ,b);

}
}
class MainFragment ... {
public void ProcessMainScreenData(String data) {
...
JSONObject jsonRecipe = ...;
long id = jsonRecipe.getLong("recipe_id");
...

}
}

Figure 2.1: Code derived from the cookbook app.

it possible to construct various privacy attacks by unethical business entities, malicious

actors, disgruntled employees, or government agencies. For example, techniques such as

anonymization cannot provide strong privacy guarantees and are susceptible to privacy at-

tacks that utilize additional sources of information external to the anonymized data collection

(e.g., [39, 40]).

2.1.1 Example

Figure 2.1 shows a code example derived and simplified from the cookbook app. Class

SparkRecipesBaseActivity has a field f which stores a reference to a FirebaseAnalytics

object. When a “select” event happens on a recipe, the code calls DoFireBaseSelectContent

7

and provides the string id of this recipe as parameter id. Inside the method, a bundle is

created to store this id, associated with a pre-defined constant ITEM_ID defined by Firebase.

The call to logEvent then sends an event of type “select content” to the Firebase analytics

server. The recipe id is provided as part of the logged event. Note that all recipe ids provided

by the content server are public knowledge and are easily mapped to the actual recipe details.

Many recipes are retrieved from the content server and their summaries/images are dis-

played in the app, but only a subset of these are selected by the user for detailed view and are

recorded by Firebase via logEvent. Specifically, the recipe summaries and images are dis-

played in a ListView (Android’s GUI widget for a list), and clicking a list item displays the

details of the recipe and records the “select” event by calling DoFirebaseSelectContent.

The data retrieval from the content server is done via HTTP. The actual data uses JSON,

as illustrated by method ProcessMainScreenData in Figure 2.1. The parameter of this

method is the string representation of the recipe data, obtained via HTTP from the server.

The information about individual recipes is retrieved from this data, including the recipe id.

This information is then used to populate GUI widgets that display recipe summaries and

images.

2.2 Differential Privacy

Differential privacy [18] is a rigorous theoretical approach that allows systematic design

of privacy-preserving data collection. Both theoretical foundations [17] and practical

applications in industry/government [4, 13, 20, 54] have been studied extensively in the last

decade. Intuitively, differentially-private data gathering and analysis aim to provide accurate

estimates of population-wide statistics, while “hiding”, in a well-defined probabilistic sense,

data from individuals who are members of this population. As a simple example, with

8

differential privacy, it becomes possible to estimate accurately the total number of app users

who have labeled a certain news article as favorite, while it is not possible to assert with

high certainty whether any particular app user has done so.

Example. We illustrate this approach with a key exemplar problem that has been studied

extensively [5, 20, 55]. (The next section describes in detail the more general problem we

solve, and the threat model assumed by that solution.) Consider some publicly-known data

dictionary V . Suppose we have n users u1, . . .un, and each user ui has a single private data

item vi ∈ V . The problem is to determine, for every v ∈ V , how many users ui have vi = v.

We would like to estimate the population-wide frequency f (v) of each v, following the

so-called model of local differential privacy. In this model, any data shared by the user is

considered to be potentially-abused by external observers, including the analytics server.

The differential privacy scheme perturbs the local information of each user. If this

perturbation is designed correctly, malicious actions of the analytics server or the clients

of this server cannot break the differential privacy guarantee (this guarantee is described

shortly). A differentially-private version of this analysis will randomize the local item vi of

user ui using a local randomizer R : V → P(V). Here P(. . .) denotes the power set. Thus,

the user reports a set of events R(vi)⊆ V to the analytics server. After such data is collected

from all users, for every v ∈ V the server computes |{i : v ∈ R(vi)}| and uses it to estimate

the true frequency |{i : v = vi}|.

The randomizer creates an output from which it is difficult to determine, in a probabilistic

sense, what was the randomizer’s input. For every possible randomizer output z⊆ V and

for any two v1 and v2 from V , the probability that R(v1) = z is close to the probability that

R(v2) = z. Thus, anyone observing z cannot distinguish with high probability the case where

the real data was v1 from the case where the real data was v2. Such indistinguishability is the

9

essence of differential privacy. In the above definition, two probabilities are considered close

to each other if their ratio is bounded from above by eε , where ε is a parameter defining

the strength of indistinguishability. Values of ε in prior work range from 0.01 to 10 [32].

In related work that uses the style of randomization we employ, exemplar values are ln(3),

ln(9), and ln(49) [20, 55]; for example, the last two values are used in the first stage of a

two-stage randomizer [20]. Larger values of ε weaken the indistinguishability guarantee,

but increase the accuracy of estimates since the randomizer needs to add less noise to ensure

this guarantee.

A well-known approach to meet the requirements of this definition is the following

[20, 55]. The local data of user ui is represented as a bitvector, with one bit for each element

of V . For the item vi held by ui, the corresponding bit is 1; the rest of the bits are 0. The

randomizer takes this bitvector as input and for each bit, independently from the other

bits, inverts the bit with probability 1/(1+ eε/2). The resulting perturbed bitvector is the

output of the randomizer and is a representation of set R(vi). This set is shared with the

analytics server. When the analytics server receives all user data R(vi), it computes a global

frequency h(v) = |{i : v ∈ R(vi)}| for every v. This frequency is then calibrated to account

for the presence of noise over all n users. This produces an unbiased estimate of the true

frequency of v:
(
(1+ eε/2)h(v)−n

)
/(eε/2−1). A key observation behind this approach

is the following: when data is collected from a large number of users, the individual noises

cancel each other out in a probabilistic sense, leaving a final estimate that is close to the

actual value being estimated.

10

Chapter 3: Introducing Differential Privacy Mechanisms for Mobile

App Analytics of Dynamic Content

3.1 Introduction

As discussed in Chapter 2, a common use of mobile app analytics is to track frequencies

of fixed events—for example, views of GUI screens— which are then reported to the

analytics server. The set of such events is fixed ahead of time, before app deployment, and

is the same for all app users. Some prior work has considered privacy-preserving designs

for such data gathering [58, 59, 61].

However, there is an even more important category of data that has not been considered

in any prior work. In this scenario, dynamically-created content at a content server is

retrieved by the app and displayed to the app user. User interactions with this content are

then reported to the mobile app analytics infrastructure (i.e., to an analytics server), and

ultimately to the app developers. Unlike fixed events in which app structural information

is typically gathered, here content-related events can be used to attempt inferences about

the app user. For example, as illustrated earlier in Chapter 2, this type of analytics could

potentially convey a wealth of information about a user’s political beliefs, her dietary choices,

her health conditions, or her travel interests. Furthermore, this data could be combined with

widely-available data from other sources (e.g., public government databases; consumer data

11

from business analytics companies) to draw even more powerful inferences about the user.

Note that such inferences could be attempted not only by unknown privacy adversaries, but

also by the analytics server and the app developers themselves.

Privacy protection for such content data is arguably more important than protecting fixed

events such as GUI screen views. Consider this question: which is more revealing, (1) that

the app user tapped a GUI button to label an article as “favorite”, or (2) that the user did

this for a particular article, uniquely identifiable by a public article id, in which the topic

was a sensitive subject such as anti-government protests? Would an app user be equally

comfortable with (1) or (2) being shared with the unknown developers of some app and the

analytics servers under the control of Google? We believe that the second scenario is much

more sensitive, but no existing work has considered how to add privacy protection in mobile

apps that gather such data.

Problem statement. Our goal is to design a differentially-private solution for such data

gathering, in a way that (1) preserves the privacy of individual app users, while at the same

time (2) provides accurate statistics over the entire population of users. We consider this to

be a software transformation problem: given an app that already uses mobile app analytics

of dynamic content, how should it be modified to introduce differential privacy protections?

3.1.1 Challenges

Challenge 1. Unlike differentially-private data collection for a pre-defined set of fixed

events, the problem we consider has two new features that have not been addressed in

existing work. First, the content items retrieved from the content server by one app instance

could be different from the ones retrieved by another app instance. Thus, each individual

app user locally observes and interacts with a different set of items, compared to other users.

12

Further, the local behavior of an app interleaves two types of state changes: (1) content

retrieval from the content server, and (2) user interactions with this content, resulting in

event reports to the analytics server. Existing designs for differentially-private data analysis

do not handle these two novel aspects of the collection process.

Challenge 2. There could be substantial effort to introduce and maintain the code that

implements the differential privacy mechanisms. Given an app with mobile app analytics,

the introduction of such privacy-preserving code presents a software evolution challenge.

When such functionality is introduced for the first time, this may require code changes in

various parts of the program, at places where analytics-related code already exists. As the

app evolves, changes to privacy-preserving code may need to be introduced to keep it “in

sync” with the corresponding analytics code. Such code changes require programmer effort

and are error prone.

Challenge 3. Effective integration of differential privacy requires pre-deployment analysis

and calibration of a fundamental trade-off: accuracy vs privacy. Stronger privacy guarantees

require more random noise, which leads to lower accuracy of population-wide statistics.

For an app developer who introduces differentially-private data gathering in her app, it is

important to characterize and tune the effects of various design choices to achieve practical

trade-offs, and to do this with little effort.

3.1.2 Contributions

Our work makes the following contributions to address the challenges outlined above.

Contribution 1. We propose a new differentially-private data analysis for dynamic content

in mobile apps (Section 3.2.3). The developed conceptual design includes an abstract

problem statement and a mathematical definition of how the data is gathered and processed

13

in the app and in the analytics server. The approach handles both problems outlined above:

it accounts for the differences in local information for each app user, and incrementally

handles the interleaving between content retrieval and user-triggered events on this content.

Contribution 2. As a proof of concept, we develop an instantiation of this design for

Android apps that use Google Firebase (Section 3.3.1). Our approach keeps all differential

privacy logic separate from the original app code, and uses code rewriting to automate

the introduction and evolution of privacy-related code. The rewriting introduces calls to a

separate run-time layer which wraps the Firebase analytics libraries. The resulting solution

makes it easy to add differential privacy functionality to an existing app and to evolve it

with the evolution of the app.

Contribution 3. We develop techniques for automated design space characterization

(Section 3.3.3). By simulating different execution scenarios and characterizing the resulting

privacy/accuracy trade-offs, our analysis provides critical pre-deployment insights to app

developers.

3.2 Problem Definition and Solution Design

3.2.1 Problem Statement

A content server (e.g., a news server, a recipe server, a live events server) continuously

delivers dynamic content. In our model, this content is a stream of items, each identified

by a unique id. Without loss of generality, we will represent the stream as a sequence of

integer ids c1,c2, . . . where c j is the integer id of the j-th content item. The app running on

the device of user ui interacts with the server and retrieves a subset of these ids c j. This

retrieval could be done, for example, based on time of content publishing (e.g., upon startup,

the infowars app retrieves the ids and titles of the latest 50 news articles) or based on preset

14

user preferences. The set of content items retrieved by user ui will be denoted by Ci and will

be referred as the local dictionary of user ui.

When the user interacts with the content displayed by the app, user actions can trigger

analytics events (e.g., making “favorite” a news article with id c, or viewing the details

of a recipe with id c). To simplify the discussion, we will consider a single type of event;

generalizing to multiple event types is trivial. We will abstract the set of app-user-triggered

events via a subset Ei ⊆Ci of the local dictionary. If c ∈ Ei, this means that an event was

triggered by the app user on content item c. For simplicity, we will often use c to denote

both the content item and the event that occurred on it.

Frequency analysis. For every item c published by the server, our goal is to estimate the

number of users that triggered an event on c: that is, the frequency f (c) = |{i : c ∈ Ei}|.

Such frequency information is useful to the content provider to understand how the user

population interacts with published content, for example, which items are most popular. In

particular, such data collection is a key functionality of the Android apps we have studied

and used for our evaluation: given some set of content items retrieved from a content

server, the app reports events related to these items to the Firebase analytics server. App

developers (working on behalf of content providers) can then use standard Firebase tools

to obtain histograms of this data. Another motivation for considering this problem is that

the underlying solution techniques play a key role in other analyses: e.g., heavy hitters [5],

estimates of distributions [16], and clustering [41]. Future work could apply these more

sophisticated techniques to privacy-preserving analysis of dynamic content in mobile app

analytics.

Example. The process described above is illustrated in Figure 3.1. Here V = {1, . . . ,9}.

The figure shows the set Ci of content item ids retrieved by each user; for example, C2 =

15

User 1

User 2

User n

Firebase
Analytics

Server
Content
Server

1 3 4 6 7 9

1 2 4 5 7 9

2 4 5 7 8 9

2 4 9

4 8

App
Developer

1 6

Figure 3.1: Data collection using Firebase, without differential privacy.

{1,2,4,5,7,9}. Each user’s actions on these items results in a set of events Ei ⊆Ci, each of

which is associated with a unique content item id; for example, for u2 we have E2 = {2,4,9},

shown in gray in the figure. These are shared with Firebase and used to compute population-

wide frequencies.

Without differential privacy, sets Ei are simply reported to the analytics server and

then used to compute the frequencies f (c) directly. With differential privacy, we introduce

randomization: for each c ∈Ci (i.e., every element c of the local dictionary of ui), the goal

is to provide probabilistic indistinguishability between two conclusions: (1) c ∈ Ei and (2)

c /∈ Ei. In other words, for every local content item c, a privacy adversary should not be able

to tell whether the item participated in an event or not. This will be achieved with a local

randomizer R such that R(Ei) is reported to the analytics server, as opposed to the raw data

Ei. Using the set of all reported R(Ei), the analytics server produces estimates f̂ (c) of the

real frequencies f (c). This estimated frequency f̂ (c) may sometimes turn out to be negative

16

or sometimes larger than the number of users n. In such cases, any negative estimates of

f̂ (c) are set to 0, and any estimates of f̂ (c) larger than n are set to n.

3.2.2 Threat Model

The design and implementation of the differentially-private scheme are fixed before the

data collection starts and are publicly known to app users and privacy adversaries. This

includes knowledge of R and the parameter ε used by it; as typical in differential privacy,

the same ε is used for all users. A key assumption is that the app code faithfully implements

the design: it performs the randomization as expected, sends the randomized data to the

expected analytics server, and does not leak the raw private data in any other way. This can

be achieved, for example, by providing open-source implementations or by code certification

performed by government agencies or privacy experts. The content server and the analytics

server are not trusted. In particular, the content server can track the set of items Ci delivered

to a particular user ui, or even provide some specific content chosen as part of a privacy

attack. Thus, the approach assumes that for each user ui, the set Ci of retrieved items is

publicly known to any malicious party. The privacy guarantee is with respect to the subset of

events Ei ⊆Ci that occurred locally on the user’s device. Ei remains private under this model,

as defined precisely below. The data shared with the analytics server is R(Ei). From this data

the potentially-malicious analytics server, even if colluding with the content server and even

if using additional unknown data sources about this user, cannot construct a high-confidence

guess as to whether any particular c ∈Ci is an element of Ei or not.

3.2.3 Design of a Differentially-Private Scheme

To achieve the desired privacy, we use the following randomizer design. The private

local data of user ui is represented as a a bitvector of length |Ci|. Each bit corresponds to

17

Firebase
Analytics

Server
Content
Server

1 3 4 6 7 9

1 2 4 5 7 9

2 4 5 7 8 9

User 1

User 2

User n

Frequency
Estimation

App
Developer

2 5 8 974

1 4 5 7 92

1 4 6 973

1 3 4 6 7 9

1 2 4 5 7 9

2 4 5 7 8 9

Figure 3.2: Data collection using Firebase, with differential privacy.

some c ∈Ci. If c ∈ Ei, the bit is 1; otherwise, the bit is 0. This vector is the input to the

local randomizer. For each bit, independently from all other bits, the randomizer preserves

the bit with probability p = eε/(1+ eε) and inverts it with probability 1− p. This approach

provably provides ε-indistinguishability between any two vectors that differ in a single bit.

Example. The randomization process is illustrated in Figure 3.2. For each user, sets Ci

and Ei are the same as shown earlier in Figure 3.1. In the randomizer input and output,

bits in gray have value 1 and the rest have value 0. Consider, for example, user u2. We

have C2 = {1,2,4,5,7,9}, E2 = {2,4,9}, and R(E2) = {1,4,5,7,9}. In this particular case,

given a bitvector with 1 bits for items 2, 4, and 9, the randomization inverted the bit for item

2. Furthermore, the 0 bits for items 5 and 7 were inverted to 1. The data that leaves the

user’s device and is shared with the analytics server is the bitvector for R(E2).

The privacy protection provided by such randomization can be interpreted as follows.

Suppose the private local data is set Ei ⊆Ci. As discussed earlier, we assume that a privacy

18

adversary knows the local dictionary Ci and the randomizer output R(Ei), e.g., because

the adversary can monitor the traffic to/from the user’s device, or because she controls

the content server and the analytics server. Furthermore, as done in all differentially-

private schemes, we assume that the adversary fully knows how the randomizer is designed,

including the value of ε . This knowledge could be obtained, for example, through reverse

engineering of app code.

Based on this knowledge, what conclusions can the adversary draw about any c ∈Ci?

The indistinguishability property applies in two ways. First, suppose that c ∈ Ei. From the

point of view of the adversary, the probability that the randomizer input was Ei is close to

the probability that the randomizer input was Ei \ {c}; more precisely, the ratio of these

probabilities is bounded by eε . As a second case, now suppose that c /∈ Ei. In this case the

adversary cannot distinguish the case where the randomizer input was Ei from the case where

the randomizer input was Ei∪{c}. Overall, probabilistically the following two conclusions

are indistinguishable from each other: “an event happened on content item c” and “an event

did not happen on content item c”. For example, for any particular news article, it is not

possible to tell with high certainty whether or not the app user marked this article as favorite.

Similarly, for any particular recipe, it is not possible to have high confidence whether the

user did or did not view the recipe details.

All bitvectors for R(Ei), for all users i, are collected by the server. For any c, the number

of all occurrences of c in the reported sets R(Ei) is a biased estimator of the real frequency

f (c) = |{i : c ∈ Ei}|. To obtain an unbiased estimator, additional calibration needs to be

performed as shown by the “Frequency Estimation” step in Figure 3.2. Specifically, for

each c, let nc be the number of sets Ci containing c, and let mc be the number of sets

R(Ei) containing c. The expected value of mc is f (c)p+(nc− f (c))(1− p) where p is the

19

probability to preserve (i.e., not invert) a bit in the randomizer’s operation. Here f (c) times

the randomizers observed a 1 bit for c and preserved it with probability p, and nc− f (c)

times observed a 0 bit and inverted it to a 1 with probability 1− p. Thus, we can estimate

f (c) by f̂ (c) = ((1+ eε)mc−nc)/(eε −1). The accuracy of this estimate depends on the

number nc of users whose local dictionary contains c, as well as on the value of ε . It

is important to characterize the accuracy as a function of concrete values of these two

parameters, as part of pre-deployment tuning of the approach. Later we provide further

details on how to perform this characterization.

3.2.4 Limitations

While this approach achieves differential privacy for the targeted problem, it is important

to understand its limitations. As described earlier, it is assumed that the app code implements

the design correctly and does not leak the private data by other means. If an app developer

ensures this, she can legitimately claim to have privacy-by-design data collection, which is a

significant improvement over the state of practice in mobile app analytics. This not only

makes the software more appealing to users, but it may align with government requirements

for privacy protection. Providers of mobile app analytics infrastructures (e.g., Google and

Facebook) could also benefit: if they collect only randomized data, this provides protection

for them against data breaches or unlawful employee actions.

A second limitation is that we focus on an important but narrow problem: obtaining

frequency estimates for events. This is a core functionality for infrastructures such as

Firebase, but many other interesting analyses could also be considered: for example, user

behavior flow analysis, correlation analysis, clustering, etc. Such techniques require more

sophisticated differential privacy techniques. While our work may provide some building

20

blocks for such techniques, ultimately the question of how to perform differentially-private

mobile app analytics is still open and requires significant follow-up efforts.

Our approach assumes that the local dictionary Ci is publicly known, as the content

server can track the data being retrieved by a particular user. However, this information

itself could be sensitive—for example, it could be based on user settings, profiles, or past

behaviors. In Chapter 4 we discuss refinements of our approach that introduce privacy

protections for the local dictionary as well, for any adversaries that do not collude with the

content server.

We only develop a simplified exemplar implementation of this design for Firebase

(described in the next section). The implementation does not handle the full complexity of

Firebase (e.g., multiple event types) and lacks automated analysis for identification of code

locations for retrieval and logging of dynamic content. Such static analysis and subsequent

automated code refactoring are important targets for follow-up work. In addition, adapting

this approach to other popular app analytics frameworks such as Facebook Analytics is an

open problem.

3.3 Implementation for Firebase Apps

To realize the conceptual design above, we have implemented a proof-of-concept instan-

tiation for Android apps that use Firebase. The implementation considers three kinds of

run-time state changes, and reacts to them via our code instrumentation. In essence, we have

developed an incremental randomizer through a run-time layer that wraps the Firebase APIs

and is called by instrumentation inserted in the app code.

21

3.3.1 Overview

The instrumentation invokes three helper functions defined and implemented by us.

These functions are described in Algorithm 3.1. The details of the actual instrumentation

and how it is inserted will be described in the next subsection.

The first state change is when the Firebase infrastructure is initialized. Function init

provides a high-level abstraction of the initialization of our implementation. We internally

maintain three sets: C is for the local dictionary for this user, E is for the set of events for the

user, and R is for the output of the randomizer. Note that we do not maintain bitvectors, but

the operations on these sets are equivalent to the processing of bitvectors described earlier.

At the end of data collection, C and R are reported to the Firebase server, as described

shortly.

After the initialization, two kinds of run-time state changes can be observed, in inter-

leaved fashion. First, there could be a state change of the form “c is added to C”. This would

happen when a new content item is retrieved from the content server. In our earlier example,

when the app of user u2 retrieves item 4 from the content server, this item is added to local

set C2. This functionality is implemented by retrieve in Algorithm 3.1.

The other state change is of the form “an event is observed on some c ∈C”. Function

event in Algorithm 3.1 handles this state change. The function takes as input the content

item on which the event occurred. As we consider E as a set rather than a multi-set, each such

item c is recorded once by adding it to E and, with probability p, adding it to the randomizer

output set R. Recall that in our conceptual design p is the probability of preserving (rather

than inverting) a bit in the bitvector representing E. We also increment a count of the number

of events that have been observed so far. In our exemplar implementation, when this count

reaches a pre-defined threshold k, the data collection completes and the data is sent to the

22

Algorithm 3.1: Randomization of observed events
1 Function init():
2 C← /0
3 E← /0
4 R← /0
5 num_events← 0

6 Function retrieve(c):
7 C←C∪{c}
8 Function event(c):
9 if c ∈ E then

10 return
11 E← E ∪{c}
12 with probability p, R← R∪{c}
13 num_events← num_events+1
14 if num_events = k then
15 for c ∈C \E do
16 with probability (1− p), R← R∪{c}
17 report C and R

analytics server. This threshold is publicly known, the same for all users, and decided before

data collection starts.

Before C and R are sent to the server, all 0 bits in the conceptual bitvector have to be

considered and possibly inverted. Equivalently, each c ∈C \E should be included in R with

probability 1− p. The resulting sets C and R can then be sent to Firebase item-by-item using

the standard logEvent API.1 As a matter of practical implementation, two new event types

can be used, one for C and one for R, and the items in these sets can be recorded by Firebase

under these artificial event types. The post-processing by the app developer, as shown in

1Alternatively, C could be determined by the content server and then sent by it to the analytics server.
However, this complicates the functionality of the content server and the overall synchronization of data
collection. Sending C from the user to the analytics server is a more practical solution.

23

Figure 3.2, can use the information recorded by Firebase to reconstruct all sets Ci and Ri for

all users i, and then compute the estimates f̂ (c) as described at the end of Section 3.2.3.

3.3.2 Code Instrumentation

From the point of view of software evolution and maintenance, it is desirable to avoid

the introduction of code specific to our differentially-private data gathering. We aim to

easily incorporate our machinery into an existing app via code instrumentation inserted

by a code rewriting tool. The code locations where the instrumentation should be inserted

are defined by a lightweight specification mechanism. For each of the three abstract state

changes described in Algorithm 3.1, the specification describes the corresponding program

points where instrumentation should be inserted.

For example, for the call to logEvent in Figure 2.1, the app developer specifies the

program location of this call. Our code rewriting tool replaces this call with a call to method

event(c) defined in our run-time library, which serves as a wrapper to Firebase. Similarly,

whenever a content item id is introduced for the first time in the app code, as illustrated

by the call to getLong in Figure 2.1, a call to our implementation of retrieve(c) from

Algorithm 3.1 is added by the code rewriting. In the current implementation and experiments,

since we do not have access to the source code of the subject apps, the specification and

instrumentation are at the level of the intermediate representation of the popular Soot tool for

code transformation [50]. This approach keeps all privacy-related logic and code separate

from the app code base and allows easy introduction/evolution of our solution into an

existing app.

24

3.3.3 Pre-Deployment Characterization of Accuracy

Before the app developer releases the differentially-private data gathering as part of

her Firebase app, it is important to characterize the potential loss of accuracy. We have

built infrastructure to assist with this task, and have used it in our own experiments. The

process starts with a test case written by the developer to trigger the relevant content retrieval

and Firebase logging. This test case is used to simulate user actions. To ensure diversity

of behaviors, the test case should include randomization of GUI actions. For example,

our test for the cookbook app scrolls a random distance through the list of recipe photos.

This scrolling triggers retrieval of data from the recipe server, dependent on the amount of

scrolling and the current server state. Then, a random item from the visible portion of the

list is clicked, which triggers logEvent. Repeating these steps during one execution of the

test case produces the set of retrieved items Ci and the set of events Ei. In our experience,

writing such test cases is straightforward, even for someone (like us) who is not familiar

with the app. An app developer can easily create such a test case as a starting point of the

characterization process; in fact, it is likely that similar test cases already exist to support

correctness testing.

The i-th individual execution of the test case produces data for the i-th simulated app

user, for i ∈ {1, . . . ,n}. In our infrastructure, we record the observed sets Ci and Ei in a

database, to allow repeated characterization with different parameter values over the same

data. From this database, an automated script generates accuracy data in the following two

dimensions. First, we generate data for several values of ε . The effects of this parameter

must be studied carefully, to ensure the desired accuracy-vs-privacy trade-offs. Second, we

consider additional synthetic user data. Each run of the test case could take non-trivial time

and thus gathering data for a large number n of simulated users is not feasible. Given all Ci

25

and Ei from test case execution, we create additional user data as follows. Two different

users ui and u j are picked at random. A new user uk is simulated by drawing (|Ei|+ |E j|)/2

random samples from Ei∪E j to construct Ek. Further, Ck is constructed as the union of Ci

and C j. This process is repeated until the desired number of additional users is reached.

In our experiments, we used n = 100 test case executions to create the initial set of 100

simulated users, and then applied this approach to allow experiments with n equal to 1000,

10000, and 100000.

The script measures and reports accuracy by comparing the ground-truth frequencies

f (c) with their estimates f̂ (c). Various metrics could be used for this comparison. In

our experiments we consider one such choice: a normalized version of the L1 distance

(i.e., Manhattan distance) between the frequency vectors: ∑c | f (c)− f̂ (c)|/∑c f (c). Other

choices are certainly possible and easy to implement.

Given this characterization, the app developer could answer various questions. For

example, for some expected number of app users and some targeted accuracy, what value

of ε should be used? This value can be automatically inferred from the simulated data and

embedded in the app with no effort from the developer. As another example, how does

the accuracy change if the real number of users differs from the expected number? As yet

another example, what are the effects on accuracy if data is collected over an extended

period of time and thus local dictionaries do not overlap much across users? (This last

question is discussed further in Section 3.4.5.) By considering these and similar questions,

developers can fine-tune the data collection before releasing/updating the app.

26

3.4 Experimental Evaluation

The privacy-preserving analysis for Firebase Analytics event reporting was done by

analyzing and rewriting 9 apps. All experiments were performed on a machine with Xeon

E5 2.2GHz processor and 64GB RAM. The apps were instrumented with Soot [50] and were

run on Android device emulators. To implement the test cases, we used a Python wrapper [1]

for the Android testing framework UI Automator [26]. Our implementation, subjects, and

data are available at http://web.cse.ohio-state.edu/presto/software.

3.4.1 Study Subjects

We identified a number of popular apps from the Google Play app store that that contain

Firebase Analytics API calls. Based on our understanding of app functionality, obtained

from testing in an emulator and from examination of decompiled code, we selected 9

representative apps that retrieve their contents at run time from some remote server. We

registered these apps to our own Firebase backend project. We also replaced the values

of google_api_key and google_app_id (stored in the app assets as string values) with

corresponding values from this backend project as a quick test to ensure the correct event

reporting from the apps to the Firebase analytics server.

Table 3.1 describes characteristics of the apps and of our run-time apps executions. The

table shows the number of classes and methods in the app code in columns “#Classes” and

“#Methods”. Next, it shows measurements from executing the apps with n = 100 simulated

users, as described in Section 3.3.3. Recall that each such user ui has a local dictionary Ci.

The total number of unique items retrieved from the content server over these users (i.e., the

size of the union of sets Ci) is shown in column “#All items”. Column “Avg #items” contains

the average number of items in the dictionaries Ci. As can be seen, significant amount of

27

http://web.cse.ohio-state.edu/presto/software

App #Classes #Methods All items Avg #items
apartmentguide 1166 6878 1375 391.28
reststops 887 4768 1858 319.16
rent 1167 6881 902 218.29
shipmate 4873 25904 712 319.57
cookbook 620 3026 358 89.91
channels 189 973 294 122.88
infowars 2145 12483 226 50.00
loop 2802 18953 186 92.01
opensnow 3498 21455 168 127.04

Table 3.1: Study subjects

content was retrieved both per user and across all users. The cost of randomization for this

content was negligible, around one millisecond or less per user.

3.4.2 Simulating User Behavior

As described in Section 3.3.3, our infrastructure to characterize the privacy-vs-accuracy

trade-offs uses randomized test cases to gather sets Ci and Ei for i ∈ {1, . . . ,n}. Each test

case is executed in a separate Android emulator and follows a common pattern. It first opens

the app and performs GUI actions to the point when a certain ListView or RecyclerView

widget is shown. This widget’s children widgets correspond to the content items fetched

from the content server. The test case then selects a child widget at random, which triggers

event logging, and then goes back to the list. The test case also scrolls through the list

which causes the fetching of more content. For all apps except infowars, this testing

method created an interleaved sequence of (1) fetching new content to dynamically grow the

dictionary, and (2) reporting events on elements of the current dictionary. App infowars is

slightly different by design: instead of retrieving the data on-the-fly, it loads the 50 newest

28

articles every time the app is opened, so the entire dictionary is built at the beginning of the

test case.

An execution of a test case was terminated when k = 100 events of interest were observed

(as shown in Algorithm 3.1). The infowars app was an exception: it was run to log a

random number of at most 50 events, due to its design. The test case executions were

spread out over several days to diversify the dynamically built dictionaries. Consecutive test

executions for the same app resulted in dictionaries with more elements in common, while

test executions on different days produced dictionaries with less similarity.

3.4.3 Accuracy of Frequency Estimates

Given sets Ci and Ei for 1≤ i≤ n, the construction of all R(Ei) and the computation of

frequency estimates f̂ (c) was performed in 30 independent trials, in order to characterize

the variability of results due to randomizer behavior, with all other parameters being the

same. Over these 30 measurements, we report the mean value as well as the 95% confidence

interval (as suggested elsewhere [24]). In addition to n = 100, we also used n = 1000,

n = 10000, and n = 100000 as described in Section 3.3.3. In related work that uses similar

kind of randomization, typical values for ε are ln(3), ln(9), and ln(49) [20, 55, 58, 59]. We

collected data for all three values of ε .

We use relative error to measure the accuracy of estimated frequencies. This is a

normalized version of the L1 distance between the vector of ground-truth frequencies f (c)

and the vector of the estimated frequencies f̂ (c), where C = ∪iCi:

∑c∈C | f (c)− f̂ (c)|
∑c∈C f (c)

Values close to 0 indicate that the two frequency vectors are similar to each other. In

Figure 3.3, the x-axes show the names of the apps and y-axes show the mean relative error

29

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

er
ro

r

= ln(3)
#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e

er
ro

r

= ln(9)
#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Re
la

tiv
e

er
ro

r

= ln(49)
#users = 100
#users = 1000
#users = 10000
#users = 100000

Figure 3.3: Accuracy of frequency estimates. Shown are the mean values of the relative
error from 30 runs, together with the 95% confidence interval.

30

calculated over 30 runs. The 95% confidence intervals are small and are barely visible on

top of the mean value bars.

3.4.4 Precision and Recall for Hot Items

The relative error is a good measurement of the accuracy of this differentially-private

scheme since it reflects how close the estimated frequencies are to the ground-truth ones.

However, it does not demonstrate how accurately the approach can detect the hot items.

Finding the most popular contents is an important purpose of collecting analytics data. To

determine how accurately this algorithm can detect the most frequent items, we calculated

the precision and recall of the “estimated hot” elements. We computed the sets H and Ĥ of

content items visited by at least 10% of the users, based on the ground-truth and estimated

frequencies respectively. The precision and recall of the estimated hot items are

Precision =
|H ∩ Ĥ|
|Ĥ|

Recall =
|H ∩ Ĥ|
|H|

The average precision and recall calculated over 30 runs are shown in Figures 3.4 and

3.5 with 95% confidence interval.

Summary of results. From these results, the following conclusions can be drawn. With

sufficient number of users, the overall accuracy over all parameter settings and all apps is

quite high. As expected, the worst accuracy is observed for the smallest value of ε , but even

then with 10000 users the error is around 5% or less. With ε = ln(9) and this same number

of users, the error is around 2.5% or less, and with ε = ln(49) the error becomes around 1%.

The same effect can be seen on precision and recall of identification of the most frequent

items. With 10000 users, this scheme can identify the estimated hot items with more than

95% precision and recall for every app.

31

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(3)

#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(9)

#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(49)

#users = 100
#users = 1000
#users = 10000
#users = 100000

Figure 3.4: Precision of identification of hot items.

Larger numbers of users can result in significant increase of accuracy. This reflects the

fundamental property of differential privacy, in which larger data sets allow the noises from

32

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(3)

#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(9)

#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(49)

#users = 100
#users = 1000
#users = 10000
#users = 100000

Figure 3.5: Recall of identification of hot items.

individual randomized contributions to “average out”, leading to more accurate estimates.

Having large numbers of app users is achievable in practice. For example, almost all of the

33

top most popular apps in each Google Play category have at least 10000 installs. In fact,

5 out of the 9 apps included in our study have a number of installs above one million, and

even the least-popular app in our data set has more than 50000 installs.

3.4.5 Effects of Content Similarity on Accuracy

The accuracy of estimates for an item c depends on the number of users ui for which

c ∈ Ci. With more such users, the random noise for c can cancel out better. Thus, to

characterize accuracy, just considering the total number of users n is not enough—it is also

important to consider the degree of similarity among local dictionaries Ci. Everything else

being equal, higher similarity would result in higher accuracy of estimates. Such effects

could be due to the speed of content change in the content server: slow-changing content

would result in higher similarity of local dictionaries. Similarly, the similarity is affected by

the duration of data gathering, as longer duration provides more opportunities for app users

to observe different content at different points of time.

To characterize these effects, we augmented our infrastructure from Section 3.3.3 to

create and evaluate two subsets of the set of all n = 100 users. Both subsets are of size

n/2, but one of them exhibits higher similarity among local dictionaries compared to the

other one. To construct these subsets, we first computed the Jaccard similarity between all

pairs of local dictionaries. Recall that the Jaccard similarity of sets A and B is defined as

J(A,B) = |A∩B|/|A∪B|. The overall similarity of a collection S of local dictionaries Ci can

be characterized by the average pairwise similarity, which is the average value of J(C,C′)

for all pairs C,C′ ∈ S such that C 6=C′.

To create the subset SH of high-similarity local dictionaries, we started with the two

users ui and u j such that J(Ci,C j) is largest among all pairs of users. The next user uk to

34

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

er
ro

r

= ln(3), 50 users
High-similarity subset
Low-similarity subset

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
la

tiv
e

er
ro

r

= ln(9), 50 users
High-similarity subset
Low-similarity subset

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.02

0.04

0.06

0.08

Re
la

tiv
e

er
ro

r

= ln(49), 50 users
High-similarity subset
Low-similarity subset

Figure 3.6: Accuracy for high-similarity and low-similarity subsets of users

be added was chosen such that the average pairwise similarity of SH ∪{Ck} is maximized.

This process was repeated until we had n/2 local dictionaries in SH . The subset SL of

low-similarity local dictionaries was created in a similar fashion: starting with SL = {Ci,C j}

such that J(Ci,C j) is smallest among all pairs, we added Ck to SL such that SL∪{Ck} had

minimum average pairwise similarity at each step. To ensure that the two subsets were

sufficiently different, we compared their average pairwise similarities. Averaged across

the 9 studied apps, the similarity of SH was 67% larger than the similarity of SL. We also

35

measured how many local dictionaries, on average, contain an item c occurring in a subset.

Averaged across the apps, this metric was 53% higher for SH relative to SL. Thus, SL was

significantly more diverse than SH .

The question is, given the higher diversity of SL compared to SH , how much accuracy

loss will result from this diversity? This question is important, for example, in deciding how

to gather data across real app users (e.g., for fast-varying vs slow-varying content), and how

to interpret the collected data from users if the diversity of their local dictionaries is different

from what was expected in pre-deployment tuning. Our characterization infrastructure

allows the exploration of such questions. Figure 3.6 shows the accuracy measured on the

two subsets SH and SL. The conclusion is that higher diversity of content across users

does lead to lower accuracy, but this effect is not substantial. Despite the large difference

between SH and SL, overall the error of the estimates does not differ significantly. This result

indicates that the accuracy is resilient to the negative effects of local dictionary diversity.

3.5 Summary

We consider an important category of mobile app analytics, where dynamic content

is presented to the app user and the resulting interactions are recorded by the analytics

infrastructure. Our novel differentially-private solution provides both strong privacy guaran-

tees and high accuracy. Through the use of automated code rewriting, the approach allows

practical integration in existing mobile apps and easy maintenance as the app evolves. Our

studies illustrate how pre-deployment tuning of the approach can be performed, and how

problem parameters affect the accuracy of the produced frequency estimates. The conclusion

from our experimental studies is that with sufficient number of app users, our approach

produces high-accuracy frequency estimates.

36

Chapter 4: Stronger Privacy for Dynamic Content in App Analytics

via Randomized Sketches

The previous chapter describes an approach to collect differentially-private software

analytics data. This approach keeps track of two separate sets for every user ui: the set Ci of

dynamically retrieved content items and the set Ei ⊆Ci of items acted upon by the user. To

achieve differential privacy, a local randomizer R randomizes Ei and creates a randomized

response which is reported to the analytics server. The randomizer R requires both Ci and Ei

to add the statistical noise to the actual data. The server requires the randomized version

of Ei (i.e., R(Ei)) as well as the plain unprotected data from Ci to construct the server-side

population-wide estimates.

A desirable goal for increased privacy is to hide Ci from the analytics infrastructure. By

sharing the unprotected Ci, the software user “leaks” information. For example, from Ci

an adversary could infer that the user engaged with the app in a certain time period (based

on the lifetime of content items in Ci), or that particular user-defined searches of content

were initiated to retrieve the data from the content server: for example, the user may have

requested data to be retrieved based on geographic location (e.g., postal code) or specific

properties (e.g., only vegetarian recipes). In addition, it may become possible to make

inferences about user settings, profiles, or past behaviors.

37

Problem statement. Our goal is to define a differentially-private data collection scheme

that does not require the release of Ci. In essence, we now have to assume that Ci contains

all content items that were ever published (or will be published in the future) by the

content server. It is important to note that the differential privacy indistinguishability

guarantee is also affected by this new problem statement. While in Chapter 3 we ensured

indistinguishability between conclusions “c ∈ Ei” and “c /∈ Ei” for every c in the local set Ci

of retrieved items, now we will achieve this for any c that was ever published by the content

server.

4.1 Challenges and Contributions

Data representation and randomization. The randomization described in the previous

chapter cannot be directly applied in this setting, as it requires randomization not only for

elements of Ei, but also for all elements of Ci \Ei. The first contribution of our approach

is the design of a scheme for data representation and randomization to solve this problem.

In particular, we employ an approach that encodes each element of Ei into a pre-defined

smaller domain. The randomization is then performed in this domain. Similar ideas have

been used in prior work (e.g., [5, 20]) for scenarios where each user holds a single data item

from some extremely large domain such as the set of all possible URLs. In fact, as seen in

our studies, URLs are one example of unique identifiers for content items, and thus we are

faced with a similar problem. However, in our case we have several items per user, and thus

our approach needs to handle this more general case.

The mapping to a smaller domain is achieved using count sketch [9]. This well-known

approach creates a ”sketch”: a fixed-size representation of the frequencies of items in

streaming data. In our setting, the sketch provides estimates of frequencies of content

38

items. Since a count sketch is designed to work without a priori knowledge of the set of

possible items, it is well suited for the goal of representing and randomizing the local set

Ei. This local information is now simply treated as being a subset of the (unknown) set

C of all content items, and knowledge of the local set Ci of retrieved items is not used at

all. Moreover, multiple count sketches can be combined easily, so this approach is suitable

to use when data is collected from multiple app users. To achieve differential privacy,

randomization is added over the frequency estimation provided by the count sketch.

Efficient randomization. Naive randomization of the count sketch data would randomize

each individual contribution to the sketch whenever an event is observed. However, this

approach has high run-time overhead. As a second contribution of our work, we propose an

efficient approach for per-sketch randomization, rather than per-event randomization. The

key idea is to first accumulate all contributions to the sketch, and then to randomize the

result by drawing random values from the Binomial distribution. While one prior related

effort has employed an approach of a similar nature [59], our problem is more complex as it

has to be applied to sketch update operations. With the help of this technique, we achieve

significant reduction of run-time randomization costs, making this approach suitable for

real-world deployment in mobile apps.

Study of privacy/accuracy trade-offs. Accuracy vs privacy trade-offs are a key concern

for privacy-preserving algorithms. We present an experimental study to characterizes these

trade-offs in several dimensions. Broadly, our conclusions are that with large number of

software users, both practical accuracy and practical privacy can be achieved, especially for

high-frequency items.

39

4.2 Background

A count sketch [9] is a data structure originally designed to store the approximate

frequencies of items in a data stream. Theoretically, the sketch aims to provide accurate

estimates for high-frequency items. Suppose a data stream contains elements from the

set V = {1, . . . ,d} where d can be very large. Keeping count of every item in V would

require O(d) space. In a software system where each user ui reports randomized counts for

items from V , such data collection would require O(d) time and O(d) memory for each

user, which is infeasible for any practical setting. By using the small-size representation

in a count sketch, this cost can be made practical. Further, every element of V is not

equally significant from the perspective of the software developers. In a situation where

the developers are interested in the items with high frequencies, they can expect to obtain

high accuracy estimates for those items while benefiting from the reduced running time and

memory consumption of the analysis.

To illustrate a simple scenario of using count sketch for mobile app analytics without

any randomization, suppose that each software user ui holds a single item vi ∈ V . The count

sketch algorithm works with two hash functions: h : V →{1, . . . ,m} and g : V →{+1,−1}.

The element vi held by user ui can be represented as a d-dimensional bit-vector with a 1 at

position vi and 0s at all other locations. Hash function h maps vi to a value in {1, . . . ,m},

which transforms the aforementioned d-dimensional bit-vector into an m-dimensional bit-

vector containing a 1 at position h(vi) and 0 at each other position. The second hash function

g assigns a sign to the bit in the m-dimensional bit-vector. Thus, after applying both hash

functions, the d-dimensional vector is transformed to an m-dimensional vector with a +1

or −1 at one position and 0 at each other position. This vector is the local sketch of user

ui. Each user ui reports her local sketch to the analytics server. The server aggregates these

40

sketches via element-wise addition to produce a global sketch. A frequency estimate f̂ (v)

for any element v ∈ V can be obtained by taking the value at position h(v) in the global

sketch and multiplying it by g(v).

This approach is likely to result in inaccurate estimates due to collisions in the hash

functions. To get a more accurate estimate, the approach uses t pairs of independent

hash functions (h1,g1), . . . ,(ht ,gt) where hk : V → {1, . . . ,m} and gk : V → {+1,−1} for

1 ≤ k ≤ t. These functions are the same for all users ui. After applying these pairs of hash

functions on vi, instead of a signed m-dimensional vector, a t×m matrix is created. Each

matrix row k contains a single non-zero element, at position hk(vi) and with value gk(vi).

These local sketches are sent to the server where they are aggregated via element-wise

addition to create a global sketch S, which is also a t×m matrix. From this global sketch,

a frequency estimate f̂ (v) for any v ∈ V can be obtained by calculating the median of

S[1,h1(v)]×g1(v), . . . ,S[t,ht(v)]×gt(v).

4.3 Randomized Count Sketch for Dynamic Content Frequencies

The count sketch approach described earlier provides non-randomized frequency col-

lection when each user holds a single data item. Existing work [5] has considered how to

introduce differential privacy in this setting. This prior work provides theoretical insights but

does not bring clarity on how to solve our target problem: practical use of count sketch on

analytics data obtained by real app executions, when the local information is a set of content

items instead of a single item. Building on ideas for that work, we develop a solution for

differentially-private frequency analysis of dynamic content in mobile apps, using random-

ized sketching. The presentation below starts by describing the design and implementation

41

Algorithm 4.1: Building a local count sketch without and with randomization
1 Function init(t, m):
2 m← 2dlog2 me

3 M←matrix of size t×m, initialized with 0s

4 Function hash(k, item):
5 v← SHA256 hash of concat(k, item)
6 h← log2 m most significant bits of v
7 b← (1+ log2 m)-th most significant bit of v

8 g←

{
−1, if b = 0
+1, if b = 1

9 return h,g

10 Function add(item):
11 for k← 1 to t do
12 h,g← hash(k, item)
13 M[k,h]←M[k,h]+g

14 Function add_private(item, ε):
15 for k← 1 to t do
16 h,g← hash(k, item)
17 for j← 1 to m do
18 if j = h then

19 M[k, j]←

{
M[k, j]+g, with probability eε

1+eε

M[k, j]−g, with probability 1
1+eε

20 else

21 M[k, j]←

{
M[k, j]+1, with probability 0.5
M[k, j]−1, with probability 0.5

of a non-private version of our solution. Next, we introduce a privacy-preserving version

which achieves differential privacy.

4.3.1 Count Sketch Without Privacy

When the local data for user ui is a set Ei of content items, the local sketch accumulates

the contributions of all items in this set. This process is described in Algorithm 4.1. The

sketch is a t ×m matrix M, initialized with 0 elements. For efficiency of hashing, our

42

Algorithm 4.2: Server-side frequency estimates
1 Function estimate(S, item):
2 A← /0
3 for k← 1 to t do
4 h,g← hash(k, item)
5 A← A∪{S[k,h]×g}
6 return median(A)

7 Function estimate_private(S, item, ε):
8 E← estimate(S,item)× eε+1

eε−1
9 return trim(E, 0, n)

approach uses values of m that are powers of two, as indicated in function init. Every

element v∈ Ei is added to the sketch using function add. For each row k, a hash is calculated

by applying the SHA256 hash algorithm on the concatenation of the string representation

of k and v. From the value of this hash, a column h = hk(v) is selected where hk(v) is the

number constructed by the log2 m most significant bits of the hash. The counter at M[k,h] is

updated by adding gk(v) ∈ {1,−1} to it, which is chosen using the next most significant bit

the hash.

After adding every element in Ei to the sketch, the resulting local sketch for user ui

is sent to the server. Element-wise addition of these local sketches produces the global

sketch S. For any v that was ever published by the content server, an estimate f̂ (v) of

the true frequency f (v) = |{i : v ∈ Ei}| can be obtained by computing the median of

S[1,h1(v)]× g1(v), . . . ,S[t,ht(v)]× gt(v). Function estimate in Algorithm 4.2 describes

this process.

Example. An example of a local sketch is shown in Figure 4.1. The content items

{c1, ...,c10} are 10 recipe IDs collected from the set of recipes visited in the app cookbook

by a simulated user. The example illustrates the algorithm with a sketch matrix with t = 3

43

Item h1(c),g1(c) h2(c),g2(c) h3(c),g3(c)
c1 = 51354 6,1 6,1 1,−1
c2 = 10972 1,1 4,−1 1,−1
c3 = 121 1,1 2,1 6,1
c4 = 6 6,−1 6,1 3,1
c5 = 244033 1,−1 6,1 8,−1
c6 = 1083139 4,1 2,−1 8,1
c7 = 353278 8,−1 3,−1 7,−1
c8 = 4 4,−1 5,−1 7,−1
c9 = 239 5,1 8,1 8,−1
c10 = 1972875 7,−1 5,1 6,1

Local Sketch
1 0 0 0 1 0 -1 -1
0 0 -1 -1 0 3 0 1

-2 0 1 0 0 2 -2 -1

Figure 4.1: Count sketch illustration, with m = 8 and t = 3

and m = 8. Each item c is hashed into a value hk(c) ∈ {1, . . . ,m} by applying the SHA256

hash algorithm on the concatenation of the row number and the ID itself. In this way, the

same ID produces a different hash in each row. The 3 most significant bits of the hash is

used to select a column in the matrix. Additionally, another hash function gk(c) produces a

+1/−1 value depending on the value of the 4th most significant bit of the aforementioned

SHA256 hash. These two hash values for each of the 10 IDs are shown in the table in the

left part of Figure 4.1.

The table in the right part of the figure shows the sketch matrix created after counting

these 10 items using their corresponding hash values. For every item c, a column is selected

on row k by the value of hk(c), and the value of gk(c) is added to that cell. For example,

counting the item c2 adds a +1 to the cell [1,1], a −1 to the cell [2,4] and a −1 to the cell

[3,1]. It also shows some hash collisions for some items. For example, counting c1 adds a

+1 to the cell [1,6] and counting c4 adds a −1 to the same cell, hence cell [1,6] contains a

0. But due to the design of the hash function h, c1 and c4 do not collide on the second and

third rows.

44

An estimate for each item can be obtained from the cells modified by counting that item.

For example, counting item c2 contributes to cells [1,1], [2,4] and [3,1]. The values stored

in these cells are 1, −1, and −2. Multiplying these values by their corresponding g hash

values (1, −1 and −1 respectively) we get 1, 1, and 2. The median of these values is 1,

which is the correct frequency of c2. Of course, this estimate could be different from the true

frequency; in this example, the estimated frequency of c1 is 2 and the estimated frequency

of c6 is 0 while the true frequency is 1 for both of them.

4.3.2 Count Sketch With Privacy
4.3.2.1 Processing for Each User

A differentially-private count sketch algorithm can be constructed by introducing proba-

bilistic counting of elements of the non-private count sketch. First, consider the random-

ization of a single content item c. The non-randomized contribution of this item to row

k of the sketch is a vector of length m, containing the value of gk(c) in position hk(c)

and values of 0 in the remaining positions. This vector is randomized as follows. First

every 0 element is changed to −1 with probability 1
2 and to +1 with probability 1

2 . This is

done independently for each such position; thus, this process requires m−1 “coin flips”.

Position hk(c) is randomized as follows: with probability eε

1+eε the value is preserved and

with probability 1
1+eε the value’s sign is inverted (e.g., +1 is replaced with −1). As a result,

the randomized 1×m vector contains only +1 and −1 values. This process in described in

function add_private in Algorithm 4.1.

The indistinguishability property holds between any two 1×m input vectors, each

containing a single +1/− 1 value and 0 values in all remaining positions. Specifically,

consider any two such vectors x and y. Let z be any 1×m vector containing +1/−1 values

in all positions. Let R be the randomizer applied to the input vectors. Then the probability

45

Randomized Local Sketch
-2 0 4 4 2 -2 0 -2
2 -2 -2 -2 4 4 0 -4

-8 -2 -8 -4 0 6 0 0

Figure 4.2: Randomized Count sketch illustration, with ε = ln(3), m = 8 and t = 3

that R(x) = z and the probability that R(y) = z differ by at most a factor of eε . To see this,

consider that P[R(x) = z] = ∏1≤ j≤m P[R(x j) = z j]. Here x j denotes the value at position j

in the vector. Similarly, P[R(y) = z] = ∏1≤ j≤m P[R(y j) = z j]. Without loss of generality,

suppose that the non-zero element in x is x1 and the non-zero element in y is y2. Then the

ratio of the two probabilities is P[R(x1) = z1]/P[R(y2) = z2], which is maximized when

P[R(x1) = z1] =
eε

1+eε and P[R(y2) = z2] =
1

1+eε .

Now, consider the randomization of a set of content items E. For every c ∈ E, the pro-

cessing in function add_private is performed separately. We can consider the cumulative

result to be produced by set-level randomizers Rk for each row k, such that Rk(E) is the

resulting row in the randomized sketch. The indistinguishability achieved by applying Rk

is as follows. For any E and any content items c ∈ E and c′ /∈ E, let F be the set obtained

from E by replacing c with c′. Then E and F are indistinguishable in the differential privacy

sense, since P[Rk(E) = G] and P[Rk(F) = G] can differ by at most a factor of eε for all G.

Example. An example of randomized local sketch is illustrated in Figure 4.2 as a continua-

tion of the example shown in Figure 4.1. Here, after determining the hash values hk(c) and

gk(c) for an item c, the value of hk(c) is preserved with probability eε

1+eε (which is 0.75 in

this example with ε = ln(3)) or inverted with probability 1
1+eε (which is 0.25). This value

is added to the cell [k,hk(c)]. A −1 or +1 is added at random (i.e. with probability 0.5) to

46

each of the other cells of row k. The effect of this randomization, for one particular run of

this randomized algorithm, is shown in the sketch matrix in Figure 4.2.

4.3.2.2 Processing at the Server

The result of the randomization, obtained by applying function add_private to every

c ∈ Ei, is a local randomized sketch that is reported to the analytics server. The server

accumulates these sketches to produce a global sketch S for all users ui. The estimates

from this global sketch need to be scaled, as described by function estimate_private in

Algorithm 4.2. This scaling ensures that the resulting estimates are unbiased. To see this,

consider the expected value of cell S[k, j]. Suppose there would have been n contributions

of +1 to this cell without randomization, across all users. The expected value of these

contributions after randomization is n eε

1+eε −n 1
1+eε . Similar reasoning is applied to the −1

contributions. To obtain unbiased estimates, scaling with the inverse of
(

eε

1+eε − 1
1+eε

)
is

necessary; that is, the scaling factor should be eε+1
eε−1 . The scaled value is then trimmed to be

in the interval [0,n]: if negative, it is set of 0 and if greater than n it is set to n.

4.3.3 Efficient Construction of the Randomized Local Sketch

In the non-private version of the count sketch, counting an item involves modification of

one sketch cell in each row (i.e., adding −1/+1 to the cell). Thus, the overall processing

cost is O(t), assuming that hashing has unit cost. But in the private version, counting an

item requires additional operations of adding −1/+1 at random to every other cell in a row.

This makes the overall processing cost O(|Ei|× t×m). To reduce this cost, we designed a

modified version of the randomized count sketch, as described in Algorithm 4.3.

47

Algorithm 4.3: Reduced-cost local count sketch algorithm
1 Function init(t, m):
2 m← 2dlog2 me

3 M←matrix of size t×m, initialized with 0s
4 C−1←matrix of size t×m, initialized with 0s
5 C+1←matrix of size t×m, initialized with 0s
6 total_events← 0

7 Function hash(k, item):
8 v← SHA256 hash of concat(k, item)
9 h← log2 m most significant bits of v

10 b← (1+ log2 m)-th most significant bit of v

11 g←

{
−1, if b = 0
+1, if b = 1

12 return h,g

13 Function add(item):
14 total_events← total_events+1
15 for k← 1 to t do
16 h,g← hash(k, item)
17 if g =−1 then
18 C−1[k,h]←C−1[k,h]+1
19 else
20 C+1[k,h]←C+1[k,h]+1

21 Function finalize_private(ε):
22 for k← 1 to t do
23 for j← 1 to m do
24 pos← 2×binomial(C+1[k, j], eε

1+eε)−C+1[k, j]
25 neg← 2×binomial(C−1[k, j], eε

1+eε)−C−1[k, j]
26 nz← total_events−C+1[k, j]−C−1[k, j]
27 zero← 2×binomial(nz,0.5)−nz
28 M[k, j]← pos−neg+ zero

48

The main idea of the approach is to first accumulate counts for various per-cell contri-

butions in the non-randomized version, and then draw random values from the Binomial

distribution to apply randomization to each accumulated count. Two categories of counts are

maintained per sketch cell: matrix C+1 records the number of +1 contributions, and matrix

C−1 records the number of −1 contributions. In addition, a counter of the total number of

“add item” events is maintained. This is used to infer the number of times a 0 would have

been added to a cell in the non-randomized sketch.

In the basic private count sketch, every time an event is counted as a −1 in a cell of

M, it is preserved with a probability p = eε/(1+ eε) and changed to a +1 with probability

(1− p). If the event is counted n times, this is equivalent to counting the number of suc-

cesses in a sequence of n independent trials with a probability p of success. The Binomial

distribution provides such probabilities. This property is utilized in the finalize_private

procedure of the modified algorithm. After counting the number of −1, +1 and 0 val-

ues added to each cell in the non-private version, the randomized counts are determined

by drawing random values from the Binomial distribution, denoted by binomial(n, p).

First, consider all pre-randomization +1 contributions to some cell M[k, j]. The non-

optimized randomization would have contributed binomial(C+1[k, j], eε

1+eε) values of +1

and
(

C+1[k, j]−binomial(C+1[k, j], eε

1+eε)
)

values of −1. Thus, the total contribution pos

(i.e., positive increments) of these pre-randomization +1 values to the final cell value is the

difference between these two counts. The total contribution neg (i.e., negative increments)

of the pre-randomization −1 values to the final cell value is computed similarly. Finally, the

0 pre-randomization values will also contribute +1 and −1 counts, which are determined

using binomial(nz,0.5). The overall cost of this computation is O(t×m), assuming that

random values are generated at unit cost.

49

4.4 Experimental Evaluation

The experimental evaluation of the proposed approach was performed on the same data

collected for the evaluation from the previous chapter. Recall that 9 Android apps and user

interactions with them were simulated to create sets Ei and Ci. Since our new approach does

not depend on the set of retrieved items Ci, only the set of events Ei from every user ui was

used. Details on the study subjects can be found in Table 3.1.

4.4.1 Synthesizing User Data

The user data was collected by running a test script 100 times on 9 instrumented apps.

Since collecting this data takes a large amount of time, the data collected from 100 simulated

users were used to simulate behaviors of more users. We followed the same approach for

synthesizing additional user data as mentioned in the previous chapter. Since the content

dictionary is not needed in this analysis, the synthesizing process was applied on the sets Ei

only. As described earlier, to obtain the synthesized data for 1000 users we selected 900

pairs of users (ui,u j) at random. For each pair, we computed the set of events Ei∪E j, and

then drew |Ei|+|E j|
2 items from this set without replacement. Together with the original data

from 100 users, this set of synthesized data produced sets of events for 1000 simulated users.

The same approach was used to synthesize the sets of events for 10000 and 100000 users.

4.4.2 Efficiency of Optimization using Binomial Distribution

To observe the effect of efficient construction of the randomized count sketch using

binomial probability distribution as described in Section 4.3.3, both the basic (Algorithm

4.1 and the modified (Algorithm 4.3) version of the count sketch algorithm were applied

on the dataset. The results of the optimization are summarized in Table 4.1. The data in

50

App Average |Ei| Basic count sketch Modified count sketch
apartmentguide 101.09 8.847378 0.086971
reststops 70.62 6.167492 0.063994
rent 112.13 9.784922 0.096058
shipmate 76.83 6.236660 0.061835
cookbook 55.87 4.364689 0.045915
channels 46.94 3.659719 0.039744
infowars 38.96 3.052576 0.036958
loop 54.91 4.267905 0.049260
opensnow 85.08 6.628039 0.061553

Table 4.1: Average time taken (in seconds) to count all events in Ei for a user with ε = ln(9)

the table shows the average number of events triggered by an user and average of total

time to count all events with a basic and a modified count sketch. The data was collected

from the 100 simulated users of each app. As can be seen from these results, the modified

approach is significantly faster, and clearly suited for practical use in mobile apps. The

reason behind this is, the O(t×m) amount of work required for randomization per event in

the basic algorithm is replaced by the O(t×m) amount of work per user in the reduced-cost

algorithm.

4.4.3 Accuracy of Frequency Estimates

The modified count sketch algorithm (Algorithm 4.3) was executed in 30 independent

trials to calculate the frequency estimates f̂ (c) for each c ∈ Ci. We used t = 256 and

m = 256 for our initial set of experiments. The chosen value of t is similar to that used in

prior work [5]. The error of the estimates is calculated using the relative error (RE) metric.

In this experiment, the relative error is defined as the normalized L1 distance between

the ground truth frequency vector f (c) and the estimated frequency vector f̂ (c) for each

c ∈ ∪iCi:

51

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Re
la

tiv
e

er
ro

r

= ln(3)
#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

er
ro

r

= ln(9)
#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

er
ro

r

= ln(49)
#users = 100
#users = 1000
#users = 10000
#users = 100000

Figure 4.3: Accuracy of private count sketch over items retrieved by all users (∪iCi).

RE =
∑c∈∪iCi | f (c)− f̂ (c)|

∑c∈∪iCi f (c)

52

Figure 4.3 shows the accuracy of the estimated frequencies for the three values of ε used in

the previous chapter: ln(3), ln(9) and ln(49). For this and all subsequent metrics we report

the mean and 95% confidence interval of the metric over 30 independent trials.

The relative error calculated over ∪iCi can be quite large, especially with fewer users.

This error includes the frequency estimates for the content items not visited by any user

(i.e. c /∈ Ei for 1≤ i≤ n, therefore f (c) = 0). For these items the estimated frequency f̂ (c)

accounts for the random noise only. With larger number of users the contributions of these

noise −1s and +1s are “cancelled out” more, which results in smaller relative error.

We also considered a modified metric to measure the accuracy of this scheme that only

includes the items visited by at least one user. In this case, the relative error is measured over

∪iEi. It produces lower relative error due to discarding noise from zero-frequency elements,

especially with the apps with larger ∪iCi. Figure 4.4 shows these results.

The frequency estimates can be more accurate for the most frequent items in the event

sets than they are for the entire dataset. Count sketch is a data structure designed to accurately

estimate the frequencies of the high-frequency elements in a stream, and this property is

evident in this experiment as well. The same experimental setup was applied to “estimated

hot” content items, which is defined as the set of items visited by at least 10% of the users

based on their estimated frequencies. The relative error for the hot items is quite large for

100 users because the total number of events is very small. But for more users, it is even

less than the error for the non-zero-frequency items. These results are shown in Figure 4.5.

It is important to note that the set of estimated hot items can be determined directly by

querying the global sketch for each content item ever published by the server, since the

published items are known to the analysts and the number of such items is expected to be

practically small (e.g., less than a million). In contrast, the general problem of identifying

53

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

er
ro

r

= ln(3)
#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
la

tiv
e

er
ro

r

= ln(9)
#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

er
ro

r

= ln(49)
#users = 100
#users = 1000
#users = 10000
#users = 100000

Figure 4.4: Accuracy of private count sketch over items observed by all users (∪iEi).

estimated hot items (“heavy hitters”) in a very large domain (e.g., the domain of all 64-bit

binary strings) requires more advanced techniques [5, 56].

54

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
la

tiv
e

er
ro

r

= ln(3)
#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

er
ro

r

= ln(9)
#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
la

tiv
e

er
ro

r

= ln(49)
#users = 100
#users = 1000
#users = 10000
#users = 100000

Figure 4.5: Accuracy over hot items: those with estimated frequency ≥ 10% of n.

Summary of results. From the results, it can be observed that the accuracy of the scheme

improves with larger values of ε and larger number of users. As expected, the accuracy

55

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
la

tiv
e

er
ro

r

= ln(3)
All content items
Non-zero frequency items
Estimated hot items

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e

er
ro

r

= ln(9)
All content items
Non-zero frequency items
Estimated hot items

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e

er
ro

r

= ln(49)
All content items
Non-zero frequency items
Estimated hot items

Figure 4.6: Accuracy of private count sketch for 10000 users over three sets of items.

improves with the high-frequency subset of the items. A comparison of the accuracy of

the scheme for different groups of items is shown in Figure 4.6. The chart shows the

56

relative error computed for 10000 users over all content items, non-zero-frequency items,

and estimated hot items. We observe that the relative error for the set of estimated hot items

is typically less than 10%. These results indicate that for realistic numbers of app users (e.g.,

at least 10000 users), the frequencies of items that are estimated to be hot are close to their

true values.

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e

er
ro

r
= ln(9), 10000 users

Without count sketch
With count sketch

Figure 4.7: Accuracy of frequency estimation vs the scheme defined in Chapter 3.

A comparison between the accuracy of frequency estimation using a deferentially private

count sketch and the scheme described in Chapter 3 is shown in Figure 4.7 for one particular

combination of n and ε . Not surprisingly, the relative error is larger with the count sketch

approach, as the underlying data representation before randomization is based on hashing

and hash collisions between elements could occur.

4.4.4 Precision and Recall for Hot Items

Similar to Chapter 3, we measured the precision and recall of the “estimated hot” items

identified by the private count sketch. The definition of the estimated hot items remains the

57

same- an item is considered hot if at least 10% of all users interact with it (based of the

frequency estimates). We computed the sets H and Ĥ of content items visited by at least

10% of the users, based on the ground-truth and estimated frequencies respectively. The

precision and recall of the estimated hot items are

Precision =
|H ∩ Ĥ|
|Ĥ|

Recall =
|H ∩ Ĥ|
|H|

The measurements of precision and recall are shown in Figures 4.8 and 4.9. It is evident

that both the precision and recall of the estimated hot items are typically above 90% with

10000 or more users.

4.4.5 Effects of Sketch Size on Accuracy

Besides the randomization, another source of errors in this scheme is hash collisions. In

the data presented so far, all the events were counted in a sketch matrix with 256 columns.

This means, with a larger set of content items, more items are hashed into the same cell

of a matrix. It increases the relative error, as well as effects the precision and recall of the

estimated hot items. To observe the effect of number of columns in the sketch matrix, we

conducted another experiment with ε = ln(9) and 10000 users using sketch matrices with

128, 256 and 512 columns. This experiment is focused on the hot items as their estimates

are most reliably accurate. We have measured the relative error, precision and recall over the

estimated hot items (items visited by at least 10% of the users), and the results are presented

in Figure 4.10.

From the figures it can be seen that larger number of columns affects the accuracy of the

estimates as the relative error for the estimated hot items becomes smaller. Similar effects

58

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(3)

#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(9)

#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(49)

#users = 100
#users = 1000
#users = 10000
#users = 100000

Figure 4.8: Precision of identification of hot items.

can be seen for the identification of hot items as the values of precision and recall typically

increase with larger number of columns.

59

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(3)

#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(9)

#users = 100
#users = 1000
#users = 10000
#users = 100000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(49)

#users = 100
#users = 1000
#users = 10000
#users = 100000

Figure 4.9: Recall of identification of hot items.

60

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
la

tiv
e

er
ro

r

= ln(9)
m = 128
m = 256
m = 512

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(9)

m = 128
m = 256
m = 512

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(9)

m = 128
m = 256
m = 512

Figure 4.10: Comparison of different numbers of sketch columns, with 10000 users.

61

4.5 Summary

In this chapter we presented an approach for collecting analytics data from mobile

apps using a differentially-private count sketch. This approach does not require sending

the set of retrieved content items from the users to the analytics server. We illustrated

how a differentially-private count sketch can be used to collect analytics data, how the

randomization can be performed efficiently, how the data can be accumulated on the server

side and be used to estimate the event frequencies. We have also explored the effects of

tuning the parameters of the scheme on the accuracy of estimation. With a significantly

large number of users, this new approach can achieve stronger privacy of analytics data

maintaining a reasonable level of accuracy, especially with the most frequently accessed

elements.

62

Chapter 5: Differentially-Private Analysis of Frequent Items and

Frequent Itempairs Using Randomized Sketches

The previous chapter explored the use of differentially-private count sketch to collect

frequency information about content items across a population of mobile app users. However,

several questions need to be addressed before such data collection can be deployed in realistic

scenarios. First, in practical deployment there are limitations on the amount of data that

can be transferred from a user to the analytics server. In many scenarios, the app users

have to pay for such data transfer (e.g., with certain mobile Internet plans). One question

we address in this chapter is the following: How should one design differentially-private

sketching under a given space budget for the sketching data structure? In particular, we

need to consider the question of selecting the number of rows vs. the number of columns in

the sketch. The work in the previous chapter assumes that the numbers of rows and columns

are pre-defined values. In this chapter we reconsider this choice.

Identifying (likely) frequent content items is an important analytics task, but there are

many other questions that are of interest to content providers. As an exemplar of such

questions, we consider the following problem: How can pairs of frequently co-occurring

content items be identified with high accuracy and low cost? This is an instance of the

more general problem of frequent itemset mining. As discussed later, there is a fundamental

difference between this problem and the analysis of item frequencies considered so far: the

63

domain of pairs of items is significantly larger than the domain of items, which makes the

problem harder.

The contributions presented in this chapter are as follow. First, we present a characteri-

zation study that provides insights needed to design an effective scheme for differentially-

private sketching data structures for frequent items and itempairs. Next, based on the results

of this study, we propose a design for such frequency analyses under given space constraints

for the sketches. Finally, we present an experimental evaluation of the proposed design and

identify its intrinsic trade-offs between space and accuracy.

5.1 Analysis of Frequent Items

5.1.1 Characterization Study of Sketch Size and Shape

For the differentially-private count sketch presented in the previous chapter, we used

fixed parameters t = 256 (number of sketch rows) and m = 256 (number of sketch columns).

However, the selection of these parameters is an important consideration for achieving high

accuracy under a given space budget. To get further insights into this issue, we performed

a study with two settings: number of users n = 1000 and n = 10000. As indicated by the

results in the previous chapter, one would expect non-trivial differences in accuracy between

these two settings. We consider n = 100 to be impractical due to its bad accuracy. We

do not consider n = 100000 since results for this setting are likely to be close to those for

n = 10000; further, collecting data from such a large number of users may be impossible for

many apps that are not very popular and serve niche markets.

We use measurements for the apartmentguide app to illustrate the results of the

study. Measurements for the remaining apps are similar and are not shown here. For the

characterization, we considered combinations of number of sketch rows and number of

64

#columns

64 128
256

512
1024

#row
s

1024
512

256
128

64

Re
la

tiv
e

er
ro

r

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1000 users

#columns

64 128
256

512
1024

#row
s

1024
512

256
128

64

Re
la

tiv
e

er
ro

r

0.0
0.1
0.2
0.3
0.4
0.5

10000 users

Figure 5.1: Relative error of frequency estimates over the set of estimated hot items for app
apartmentguide, with 1000 and 10000 users and different numbers of sketch rows and
columns.

sketch columns selected from set {64,128,256,512,1024}. For each combination of values,

we executed the approach to determine the set of estimated hot pairs (as was done in the

previous chapter) and to compute the relative error for this set, for ε = ln(9). The results are

shown in Figure 5.1. Since the measurements from the previous chapter indicate that the

variance across multiple runs is small, we ran each experiment three times and collected the

average of the three measurements.

As can be observed from these results, increasing the size of the sketch does reduce the

error of estimates. This is expected since the effects of hash collisions are reduced. We also

observe that the increase in the number of sketch rows is more beneficial than the increase in

the number of columns. As presented below, these results guide our design of a randomized

sketch under space constraints.

5.1.2 Sketch Shape under Space Constraints

Several considerations are relevant for the selection of sketch size (i.e., number of sketch

elements) and sketch shape (i.e., number of rows and columns) in the analysis of frequent

items. First, we assume that a pre-defined limit on sketch size is imposed by analysis

65

designers based on financial and technical constraints. Such constraints, for example, could

stem from the cost of transmitting data (which in some circumstances could be as high as

several USD per Gb) and the bandwidth of the connection. For our experiments, we have

selected 256Kb for this limit, which is comparable to the size of a low-resolution image.

Given this limit, we consider the following approach for selection of sketch size. First,

we select a number R of sketch rows that is close to the total number of unique content items

that could be included in any sketch (local or global). We assume that this number is known

to the analysis designer—for example, because they know the approximate number of unique

content items that would be available from the content server over the duration of mobile

app analytics data gathering. This is a reasonable assumption as we expect that the mobile

app developers and the content provides are collaborators. We select the number of rows R

to be the smallest power of 2 that is not smaller than the number of content items. Table 5.1

shows these numbers for the apps considered in our experiments. Column “all items” shows

the size of the union of sets Ci (the content items retrieved by users), which we use as an

estimate of the total number of content items available from the content server. Column

“rows” shows the corresponding number of sketch rows. The number of sketch columns

is determined as 256Kb/(2R). The factor 2 in the denominator reflects an assumption that

each sketch element can be stored in 2 bytes, which is a reasonable assumption for local

sketches.

66

App #all items #rows #columns
apartmentguide 1375 2048 64
reststops 1858 2048 64
rent 902 1024 128
shipmate 712 1024 128
cookbook 358 512 256
channels 294 512 256
infowars 226 256 512
loop 186 256 512
opensnow 168 256 512

Table 5.1: Number of all content items and number of sketch rows/columns for 256Kb space
budget.

5.2 Analysis of Frequent Itempairs

Frequent itemset mining is a technique for finding associations and correlations among

items in a dataset. The objective of such mining is to find sets of items that appear together

in a significant number of transactions carried out over a set. The most common application

of this technique is determining the products bought together frequently. It is also useful for

product placement, cataloging, and cross-selling.

In this dissertation we consider a particular case of frequent itemset mining: the iden-

tification of frequently-occurring pairs of items (which will be referred to as “itempairs”

from now on). Our goal is to identify pairs 〈c,c′〉 of content items c and c′ (where c 6= c′)

such the number of sets Ei containing both c and c′ is no less than a pre-defined threshold.

Specifically, as in the earlier chapters, we consider a scenario where user ui interacts with a

set Ei of content items. Each such set Ei is considered to be a transaction in the terminology

of frequent itemset mining.

67

5.2.1 Design of LDP Analysis of Frequent Itempairs

Suppose that we have a pre-defined threshold θ , such that 0 < θ ≤ 1. For any itempair

〈c,c′〉, its frequency f (〈c,c′〉) is

f
(
〈c,c′〉

)
= |i : c ∈ Ei∧ c′ ∈ Ei|

An itempair 〈c,c′〉 is hot if f (〈c,c′〉)≥ θn; here n is the number of software users. As in

the previous chapters, in our experiments we use θ = 0.1.

Estimated hot items. To achieve differential privacy for mining of frequent itempairs, we

can use the approaches defined in the earlier chapters as building blocks. Specifically, we

can use those approaches to differentially-privately estimate the set of individual items

whose frequency is no less than θn. This set can then be used to estimate the frequent

itempairs. The collection of (estimated) hot items can be done either with the randomization

approach from Chapter 3 (which reports Ci and the randomized version of Ei), or with the

sketch-based approach from Chapter 4 (which reports only the randomized sketch of Ei). As

the second approach provides stronger privacy protections, we focus on it for the rest of this

chapter. Let Ĥ = {c : f̂ (c)≥ θn} be the set of “estimated hot” items, where the estimates

are obtained as described in Chapter 4, using the same hotness threshold θ and employing

the sketch size/shape selection approach described in Section 5.1.

Estimated hot itempairs. To determine the most frequent itempairs, the analytics server

first computes set Ĥ. A key property is that, in the ground truth, each hot itempair must

contain two hot items. Since Ĥ approximates the ground-truth set of hot items, the LDP

analysis of hot pairs aims to collect and report all pairs of elements of Ĥ that appear in sets

Ei, from which the hot pairs can be estimated. To achieve this, the set Ĥ of estimated hot

items is communicated to each user. In a second pass of the communication, the pairs of

68

Analytics
Server

Content
Server User i

Randomized count
sketch over items

Estimated hot items

Randomized count
sketch over itempairs

Content items

Figure 5.2: Workflow for determining the most frequent itempairs.

estimated hot items are reported by each user to the analytics server. The server identifies

the most frequent itempairs from these reports. The details of this approach are described

below.

Solution design with randomized sketches. The same differentially-private count sketch

algorithm described in Chapter 4 can be applied to determine the estimated hot itempairs.

Each user ui receives the set Ĥ of the estimated hot items from the server. From this set, all

pairs 〈c,c′〉 are constructed where c and c′ are elements of Ei, and both items also appear in

Ĥ. The set of such itempairs is defined as E2
i = {〈c,c′〉 : c,c′ ∈ Ei∩ Ĥ}. The pairs in E2

i are

then counted in a differentially-private count sketch, similarly to the counting done for the

individual items in Chapter 4, and the randomized sketches of itempairs are reported to the

analytics server. The workflow is illustrated in Figure 5.2.

69

At the server side, all randomized sketches from the users are accumulated into one

sketch. From this sketch server estimates the frequency f̂ (〈c,c′〉) of any itempair 〈c,c′〉 such

that both c and c′ are estimated hot items (i.e., belong to set Ĥ). A pair 〈c,c′〉 is considered

an estimated hot pair if f̂ (〈c,c′〉)≥ θn.

One interesting special case is when set E2
i is empty, which means that Ei does not

contain any elements of Ĥ. In such a scenario the user would contribute an empty sketch,

which in practice means the user would not send any information back to the server. This

behavior does leak information: it indicates to an adversary that no element of Ei is in Ĥ.

We consider this to be an acceptable privacy leak and do not attempt to obfuscate it.

Implementation. An itempair is considered to be a size-2 set, which implies that the order

of the two items is not significant. In the implementation, the pair of items c and c′ is

represented by concatenating their identifiers with “|” as a separator character in their

lexicographic order. For example, if a user interacts with items 244033 and 1083139 in the

cookbook app, this pair of items is represented with the identifier 1083139|244033 in the

analysis of itempairs. The character “|” is used as the separator symbol because it does not

appear as a part of any item identifiers in any app. The lexicographic order of concatenation

of two identifiers prevents counting 〈c,c′〉 and 〈c′,c〉 as two different pairs. Given these

string identifiers for itempairs, the approach proceeds as described above: given the (global)

set Ĥ of estimated hot items provided by the server, each user ui constructs the set E2
i as a

set of itempair identifiers and then records them in a local differentially-private count sketch,

as described in Chapter 4. The local sketches are then accumulated by the server to construct

a global sketch. For each element of Ĥ× Ĥ (using string concatenation in lexicographic

order), its frequency is estimated using the global sketch and the itempair is reported as

“estimated hot” if the estimate is ≥ θn.

70

5.2.2 Selecting Sketch Size and Shape

In the selection of sketches for analysis of frequent items, we assumed a space budget

of 256Kb. For sketching of frequent itempairs, the number of elements in set E2
i can be

significantly larger than the number of elements in set Ei. Thus, we need to allow a larger

space budget in order to achieve useful accuracy. However, due to practical constraints on

communication cost, we cannot allow the space budget to increase quadratically. Rather, we

select a space budget that is about an order of magnitude larger than the one for frequent

items. Specifically, we use a space budget of 4Mb for the local sketch used to count the

elements of set E2
i . Later we explore experimentally the impact of this choice on the

accuracy of the analysis of frequent itempairs.

Next, we select the number of rows in the sketch to be proportional to the number of

(unordered) pairs of elements drawn from set Ĥ. This is an upper bound on the number of

elements in any set E2
i . Thus, the analytics server computes this bound R as the smallest

power of 2 not smaller than |Ĥ|(|Ĥ|−1)/2. However, if R very large, it makes the cost of

computing the local sketch impractical. This is because the number of rows in the sketch

determines the number of times hash functions need to be applied. We have observed that

when many hash values need to be computed, the cost of constructing the local sketch

becomes impractical. Thus, we heuristically limit the number of sketch rows to 214—that is,

R = min(214,2dlog2 |Ĥ|(|Ĥ|−1)/2e). Given this number of rows R, the number of columns is

set to be 4Mb/(2R).

Table 5.2 shows the number of rows and columns in the sketches used to estimate the

frequency of itempairs. This is the result of one representative run of the LDP data collection.

Column “#estimated hot items” shows the number of items estimated as hot items from

that particular run, that is, the size of set Ĥ. Column “#possible pairs” shows the number

71

App #estimated hot items #possible pairs #rows #columns
apartmentguide 512 130816 16384 128
reststops 218 23653 16384 128
rent 455 103285 16384 128
shipmate 334 55611 16384 128
cookbook 164 13366 16384 128
channels 147 10731 16384 128
infowars 170 14365 16384 128
loop 147 10731 16384 128
opensnow 125 7750 8192 256

Table 5.2: Number of possible pairs constructed from the estimated hot items and the number
of sketch rows/columns for a space budget of 4Mb.

|Ĥ|(|Ĥ|−1)/2 of unordered pairs that can be constructed from Ĥ. Columns “#rows” and

“#columns” shows the number of rows and columns determined using 4Mb space budget.

For the first four apps the number of possible pairs is quite large, so sketch matrices with

214 rows were used as described above.

5.3 Experimental Evaluation

5.3.1 Analysis of Frequent Items

The proposed analysis of hot items was applied on the 9 apps with randomized sketches

under 256Kb space constraint. The number of rows and columns used for each app is shown

in Table 5.1. Table 5.3 shows results of the analysis for 1000 users. Column “#estimated hot

items” shows the number of items identified as hot items. Column “RE” shows the relative

error computed over the estimated hot items. Columns “Precision” and “Recall” shows

the precision and recall of identifying the hot items. As it is evident from the results in

Chapter 4 that the variance of these values are small, the results are presented as the average

of three runs.

72

App #estimated hot items RE Precision Recall
apartmentguide 508.6 0.085467 0.946351 0.927425
reststops 213.6 0.061417 0.912699 0.928571
rent 464.3 0.082769 0.974890 0.975575
shipmate 339.3 0.080018 0.957950 0.961538
cookbook 163.3 0.050544 0.973721 0.963636
channels 142.6 0.053381 0.960317 0.971631
infowars 168.0 0.078670 0.992178 0.974659
loop 146.3 0.056796 0.993166 0.975391
opensnow 127.0 0.044244 0.981708 0.997333

Table 5.3: Number of estimated hot items, and relative error, precision and recall of
identification of estimated hot items with a 256Kb space budget and 1000 users.

Table 5.3 shows that even a small space budget of 256Kb and a relatively small number

of users can ensure high accuracy of the frequency estimates of the hot items. The relative

error of frequency estimates are below 10% for every app. This analysis also demonstrates

high precision and recall – for two apps the precision and recall is above 0.9 and they are

above 0.95 for the other apps. This indicates most of the true hot items were identified

correctly and the number of falsely identified hot items is also low. Table 5.4 shows the

results for 10000 users under the same space budget. With more users, the relative error over

the estimated hot items is lower for every app. It also shows an improvement in precision and

recall. The effects of larger number of users on precision and recall is shown in Figure 5.3.

5.3.2 Analysis of Frequent Itempairs

As described in Section 5.2, the analysis of hot itempairs propagates the set Ĥ of

estimated hot items to each user ui, where set E2
i is computed and then stored in a local

sketch. The global sketch constructed by the analysis server from these local sketches is

then used to produce frequency estimates for itempairs. The performance of this approach is

73

App #est-hot-items RE(hot) Precision Recall
apartmentguide 511 0.070372 0.958257 0.932698
reststops 211.6 0.049128 0.929594 0.950081
rent 464.6 0.059715 0.97993 0.981322
shipmate 347.6 0.057013 0.982774 0.970644
cookbook 165 0.025235 0.993939 0.987952
channels 142.3 0.025136 0.976784 0.985816
infowars 171 0.029349 0.996113 0.996101
loop 146.3 0.019695 0.990899 1
opensnow 125.6 0.011948 0.997354 0.994709

Table 5.4: Number of estimated hot items, and relative error, precision and recall of
identification of estimated hot items with a 256Kb space budget and 10000 users.

illustrated in Table 5.5 for 1000 users. The results were obtained with 4Mb space budget

for the local sketch. The averages of three runs are presented in the table. In each run the

analysis of hot items is first performed to compute set Ĥ, followed by the analysis of hot

itempairs. The first two columns show the number of true hot itempairs and the number of

estimated hot itempairs, respectively. Column “RE” shows the relative error computed over

the estimated hot itempairs. Columns “Precision” and “Recall” shows the precision and

recall of identifying the hot itempairs. Since app apartmentguide does not have any true

hot itempairs, recall is undefined and precision is 0; measurements for this app are added for

completeness and will not be discussed further. As can be seen from these results, for six of

the eight apps the accuracy of estimated frequencies is high.

5.3.2.1 Factors Affecting the Accuracy of Estimates

Next, we present an investigation of the effect of number of users and sketch size on the

accuracy of estimates. The same itempairs analysis was performed on the apps over 10000

users under a 4Mb space budget, and over 1000 users under a 16Mb space budget. The

74

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(9)
#users = 1000
#users = 10000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(9)
#users = 1000
#users = 10000

Figure 5.3: Precision and recall of frequency estimates of the estimated hot items under a
space budget of 256Kb.

results are presented in Tables 5.6 and 5.7. These results are obtained from one representative

run of each analysis. Comparisons between this data and the results in Table 5.5 are shown

by the charts in Figure 5.4 and Figure 5.5.

Effects of number of users. Figure 5.4 shows a comparison of precision and recall of

identification of the hot pairs for 1000 and 10000 users under the same space budget 4Mb.

Similar to the analysis in previous chapters, larger number of users results in better accuracy.

This effect is most significant for the two apps exhibiting low accuracy of estimates. Still,

for those two apps, the precision and recall do not show a large degree of improvement.

75

App #true hot pairs #est hot pairs RE Precision Recall
apartmentguide 0 312 1.183008 0 –
reststops 2002 2146.3 0.090108 0.839151 0.899434
rent 3703 11478.3 0.531024 0.208933 0.647493
shipmate 185 930.3 0.407134 0.144274 0.724324
cookbook 5024 5004 0.08326 0.927222 0.923501
channels 2851 2932.7 0.070268 0.901713 0.927394
infowars 2015 1958.7 0.074059 0.897977 0.872787
loop 6222 6324.7 0.089719 0.914513 0.929605
opensnow 7626 7660 0.084761 0.993304 0.997727

Table 5.5: Number of true and estimated hot pairs, and relative error, precision and recall of
identification of estimated hot pairs with a 4Mb space budget and 1000 users.

Effects of space budget. Figure 5.5 shows a comparison of precision and recall using

different space budgets. The same analysis was performed on the data for 1000 users with

two different space budgets: 4Mb and 16Mb. The number of rows and columns of the sketch

matrix were determined as described in Section 5.2.2. An increased space budget implies

using a sketch with larger number of columns, so with a 16Mb space budget, the number of

sketch columns is quadrupled the number of columns of a sketch under a 4Mb budget. An

overall conclusion that can be drawn from these experiments is that increasing the number

of columns in the sketch does not result in substantial improvements.

5.3.2.2 Study of Cases with Low Accuracy

As can be seen from these results, apps rent and shipmate achieve significantly lower

precision and recall compared to the rest of the apps. To study further the underlying causes,

we performed an experiment where the analysis of frequent itempairs used a 4Mb budget

and 1000 users, but did not perform any randomization of the generated local sketches. This

approach is not differentially private and is only used to establish a comparison baseline. For

76

App #true hot pairs #est hot pairs RE Precision Recall
apartmentguide 0 1 0.288998 0 –
reststops 1942 2003 0.050692 0.910135 0.938723
rent 2761 5154 0.221269 0.38475 0.718218
shipmate 114 224 0.138198 0.397321 0.780702
cookbook 5022 5024 0.060253 0.948447 0.948825
channels 2702 2708 0.044968 0.932792 0.934863
infowars 1675 1690 0.044112 0.905325 0.913433
loop 6099 6162 0.064824 0.940604 0.950320
opensnow 7626 7675 0.064390 0.992834 0.999213

Table 5.6: Number of true and estimated hot pairs, and relative error, precision and recall of
identification of estimated hot pairs with a 4Mb space budget and 10000 users.

app shipmate, RE is 0.090673, precision is 0.552239, and recall is 0.8. Compare this with

the results in Table 5.5, where RE is 0.407134, precision is 0.144274, and recall is 0.724324.

For app rent, RE is 0.161917, precision is 0.504046, and recall is 0.740211. In Table 5.5

the corresponding measurements are 0.531024, 0.208933, and 0.647493 respectively. As

can be seen from these comparisons, the effects of randomization do contribute significantly

to the inaccuracy. However, even when the effects of randomization are eliminated, overall

precision and recall for these two apps are still low; ideally, we would like to see their

values being close to 0.9, which is typically the case for the remaining apps even with

randomization.

The reason for these results is that the number of itempairs added to the global sketch

(without randomization) is significantly larger for these two apps compared to the rest of

the apps. To illustrate this, we determined the total number of itempairs being counted in

the global sketch on one representative run. These measurements are shown in Table 5.8.

Column |∪i (E2
i)| shows the total number of itempairs over all of 1000 users for each app.

It is evident that the numbers of itempairs reported in these two apps are significantly higher

77

App #true hot pairs #est hot pairs RE Precision Recall
apartmentguide 0 267 1.103211 0 –
reststops 2002 2171 0.080876 0.84339 0.914585
rent 3703 10145 0.459942 0.239724 0.656765
shipmate 185 751 0.343826 0.170439 0.691892
cookbook 5024 5046 0.066214 0.940151 0.944268
channels 2851 2911 0.058881 0.917898 0.937215
infowars 2015 2050 0.067583 0.888780 0.904218
loop 6222 6336 0.071106 0.929451 0.94648
opensnow 7626 7651 0.064235 0.995948 0.999213

Table 5.7: Number of true and estimated hot pairs, and relative error, precision and recall of
identification of estimated hot pairs with a 16Mb space budget and 1000 users.

App |∪i (E2
i)|

apartmentguide 130802
reststops 23428
rent 109272
shipmate 57624
cookbook 14027
channels 10438
infowars 14535
loop 11026
opensnow 8128

Table 5.8: Total number of itempairs reported over 1000 users.

than that in the other apps. Thus, the space budget is not sufficient to achieve as accurate

results as for the other apps.

To explore this observation further, we ran the analysis on app shipmate with various

sketch dimensions and no randomization. The results (relative error, precision, and recall)

are shown in Table 5.9. The table also shows the average time taken (in seconds) to report

all itempairs for one user; these measurements are in column “Average time per user (s)”

78

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(9), 4Mb space budget
#users = 1000
#users = 10000

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(9), 4Mb space budget
#users = 1000
#users = 10000

Figure 5.4: Precision and recall of frequency estimates of the estimated hot pairs under a
space budget of 4Mb.

column. From these results it can be seen that metrics can improve significantly with a

larger space budget, but the number of rows directly affects the processing time. Thus,

there is a trade-off between the space budget and processing time: under the same space

budget, increasing the number of columns instead of the number of rows can result in an

improvement of the results and shorter computation time. As discussed earlier, we consider

16384 rows to be the largest number of rows that is practical to use, as larger numbers of

rows lead to local computation times that are too large.

79

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

= ln(9), 1000 users
Space budget: 4Mb
Space budget: 16Mb

apartm
entguide

restst
ops rent

shipmate
cookbook

channels
infowars loop

opensnow
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

= ln(9), 1000 users
Space budget: 4Mb
Space budget: 16Mb

Figure 5.5: Precision and recall of frequency estimates of the estimated hot pairs under
space budgets of 4Mb and 16Mb.

Another exploratory experiment was run on shipmate with randomization using ε =

ln(9) (similar to all other randomized experiments in this chapter) and the number of sketch

columns increased to 512 and 1024, i.e., using 4 and 8 times as much space budget compared

to the experiments run with a space budget of 4Mb. The results are presented in Table 5.10.

It can be seen from these measurements that with an increased space budget, the proposed

analysis can achieve relative error, precision, and recall comparable with the results achieved

with smaller space budget and no randomization.

80

#rows #columns RE Precision Recall Average time
per user (s)

16384 128 0.090673 0.552239 0.800000 114.16
16384 256 0.052068 0.694064 0.821622 106.96
32768 128 0.054879 0.716216 0.859459 229.73
32768 256 0.032728 0.833333 0.891892 218.95

Table 5.9: Relative error, precision and recall for 1000 users of shipmate with various
sketch sizes and no randomization.

#rows #columns RE Precision Recall
16384 512 0.068202 0.648276 0.824561
16384 1024 0.05983 0.660256 0.903509

Table 5.10: Relative error, precision and recall for 1000 users of shipmate with various
sketch sizes and randomization for ε = ln(9).

To summarize the results of our study: for the two apps that show low accuracy of

estimates in Table 5.5, the underlying reasons are both the randomization effects and the

small sketch size. Randomization effects become less pronounced with increased numbers

of users, as illustrated in Figure 5.4. Increasing sketch size is beneficial as well, but the

number of rows is limited by practical considerations of sketch computation time.

5.3.3 Summary of Experimental Evaluation

Our results indicate that analysis of frequent items can be done with high accuracy even

with a small space budget and a small number of users. However, the analysis of itempairs is

more challenging. For some of the analyzed applications, using a 4Mb space budget (which

is still practical) and 1000 users, the achieved accuracy is good. The accuracy improves

further when the number of users is increased. However, for some apps there is significant

81

inaccuracy of the estimates. To distinguish between these two categories, a set of opt-in

users could be used. Such users can opt into the data collection and the analysis of accuracy

can be performed for their raw data. Such analysis can consider the practical trade-offs

between computation time, sketch size, and achieved accuracy.

82

Chapter 6: Related Work

Differential privacy. A few examples of prior work on differential privacy were already

discussed briefly [5, 20, 55, 58, 59]. In particular, Zhang et al. [58] target the now-deprecated

Google Analytics for mobile apps and use randomization to perturb each event to achieve

differential privacy for event frequency reporting. Their follow-up work [59–61] extracts

and applies consistency constraints on frequencies to improve accuracy and/or privacy. In

both projects, the underlying data is based on the static structural properties of the program

code. As discussed earlier, the problem considered in our work is different from both the

single-item-per-user setting in earlier projects [5, 20, 55] and from the mobile app frequency

analysis for fixed and static app data. Our efforts are focused on dynamic content which

is more privacy-sensitive, do not assume a pre-defined dictionary, and require handling of

on-the-fly updates to local dictionaries interleaved with events on the current dictionary

elements. In addition, no prior work defines a systematic way to integrate the privacy-related

code with the original app code.

Although theoretical approaches have been developed for differential privacy in other

problems—for example, most frequent items [5, 7], estimates of unknown distributions [16],

and clustering such as k-means [41]—these techniques have not been applied to software

analysis in general, and mobile app analytics in particular. Industry and government projects

have started to apply the theory of differential privacy in practice [4, 13, 15, 20, 38, 54]. The

83

success of these real-world efforts provides strong motivation to investigate the application

of differential privacy in mobile app analytics. Our work is a step in this direction, focusing

on an important category of sensitive data that has not been investigated before.

Privacy for mobile apps. Privacy leakage in mobile apps has also been studied extensively.

Liu et al. [36] focus specifically on analytics libraries and propose the Alde tool for static and

dynamic analysis of the data collection. Chen et al. [10] take advantage of the vulnerabilities

in two analytics libraries to manipulate user profiles to control ad delivery. Seneviratne

et al. [51] study tracking libraries in popular paid apps and find that more than half of

these apps contain at least one tracker. LinkDroid [23] tackles unregulated aggregation of

app-usage behaviors. Han et al. [30] employ dynamic information flow tracking to monitor

sending of sensitive information. Analysis of privacy policy violations in Android apps has

been studied in several projects [2, 52, 57]. These studies aim to prevent leaks of personal

information. Our work, on the other hand, is focused on a trade-off where sensitive data

could be collected legitimately over a population of users, but the data of each individual is

perturbed with differential privacy guarantees.

Privacy in software engineering. Privacy is an important concern in software engineering

practice. For example, there is increasing emphasis on privacy-by-design [29] and our

work can be thought of as a particular instance of this approach. In software engineering

research there is a significant body of work that considers privacy-related aspects of software

testing, debugging, and defect prediction [6, 8, 12, 19, 28, 35, 37, 48, 49, 53]. We are not

aware of work in this area that employs differential privacy and benefits from its principled

and quantifiable protection of users’ data. Further, we focus on data collection by mobile

app analytics frameworks, especially the most popular Firebase framework, and consider

84

the dynamic data content an app user interacts with, rather than data specific to testing or

debugging tasks.

Remote software analysis. Many prior efforts have studied the remote analysis of deployed

software. Coverage information from software users has been used for testing in a study

on residual coverage monitoring [47]. In another study, GAMMA [45] demonstrates data

collection from users across program instances. Some other projects addressed placement

of profiling probes [14, 43], failure reproduction and debugging [11], and analysis of post-

deployment failure reports [44] using data collected from deployed software. Privacy in

remote software analysis has also been studied in prior work. There are techniques for

anonymization of collected data [12, 19]. There are also studies that show that anonymization

does not guarantee strong privacy [39, 40]. We consider the privacy protection provided by

local differential privacy. There is prior work on impact analysis and regression testing [46]

and failure reports [31, 33, 34] which could potentially benefit from adopting differentially-

private techniques.

85

Chapter 7: Conclusions

The widespread use of mobile app analytics, together with the sensitive nature of the

data being collected, provide strong motivation for designing privacy-preserving versions of

such analytics. We consider an important but overlooked instance of this problem, where

dynamic content is presented to the app user and the resulting interactions are recorded by

the analytics infrastructure. Our novel differentially-private solution, described in Chapter 3,

provides both strong privacy guarantees and high accuracy. Through the use of automated

code rewriting, the approach allows practical integration in existing mobile apps and easy

maintenance as the app evolves. Our studies illustrate how pre-deployment tuning of the

approach can be performed, and how different problem parameters affect the accuracy of

the produced frequency estimates.

While Chapter 3 focuses on collection of randomized analytics data along with the

distributed content from the users, Chapter 4 provides another approach to deal with the

same problem with more privacy. The use of a differentially-private count sketch allows the

approach to hide the set of content items retrieved by a user and thus provides higher privacy,

at the expense of somewhat lower accuracy of the frequency estimates. This approach works

particularly well to identify the most frequent elements in a differentially-private way, which

is a major goal of collecting analytics data.

86

Chapter 5 considers another aspect of collecting analytics data: finding frequent items

and itempairs under space constraints. We have extended the analysis in Chapter 4 to identify

the most frequent items and pairs of items, while using a fixed practical amount of space

and maintaining the same privacy guarantees. We found that even with a small number of

users and a small space budget for randomized sketches, highly-accurate estimates can be

obtained for the hot items and their frequencies. Our results further indicate that in many

cases frequent itempairs can also be identified accurately, but practical limits to this accuracy

are imposed by the number of app users and the space budget.

87

Bibliography

[1] UI Automator. https://github.com/xiaocong/uiautomator.

[2] Y. Agarwal and M. Hall. ProtectMyPrivacy: Detecting and mitigating privacy leaks on

iOS devices using crowdsourcing. In MobiSys, pages 97–110, 2013.

[3] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of

items in large databases. In Proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’93, page 207–216, New York, NY,

USA, 1993. Association for Computing Machinery. ISBN 0897915925. doi: 10.1145/

170035.170072. URL https://doi.org/10.1145/170035.170072.

[4] Apple. Learning with privacy at scale. https://machinelearning.apple.com/

2017/12/06/learning-with-privacy-at-scale.html, 2017.

[5] R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta. Practical locally private heavy

hitters. In Advances in Neural Information Processing Systems, pages 2285–2293,

2017.

[6] A. Budi, D. Lo, L. Jiang, et al. kb-anonymity: A model for anonymized behaviour-

preserving test and debugging data. In Programming Language Design and Implemen-

tation, pages 447–457, 2011.

88

https://github.com/xiaocong/uiautomator
https://doi.org/10.1145/170035.170072
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

[7] M. Bun, J. Nelson, and U. Stemmer. Heavy hitters and the structure of local privacy.

In ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

pages 435–447, 2018.

[8] M. Castro, M. Costa, and J.-P. Martin. Better bug reporting with better privacy. In

International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 319–328, 2008.

[9] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.

In ICALP, pages 693–703, 2002.

[10] T. Chen, I. Ullah, M. A. Kaafar, and R. Boreli. Information leakage through mobile

analytics services. In HotMobile, pages 15:1–15:6. ACM, 2014.

[11] J. Clause and A. Orso. A technique for enabling and supporting debugging of field

failures. In International Conference on Software Engineering, pages 261–270, 2007.

[12] J. Clause and A. Orso. Camouflage: Automated anonymization of field data. In

International Conference on Software Engineering, pages 21–30, 2011.

[13] A. Dajan, A. Lauger, P. Singer, D. Kifer, J. Reiter, A. Machanavajjhala, S. Garfinkel,

S. Dahl, M. Graham, V. Karwa, H. Kim, P. Leclerc, I. Schmutte, W. Sexton, L. Vil-

huber, and J. Abowd. The modernization of statistical disclosure limitation at the

U.S. Census Bureau. https://www2.census.gov/cac/sac/meetings/2017-09/

statistical-disclosure-limitation.pdf, Sept. 2017.

[14] M. Diep, M. Cohen, and S. Elbaum. Probe distribution techniques to profile events in

deployed software. In International Symposium on Software Reliability Engineering,

pages 331–342, 2006.

89

https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf

[15] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data privately. In Advances

in Neural Information Processing Systems, pages 3571–3580, 2017.

[16] J. Duchi, M. Jordan, and M. Wainwright. Local privacy and statistical minimax rates.

In IEEE Annual Symposium on Foundations of Computer Science, pages 429–438,

2013.

[17] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Founda-

tions and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[18] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in

private data analysis. In Theory of Cryptography Conference, pages 265–284, 2006.

[19] S. Elbaum and M. Hardojo. An empirical study of profiling strategies for released

software and their impact on testing activities. In International Symposium on Software

Testing and Analysis, pages 65–75, 2004.

[20] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable

privacy-preserving ordinal response. In ACM SIGSAC Conference on Computer and

Communications Security, pages 1054–1067, 2014.

[21] Exodus Privacy. Most frequent app trackers for Android. https://reports.

exodus-privacy.eu.org/en/reports/stats, 2020.

[22] Facebook. Facebook analytics. https://analytics.facebook.com, 2020.

[23] H. Feng, K. Fawaz, and K. G. Shin. Linkdroid: reducing unregulated aggregation of

app usage behaviors. In USENIX Security Symposium, pages 769–783, 2015.

90

https://reports.exodus-privacy.eu.org/en/reports/stats
https://reports.exodus-privacy.eu.org/en/reports/stats
https://analytics.facebook.com

[24] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java performance

evaluation. page 57–76, 2007.

[25] Google. Google Analytics for Firebase use policy. https://firebase.google.com/

policies/analytics, .

[26] Google. UI Automator. https://developer.android.com/training/testing/

ui-automator, .

[27] Google. Firebase. https://firebase.google.com, 2020.

[28] M. Grechanik, C. Csallner, C. Fu, and Q. Xie. Is data privacy always good for software

testing? In International Symposium on Software Reliability Engineering, pages

368–377, 2010.

[29] I. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman, and A. Balissa.

Privacy by designers: Software developers’ privacy mindset. Empirical Software

Engineering, 23(1):259–289, 2018.

[30] S. Han, J. Jung, and D. Wetherall. A study of third-party tracking by mobile apps in

the wild. Univ. Washington, Tech. Rep. UW-CSE-12-03-01, 2012.

[31] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil. Applying classification techniques

to remotely-collected program execution data. In ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering,

pages 146–155, 2005.

[32] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C. Pierce, and A. Roth.

Differential privacy: An economic method for choosing epsilon. In CSF, pages

398–410, 2014.

91

https://firebase.google.com/policies/analytics
https://firebase.google.com/policies/analytics
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://firebase.google.com

[33] W. Jin and A. Orso. BugRedux: Reproducing field failures for in-house debugging. In

International Conference on Software Engineering, pages 474–484, 2012.

[34] W. Jin and A. Orso. F3: Fault localization for field failures. In International Symposium

on Software Testing and Analysis, pages 213–223, 2013.

[35] Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying. On the multiple sources and

privacy preservation issues for heterogeneous defect prediction. IEEE Transactions on

Software Engineering, pages 1–21, 2017.

[36] X. Liu, S. Zhu, W. Wang, and J. Liu. Alde: Privacy risk analysis of analytics libraries

in the android ecosystem. In SecureComm, pages 655–672, 2016.

[37] D. Lo, L. Jiang, A. Budi, et al. kbe-anonymity: Test data anonymization for evolving

programs. In IEEE/ACM International Conference on Automated Software Engineer-

ing, pages 262–265, 2012.

[38] Microsoft. New differential privacy platform co-developed with harvard’s opendp

unlocks data while safeguarding privacy. https://blogs.microsoft.com/

on-the-issues/2020/06/24/differential-privacy-harvard-opendp/, June

2020.

[39] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In

IEEE Symposium on Security and Privacy, pages 111–125, 2008.

[40] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In IEEE Symposium

on Security and Privacy, pages 173–187, 2009.

[41] K. Nissim and U. Stemmer. Clustering algorithms for the centralized and local models.

arXiv:1707.04766, 2017.

92

https://blogs.microsoft.com/on-the-issues/2020/06/24/differential-privacy-harvard-opendp/
https://blogs.microsoft.com/on-the-issues/2020/06/24/differential-privacy-harvard-opendp/

[42] Oath. Flurry. http://flurry.com, 2020.

[43] P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and B. Liblit. Optimizing

customized program coverage. In IEEE/ACM International Conference on Automated

Software Engineering, pages 27–38, 2016.

[44] P. Ohmann, A. Brooks, L. D’Antoni, and B. Liblit. Control-flow recovery from partial

failure reports. In Programming Language Design and Implementation, pages 390–405,

2017.

[45] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. GAMMA system: Continuous

evolution of software after deployment. In International Symposium on Software

Testing and Analysis, pages 65–69, 2002.

[46] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging field data for impact anal-

ysis and regression testing. In ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, pages 128–137, 2003.

[47] C. Pavlopoulou and M. Young. Residual test coverage monitoring. In International

Conference on Software Engineering, pages 277–284, 1999.

[48] F. Peters and T. Menzies. Privacy and utility for defect prediction: Experiments with

MORPH. In International Conference on Software Engineering, pages 189–199, 2012.

[49] F. Peters, T. Menzies, L. Gong, and H. Zhang. Balancing privacy and utility in

cross-company defect prediction. IEEE Transactions on Software Engineering, 39(8):

1054–1068, 2013.

[50] Sable. Soot – A framework for analyzing and transforming Java and Android applica-

tions. https://soot-oss.github.io/soot, 2020.

93

http://flurry.com
https://soot-oss.github.io/soot

[51] S. Seneviratne, H. Kolamunna, and A. Seneviratne. A measurement study of tracking

in paid mobile applications. In WiSec, 2015.

[52] R. Slavin, X. Wang, M. B. Hosserni, J. Hester, R. Krishnan, J. Bhatia, T. Breaux,

and J. Niu. Toward a framework for detecting privacy policy violation in Android

application code. In International Conference on Software Engineering, pages 25–36,

2016.

[53] K. Taneja, M. Grechanik, R. Ghani, and T. Xie. Testing software in age of data

privacy: A balancing act. In ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, pages 201–211, 2011.

[54] Uber. Uber releases open source project for differen-

tial privacy. https://medium.com/uber-security-privacy/

differential-privacy-open-source-7892c82c42b6, July 2017.

[55] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for

frequency estimation. In USENIX Security Symposium, pages 729–745, 2017.

[56] T. Wang, N. Li, and S. Jha. Locally differentially private heavy hitter identification.

IEEE Trans. Dependable Sec. Comput., 2019.

[57] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. Breaux, and J. Niu. GUILeak: Tracing

privacy-policy claims on user input data for Android applications. In International

Conference on Software Engineering, pages 37–47, 2018.

[58] H. Zhang, S. Latif, R. Bassily, and A. Rountev. Introducing privacy in screen event

frequency analysis for Android apps. In International Working Conference on Source

Code Analysis and Manipulation, pages 268–279, 2019.

94

https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6

[59] H. Zhang, Y. Hao, S. Latif, R. Bassily, and A. Rountev. A study of event frequency

profiling with differential privacy. In ACM SIGPLAN International Conference on

Compiler Construction (CC), Feb. 2020.

[60] H. Zhang, Y. Hao, S. Latif, R. Bassily, and A. Rountev. Differentially-private software

frequency profiling under linear constraints. Proceedings of the ACM on Programming

Languages, 4(OOPSLA), Nov. 2020.

[61] H. Zhang, S. Latif, R. Bassily, and A. Rountev. Differentially-private control-flow

node coverage for software usage analysis. In USENIX Security Symposium, pages

1021–1038, 2020.

95

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	1. Introduction
	1.1 Overview and Outline

	2. Background
	2.1 Mobile App Analytics
	2.1.1 Example

	2.2 Differential Privacy

	3. Introducing Differential Privacy Mechanisms for Mobile App Analytics of Dynamic Content
	3.1 Introduction
	3.1.1 Challenges
	3.1.2 Contributions

	3.2 Problem Definition and Solution Design
	3.2.1 Problem Statement
	3.2.2 Threat Model
	3.2.3 Design of a Differentially-Private Scheme
	3.2.4 Limitations

	3.3 Implementation for Firebase Apps
	3.3.1 Overview
	3.3.2 Code Instrumentation
	3.3.3 Pre-Deployment Characterization of Accuracy

	3.4 Experimental Evaluation
	3.4.1 Study Subjects
	3.4.2 Simulating User Behavior
	3.4.3 Accuracy of Frequency Estimates
	3.4.4 Precision and Recall for Hot Items
	3.4.5 Effects of Content Similarity on Accuracy

	3.5 Summary

	4. Stronger Privacy for Dynamic Content in App Analytics via Randomized Sketches
	4.1 Challenges and Contributions
	4.2 Background
	4.3 Randomized Count Sketch for Dynamic Content Frequencies
	4.3.1 Count Sketch Without Privacy
	4.3.2 Count Sketch With Privacy
	4.3.3 Efficient Construction of the Randomized Local Sketch

	4.4 Experimental Evaluation
	4.4.1 Synthesizing User Data
	4.4.2 Efficiency of Optimization using Binomial Distribution
	4.4.3 Accuracy of Frequency Estimates
	4.4.4 Precision and Recall for Hot Items
	4.4.5 Effects of Sketch Size on Accuracy

	4.5 Summary

	5. Differentially-Private Analysis of Frequent Items and Frequent Itempairs Using Randomized Sketches
	5.1 Analysis of Frequent Items
	5.1.1 Characterization Study of Sketch Size and Shape
	5.1.2 Sketch Shape under Space Constraints

	5.2 Analysis of Frequent Itempairs
	5.2.1 Design of LDP Analysis of Frequent Itempairs
	5.2.2 Selecting Sketch Size and Shape

	5.3 Experimental Evaluation
	5.3.1 Analysis of Frequent Items
	5.3.2 Analysis of Frequent Itempairs
	5.3.3 Summary of Experimental Evaluation

	6. Related Work
	7. Conclusions
	Bibliography

