
Automated Software Engineering, 11, 7–26, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Precise Call Graphs for C Programs
with Function Pointers

ANA MILANOVA milanova@cs.rpi.edu
Department of Computer Science, Rensselaer Polytechnic Institute

ATANAS ROUNTEV rountev@cis.ohio-state.edu
Department of Computer and Information Science, The Ohio State University

BARBARA G. RYDER ryder@cs.rutgers.edu
Division of Computer and Information Sciences, Rutgers University

Abstract. The use of pointers presents serious problems for software productivity tools for software understand-
ing, restructuring, and testing. Pointers enable indirect memory accesses through pointer dereferences, as well
as indirect procedure calls (e.g., through function pointers in C). Such indirect accesses and calls can be disam-
biguated with pointer analysis. In this paper we evaluate the precision of one specific pointer analysis (the FA
pointer analysis by Zhang et al.) for the purposes of call graph construction for C programs with function pointers.
The analysis is incorporated in a production-strength code-browsing tool from Siemens Corporate Research in
which the program call graph is used as a primary tool for code understanding.

The FA pointer analysis uses an inexpensive, almost-linear, flow- and context-insensitive algorithm. To measure
analysis precision, we compare the call graph constructed by this analysis with the most precise call graph obtainable
by a large category of existing pointer analyses. Surprisingly, for all our data programs the FA analysis achieves the
best possible precision. This result indicates that for the purposes of call graph construction, inexpensive pointer
analyses may provide precision comparable to the precision of expensive pointer analyses.

Keywords: call graph, function pointers, pointer analysis

1. Introduction

In languages like C, the use of pointers creates serious problems for software productivity
tools that use some form of semantic code analysis for the purposes of software understand-
ing, restructuring, and testing. Pointers enable indirect memory accesses. For example,
consider the following sequence of statements:

1 *p = 1;
2 write(x);

At line 1 we need to know those variables to which p may point in order to determine
which variables may be modified by the statement. This information is needed by a variety of
applications: for example, if slicing with respect to statement 2, a slicing tool needs to deter-
mine whether statement 1 should be included in the slice. In addition, pointers allow indirect
procedure calls—for example, if fp is a function pointer in C, statement (*fp)() may

8 MILANOVA, ROUNTEV AND RYDER

invoke all functions that are pointed to by fp. Such indirect calls significantly complicate
the interprocedural flow of control in the program.

The program call graph is a popular representation of the calling relationships between
program procedures: an edge (P1, P2) shows that procedure P1 may call procedure P2. This
information is essential for program comprehension, and can be provided by a variety of
software productivity tools. However, such tools face a problem when the program contains
indirect calls through function pointers. In this case, some form of pointer analysis may be
necessary to disambiguate indirect calls. The goal of our research is to investigate such use
of pointer analysis in the context of an industrial code-browsing tool.

Precise information about memory accesses and procedure calls is fundamental for static
analyses used in software engineering tools and optimizing compilers. Pointer analysis
determines the set of memory locations that a given memory location may point to (e.g., the
analysis can determine which are the locations that p may point to at line 1). In addition,
pointer analysis determines which function addresses may be stored in a given function
pointer. Because of the importance of such information, a variety of pointer analyses have
been developed (Landi and Ryder, 1992; Ryder et al., 2001; Hind et al., 1999; Emami
et al., 1994; Andersen, 1994; Wilson and Lam, 1995; Steensgaard, 1996; Zhang et al.,
1996; Shapiro and Horwitz, 1997; Liang and Harrold, 1999; Foster et al., 2000; Das, 2000;
Fähndrich et al., 2000; Cheng and Hwu, 2000). These analyses provide different tradeoffs
between cost and precision. For example, flow- and context-insensitive pointer analyses
(Andersen, 1994; Steensgaard, 1996; Zhang et al., 1996; Shapiro and Horwitz, 1997; Das,
2000) ignore the flow of control between program points and do not distinguish between
different calling contexts of procedures. As a result, such analyses are relatively inexpensive
and imprecise. In contrast, analyses with some degree of flow or context sensitivity are
typically more expensive and more precise.

The precision of different analyses has been traditionally measured with respect to the
disambiguation of indirect memory accesses (e.g., the locations that p points to at statement
*p=1). However, there has been no work on measuring analysis precision with respect to
the disambiguation of indirect procedure calls and its impact on the construction of the
program call graph. The goal of our work is to measure the precision of a pointer analysis
by Zhang et al. (1996) and Zhang (1998) (referred to by its authors as the FA pointer
analysis) for the purposes of call graph construction for C programs with function pointers.
The FA analysis is a flow- and context-insensitive analysis with O(nα(n, n)) complexity,
where n is the size of the program and α is the inverse of Ackermann’s function. This
analysis belongs at the low end of the pointer analysis spectrum with respect to cost and
precision.

The FA analysis was implemented in the context of an industrial source code browser
for C developed at the Software Engineering Department of Siemens Corporate Research.
The standard version of the browser provides syntactic cross-reference information and a
graphical user interface for accessing this information. One of the primary browser features
is the display and navigation of call graphs. We worked on extending the tool functionality
to extract and display semantic information obtained through static analysis. As part of this
work, we implemented the FA pointer analysis and used its output to augment the call graph
information provided by the browser. In the standard syntax-based browser version, indirect

PRECISE CALL GRAPHS FOR C PROGRAMS WITH FUNCTION POINTERS 9

calls could not be handled—that is, the call graphs did not contain edges representing such
calls. By using the output of the FA analysis, the browser became capable of providing
correct and complete information about the program call graph.

To measure analysis precision, for each of our data programs we compared the call graph
computed by the FA analysis with the “fully precise” call graph. In Section 5 we discuss in
detail our definition of “fully precise”, but intuitively, this is the best call graph that could
be computed by a wide variety of existing pointer analyses (including analyses that are
theoretically more precise than the FA analysis, and substantially more expensive in prac-
tice). By comparing these two call graphs, we wanted to evaluate the imprecision of the FA
analysis and to gain insight into the sources of this imprecision. Surprisingly, in all our data
programs there was no difference between the two call graphs. This result indicates that for
the purposes of call graph construction, even analyses at the lower end of the cost/precision
spectrum can provide very good precision, and therefore the use of more expensive analyses
may not be justified. This finding is particularly interesting because existing work shows
that for the purposes of disambiguating indirect memory accesses (e.g., in *p=1), the use
of more expensive analyses provides substantial precision benefits.

Contributions. The contributions of our work are the following:

• We present the first empirical study of pointer analysis precision with respect to disam-
biguation of indirect procedure calls and call graph construction.

• On a set of 8 publicly available realistic C programs, we show that a relatively imprecise
and inexpensive pointer analysis produces the fully precise call graph. Therefore, for the
purposes of call graph construction in the presence of function pointers, the use of more
expensive pointer analyses may be unnecessary.

Outline. The rest of this paper is organized as follows. Section 2 discusses the use of
function pointers in C programs. Section 3 provides background on pointer analysis and
describes dimensions of analysis cost and precision. Section 4 presents the FA pointer
analysis. The notion of fully precise call graph is discussed in Section 5. Section 6 describes
our empirical results and the conclusions from these results. Related work is discussed in
Section 7. Appendix A provides additional details about our definition of the fully precise
call graph.

2. Function pointers in C programs

The program call graph provides essential information for software understanding, restruc-
turing, and testing. In the absence of indirect calls, this graph can be easily constructed
from the program source code. However, function pointers in C enable indirect calls. In
real-world C programs, function pointers are often employed as a powerful mechanism for
creating compact and flexible code and for extending, customizing, and reusing existing
functionality. This section discusses several patterns of function pointer usage in C pro-
grams and presents detailed examples that illustrate these typical uses. These examples are
representative of the stylistic patterns we encountered in our benchmarks.

10 MILANOVA, ROUNTEV AND RYDER

Figure 1. Table dispatch.

2.1. Table dispatch

Consider the example in figure 1. Tabletablemaps a name to a function address. Function
find p func takes a name as an argument and returns the address of the function that
corresponds to that name in the map. Therefore, the function invoked at run time for the
indirect call site at line 7 is either func1 or func2, depending on the value of the first
command line argument.

Storing function addresses in large function tables is a widely used idiom in C programs.
At run time the functions are often dispatched from the table based on user input (e.g., com-
mand line option, command line argument, or spreadsheet function). This pattern produces
compact code that is easier to understand and maintain, and therefore occurs often in C
programs.

2.2. Extensible and customizable functionality

Figure 2 shows a fragment from a memory management library. Functions chunk fun
and free fun allow library clients to choose the memory allocation and deallocation
procedures associated with each obstack. Clients could either use default procedures, or
could provide other procedures.

The examination of our benchmark programs revealed libraries that define global data
structures with function pointer fields. Initially, these fields point to functions that provide
default functionality, but clients can redefine this functionality by redirecting the fields to

PRECISE CALL GRAPHS FOR C PROGRAMS WITH FUNCTION POINTERS 11

Figure 2. Extensible functionality.

client functions. In this case, function pointers provide a flexible mechanism for extending
and customizing reusable code.

2.3. Polymorphic behavior

In some cases formal parameters are declared as function pointers to allow a function to
behave in a polymorphic manner. For example, the goal of function

void sentence(FILE *f,void (*process)())

may be to read all sentences from a given file, parse each sentence, and then process the
sentence. If sentence is invoked from a word counting routine, the processing routine
processwill be counting the words in the sentence. If sentence is invoked from a spell
checking routine, process will be checking for spelling mistakes. This pattern of usage
facilitates the creation of reusable code, and is common in many C programs.

3. Pointer analysis

Since function pointers are commonly used in C programs, software productivity tools
should be able to take them into account when constructing the program call graph. To
achieve this goal, such tools need to employ pointer analysis to identify the functions that
could be invoked at indirect calls. Pointer analysis is a popular kind of static analysis that
determines which memory locations may be pointed to by a given memory location. Thus,
pointer analysis can determine the functions that may be pointed to by a variable fp, which
allows the disambiguation of indirect calls of the form (*fp)().

In general, the problem addressed by pointer analysis is undecidable (Landi, 1992). This
has led to the development of a wide variety of approximate analyses. All such analyses
are conservative (i.e., they are guaranteed to report all possible pointer relationships that

12 MILANOVA, ROUNTEV AND RYDER

could actually occur at run time). Analysis A is more precise than analysis B if the solution
computed by A is guaranteed to be a subset of the solution produced by B. More precise
analyses are typically more expensive: existing analyses range in complexity from doubly
exponential to almost linear. This section describes several important dimensions of the
cost/precision spectrum for pointer analysis. A detailed discussion of pointer analysis,
dimensions of analysis precision, and an extensive bibliography of existing work appears
in Hind (2001).

Flow-sensitive vs. flow-insensitive. Flow-sensitive analyses take into account the flow of
control between program points inside a procedure, and compute separate solutions for
these points. These analyses consider the sequence order of program statements. Flow-
insensitive analyses ignore the flow of control between program points, and therefore,
statement execution order. Thus, flow-insensitive analyses are typically less precise and
less expensive than flow-sensitive analyses.

Context-sensitive vs. context-insensitive. Context-sensitive analyses distinguish between
the different contexts under which a procedure is invoked, and analyze the procedure sepa-
rately for each context. Context-insensitive analyses do not separate the different invocation
contexts for a procedure, which improves efficiency at the expense of some possible preci-
sion loss.

Consider the example in figure 3. A context-insensitive analysis does not separate the dif-
ferent contexts of invocation of function id; as a result, the analysis erroneously determines
that variable a in function main points to both i and j. In contrast, a context-sensitive
analysis distinguishes between the first and the second invocation of id, and correctly de-
termines that a points only to variable i, whose value is set to zero by the last assignment
statement in main.

Field-sensitive vs. field-insensitive. Field-sensitive analyses distinguish between different
fields of a structure whereas field-insensitive analyses collapse all fields into a single object.

Figure 3. Sample program.

PRECISE CALL GRAPHS FOR C PROGRAMS WITH FUNCTION POINTERS 13

For example, for a structure s with two pointer fields f and g, a field-insensitive analysis
always reports that s.f and s.g point to the same set of memory locations, while a
field-sensitive analysis maintains separate information for the two fields.

Directional vs. symmetric. This dimension of precision is specific to flow-insensitive
analyses. Directional analyses (also referred to as subset-based analyses) treat assignments
as unidirectional flow of values while symmetric analyses (referred to as unification-based
analyses) treat assignments as bidirectional. For example, consider assignment x=y and
suppose that x may point to a and y may point to b. Given this information, a directional
analysis determines that x may point to b. However, a symmetric analysis infers not only
that x may point to b, but also that y may point to a.

Analyses that are flow-insensitive, context-insensitive, and symmetric are particularly
interesting for analyzing large programs. Because of these properties, analysis implemen-
tations can be very efficient: with the appropriate use of UNION-FIND algorithms, the time
complexity of such analysis is O(nα(n, n)) (i.e., almost linear).

4. FA pointer analysis

The FA analysis (Zhang et al., 1996, Zhang, 1998) (Flow-insensitive Alias analysis) is
a pointer analysis for C that is flow-insensitive, context-insensitive, field-sensitive, and
symmetric. The analysis identifies pairs of aliases (i.e., multiple names for the same memory
location). For example, after the statement p=&x, *p and x are aliases because they denote
the same memory location.

The FA analysis is based on a fast UNION-FIND algorithm whose complexity is almost
linear in the size of the program and the size of the produced call graph. Thus, the analysis
belongs at the low end of the pointer analysis spectrum with respect to cost and precision.
The FA analysis is similar to a popular unification-based pointer analysis by Steensgaard
(l996). The most important difference between the two analyses is that the FA analysis is
field-sensitive. For example, for a structure swith two pointer fields f and g, Steensgaard’s
analysis associates a single alias set with *(s.f) and *(s.g), while the FA analysis
computes distinct alias sets for *(s.f) and *(s.g).

Almost all existing pointer analyses are more precise than the FA analysis. For exam-
ple, one popular pointer analysis is Andersen’s analysis (Andersen, 1994) which is flow-
insensitive, context-insensitive, and directional. Thus, if x may point to a and y may point
to b after processing statement x=y, the FA analysis concludes that x and y may point to
both a and b, whereas Andersen’s analysis concludes that x may point to b and a, and y
may point to b.

The FA analysis handles arrays and pointer arithmetic similarly to other commonly-
used pointer analyses. The analysis does not distinguish between different array elements,
effectively treating an array as one large variable. Similarly, it ignores pointer arithmetic
and treats *(p+i) as *p.

Since the analysis is field-sensitive, it keeps track of the possible aliases of structure
fields. In the presence of casting, it is necessary to identify potentially aliased fields that
are declared in different structure types. To do this, the analysis matches up the longest

14 MILANOVA, ROUNTEV AND RYDER

common subsequences of field types; this approach is similar to the technique presented in
Yong et al. (1999). The treatment of union types is done in a similar manner. The rules for
handling casting and unions are described in detail in Zhang (1998).

In this section we summarize the key features of the FA analysis; more details are avail-
able in Zhang et al. (1996) and Zhang (1998). The analysis first computes an equivalence
relation, referred to as the PE equivalence relation (Pointer-related Equality). Based on this
relation, it is straightforward to identify pairs of potential aliases in the program. During
the construction of the PE relation, the analysis resolves indirect calls through function
pointers; this information can later be used to construct the program call graph.

4.1. PE equivalence relation

Memory locations and addresses of memory locations are referred to as object names. An
object name starts with a variable or a heap name followed by a sequence of applications
of left-associative structure field accesses (.field), or right-associative pointer dereferences
(*). Auxiliary heap names are created explicitly for dynamically allocated memory (e.g.,
through calls to malloc) and are distinguished by their allocation site. Object names can
also be derived by applying the address operator (&) to certain kinds of object names. An
object name o is a prefix of an object name o1 if o1 is derived from o by applying a field
access (.field) or a dereference (*).

The set of object names for the sample statements from figure 4 is

p,&x,x,p->f,*p,&z,z,t

These are the names that appear syntactically in the program. Name *p is added because it
appears as a prefix of (*p).f. Names x and z appear in &x and &z, respectively.

If a pair of object names is in the PE relation, this means that the expressions denoted by
these names may have the same value at run time. For example, for pointers this means that
the two pointers may point to the same memory locations. For structure types this means
that their corresponding fields may have the same values. The PE relation is an equivalence
relation (i.e., it is reflexive, symmetric, and transitive), and therefore defines a partitioning
of the set of object names into equivalence classes.

To compute the relation, the analysis builds a graph referred to as the GPE graph. Graph
nodes correspond to equivalence classes of object names; graph edges are either derefer-
ence edges labeled with *, or field edges labeled with a field identifier. The algorithm for
constructing GPE (shown in figure 5) is defined in terms of several functions:

• init equiv class(o) initializes a singleton equivalence class which contains object name o.
• find(o) returns the equivalence class containing object name o.

Figure 4. Sample set of statements.

PRECISE CALL GRAPHS FOR C PROGRAMS WITH FUNCTION POINTERS 15

Figure 5. Algorithm for constructing GPE .

• union(e1, e2) merges equivalence classes e1 and e2 and returns the resulting equivalence
class.

• apply(o, a) returns a new object name after applying to name o an accessor a that is a
field access or a pointer dereference. For example, apply(p, ∗) returns ∗p.

Each equivalence class e has a prefix set associated with it; intuitively, this set represents
the outgoing edges from e in GPE. Set prefix[e] contains a pair (a, o), for some o ∈ e′, if
and only if there exists an object name o1 ∈ e such that apply(o1, a) ∈ e′—in other words,
(a, o) ∈ prefix[e] encodes an edge from e to e′ labeled with a.

The algorithm for constructing GPE (Zhang et al., 1996) is presented in figure 5. The first
part of the algorithm (lines 1–10) creates the initial GPE graph. A singleton equivalence
class is added to the graph for each object name (lines 1–3). Lines 4 through 10 construct
the prefix sets for the equivalence classes (i.e., the edges in GPE). For the set of statements
in figure 4, the initial graph contains the following edges:

{p ∗−→ *p, *p
f−→ p->f, &x

∗−→ x, &z
∗−→ z}

16 MILANOVA, ROUNTEV AND RYDER

After the initialization phase, the analysis processes all program statements and merges
nodes corresponding to expressions that may have the same value (lines 11–13).1 For
example, for each assignment statement, the analysis merges the nodes corresponding to
the equivalence classes that contain the object names for the left-hand side and the right-
hand side of the assignment. Similarly, for each call site, the equivalence classes of an
actual parameter and its corresponding formal are merged. To take into account all possible
formal-actual pairs, the analysis resolves indirect calls: for a call through fp, each function
func that is added to the equivalence class containing ∗fp is considered a potential target of
the call. Subsequently, the analysis performs the appropriate merges of equivalence classes
of actual arguments at the call through fp and the formal parameters of func, as well as the
return variable of func and the left-hand-side of the indirect call.2 Thus, in addition to GPE,
the analysis implicitly constructs the program call graph.

Whenever two merged classes have outgoing edges with the same label, the target nodes
are merged recursively. The pseudocode for the recursive merge appears in lines 15 through
21 in figure 5. For example, in figure 4, statement p=&x results in merging of nodes p and
&x. Nodes *p and x are also merged because there are outgoing edges labeled * from p
to *p and from &x to x. Nodes p->f and &z are merged due to statement p->f=&z; no
recursive merge follows because p->f has no outgoing edges. Similarly, nodes t and p
are merged due to the last statement.

The nodes in the final GPE define the PE equivalence relation. Names that are in the same
equivalence class correspond to expressions that may have the same value at run time. For
the example in figure 4, the graph contains the following equivalence classes:

{p,&x,t}, {*p,x}, {p->f,&z}, {z}

Example. Recall the set of statements in figure 1. The initial GPE graph contains the
following edges:

table[]
name−→ table[].name

table[]
func−→ table[].func

&func1
∗−→ func1 &func2

∗−→ func2

When table is initialized, singleton equivalence classes {table[].func} and
{&func1} are merged first. Then nodes {table[].func,&func1} and {&func2} are
merged. Because there are outgoing edges with the same label from these nodes to nodes
{func1} and {func2} respectively, {func1} and {func2} are merged as well. As a
result of the initialization of table, the analysis creates the following equivalence classes
(connected with a dereference edge):

{table[].func, &func1, &func2}
{func1, func2}

PRECISE CALL GRAPHS FOR C PROGRAMS WITH FUNCTION POINTERS 17

After line 3 in figure 1 the equivalence classes are

{ret find p func, table[].func,

&func1, &func2}
{func1, func2}

where ret find p func is an auxiliary variable that contains the return values of
find p func. At line 5 in figure 1 the equivalence class which contains ret find p
func is merged with the singleton class {parse func}. As a result of the recursive
merge, the following equivalence classes are produced:

{ret find p func, table[].func,

&func1, &func2, parse func}
{func1, func2, *parse func}

From the second class, the analysis infers that the possible targets of the call through
*parse func at line 7 are func1 and func2. The final GPE graph contains additional
edges (e.g., related to table[].name, argv[], s, etc.); for brevity, these edges are not
shown.

5. Fully precise pointer analysis

After implementing the FA analysis in the code-browsing tool by Siemens Research, our
goal was to evaluate the precision of the produced call graphs. To achieve this, we defined
a conceptual “fully precise” pointer analysis P . This analysis is a fully flow-sensitive,
context-sensitive, field-sensitive pointer analysis that represents a point at the very high end
of the design space for pointer analysis. A large number of pointer analyses (or their minor
variations) (Landi and Ryder, 1992; Hind et al., 1999; Emami et al., 1994; Andersen, 1994;
Wilson and Lam, 1995; Steensgaard, 1996; Zhang et al., 1996; Shapiro and Horwitz, 1997;
Liang and Harrold, 1999; Foster et al., 2000; Das, 2000; Fähndrich et al., 2002; Cheng and
Hwu, 2000) can be considered approximate versions of P—that is, the solution computed
by P is a subset of the solutions computed by these analyses. P was specifically designed
to achieve this high precision. For example, the analysis maintains full information about
calling context; for existing analyses, this approach is too expensive (or even impossible in
the presence of recursion), and they employ some form of calling context approximation.

The definition of P provides a theoretical model of the best possible precision that is
obtainable with the standard commonly-used pointer analysis technology. Since the FA
analysis always produces a call graph that is a superset of P’s call graph, we wanted to
determine the difference between the two graphs in order to evaluate the imprecision of the
FA analysis and to understand the sources of this imprecision. In this section we present
the key features of P; additional details are available in Appendix A.

18 MILANOVA, ROUNTEV AND RYDER

Figure 6. Sample program and its interprocedural control flow graph.

5.1. Interprocedural control flow graph

Analysis P is based on an interprocedural control flow graph (ICFG) G = (N , E, n0). The
sample program from figure 3 and its ICFG are shown in figure 6. G is a directed graph with
nodes n ∈ N representing program statements, edges e ∈ E representing flow of control
between statements, and starting node n0 ∈ N representing the entry point of the program.

Each procedure has associated a single entry node and a single exit node; node n0 is
the entry node of the starting procedure. Each call statement is represented by a pair of
nodes, a call node and a return node. For each direct call, there is an edge from the call
node to the entry node of the called procedure, as well as an edge from the exit node of the
called procedure to the return node in the calling procedure. For indirect calls, the ICFG
does not contain edges (call, entry) or (exit, return); such edges are discovered during the
analysis.

5.2. Points-to graphs

Relationships that involve pointer values are represented in P by points-to graphs in which
nodes correspond to memory locations and edges represent “points-to” relationships.

Let V be the set of all local variables (including formals), global variables, and heap
variables.3 In a points-to graph, each local variable and heap variable from V can be
represented multiple times for different calling contexts of the corresponding enclosing
procedure.

To achieve full context sensitivity, analysis P defines a set of contexts �. Each context is
a sequence of call sites that represents one possible chain of procedure invocations starting

PRECISE CALL GRAPHS FOR C PROGRAMS WITH FUNCTION POINTERS 19

from main. For example, if main contains a call site s1 that invokes procedure p1, and if
p1 contains a call site s2 that invokes p2, context (s1, s2) ∈ � represents invocations of p2
from s2 when p1 had been invoked from s1. In essence, a context γ ∈ � is an encoding of
one possible state of the run-time call stack. For convenience, we define an empty context
ε ∈ � representing an empty sequence of call sites.

Points-to graph nodes are pairs (v, γ) ∈ V × � representing context copies of variables;
we will use vγ to denote node (v, γ). For a local or a heap variable v, these pairs present dif-
ferent run-time instances of the variable for different invocation contexts γ of the enclosing
procedure. A single node vε is used to represent a global variable, or a local/heap variable
in main. A points-to edge (vγ1

1 , v
γ2
2) shows that a memory location represented by the first

node may contain the address of a memory location represented by the second node.

Example. For the program in figure 6, the set of contexts is � = {(1), (2)} and the nodes
are i ε, j ε, aε, bε, x (1), x (2), ret(1), and ret(2). Variable ret is an auxiliary name created to
represent the return value of id. As described below, P computes various points-to graphs
for different paths in the ICFG. For example, the points-to graph for path (main:entry),
(1:call), (id:entry), (id:ret=x) contains edges (x (1), i ε) and (ret(1), i ε).

5.3. Analysis solution

For each path p = (n0, . . . , n) in the ICFG, the analysis computes a points-to graph that
represents all points-to relationships that exist at n when the flow of control follows p. To
compute this points-to graph, the analysis associates a transfer function fni with each ICFG
node ni . The input of fni is a points-to graph PtG and a context γ ∈ �. PtG represents the
points-to relationships that exist immediately before the execution of ni ; contextγ represents
an invocation context for the procedure containing ni . The output of fni is a new points-to
graph PtG′ and a new context γ ′. PtG′ represents the points-to relationships immediately
after the execution of ni , and γ ′ is an updated calling context. Further discussion of the
transfer functions is presented in Appendix A; for brevity, here we omit these details.

To compute the points-to graph corresponding to a path p = (n0, n1, . . . nk, n), P applies
the transfer functions for all path nodes (except for the last node) in the order defined by the
path. Thus, the solution computed at the top of the last node of p is fnk (. . . fn1 (fn0 (∅, ε)) . . .).
The final solution for a node n (which represents the points-to relationships before node n) is
the union of the points-to graphs corresponding to all realizable paths from n0 to n. A real-
izable path is a path on which every procedure returns to the call site that invoked it (Sharir
and Pnueli, 1981; Landi and Ryder, 1992; Reps et al., 1995); only such paths represent
potential sequences of execution steps. For example, path (main:entry), (1:call),
(id:entry), (id:ret=x), (id:exit), (2:return) is not realizable because
procedure id does not return to the call site that invoked it.

When P determines all realizable paths from n0 to n, it has to take into account paths
that involve indirect calls. The initial ICFG only represents direct calls; thus, during the
analysis, the current points-to graph is used to infer additional (call, entry) and (exit, return)
edges. If node ni contains an indirect call through pointer fp, a path (n0, . . . , ni) is extended
with the entry node of any procedure pointed to by the corresponding fpγ .

20 MILANOVA, ROUNTEV AND RYDER

Table 1. Program description.

Name Description LOC Indirect calls

diction 0.8 GNU diction command 2652 3

gdbm 1.8.0 GNU database routines 5577 1

072.sc 6.1 Spreadsheet program 9192 2

find 4.1 GNU find command 15200 22

minicom 1.83.0 UNIX communication program 15607 6

m4 1.4 GNU macro processor 16375 17

less 3.40 GNU less command 20397 4

unzip 5.40 Extraction utility 26273 307

6. Empirical results

Our experiments were performed on a set of 8 realistic C programs, ranging in size from
2652 to 26273 lines of code. The description of the dataset is given in Table 1. Each program
employs function pointers; the number of indirect calls in the program is shown in the last
column of Table 1.

In our evaluation we considered every indirect call x = (∗fp)(. . .) in each program, and
we determined all functions func that were in the PE equivalence class for ∗fp as computed
by the FA analysis. For each such func, we manually examined the program source code
and attempted to identify a realizable ICFG path (from the entry of main to the indirect
call) such that the appropriate edge (fpγ , func) was present in the points-to graph computed
by P for that path. In all cases we successfully identified at least one such path. Thus, for
all of our data programs, the call graph constructed by the FA analysis was a subset of the
call graph computed by P; of course, this implies that the two graphs were identical.

Our precision evaluation showed that for all data programs the FA analysis constructed
the best possible call graph obtainable with the standard pointer analysis technology. This
result can be explained with the fact that the usage of function pointers in C programs is
simpler than the usage of data pointers; as discussed in Section 2, we observed several
stylistic patterns.

6.1. Table dispatch

The case of function dispatch from dispatch tables based on a string is one of the most
frequently occurring pattern of function pointer usage (recall the example in figure 1). The
string that is used to select the function from the table is either (i) evaluated at run time,
(ii) determined based on a command line argument or option, or (iii) determined based on
interactive user input. Therefore, even P cannot do better but conclude that all functions in
the table can be potentially selected.

This pattern of usage occurs in several of our benchmarks. For example, find uses a
dispatch table to select a parsing function based on the value of a command line argument

PRECISE CALL GRAPHS FOR C PROGRAMS WITH FUNCTION POINTERS 21

(the example in figure 1 was motivated byfind). Inless, structure instances that represent
possible command line options are stored in a table, and are selected based on user-provided
options. Each instance has associated a handling function accessed through a function
pointer field. In a similar manner, minicom uses a dispatch table to handle the selection
of communication functions.

6.2. Extensible functionality

We encountered several libraries that used structure fields that store function pointers.
Although the libraries provide functionality for changing the default functions pointed to
by the function pointers, this functionality is not used by the library clients. Typically, a
function pointer field is initialized once and is not modified later in the code. As a result,
the FA analysis is able to conclude that the points-to set associated with each function
pointer field is a singleton. For this pattern of usage, it is crucial that the FA analysis is
field-sensitive (i.e., it is capable of distinguishing between structure fields). To illustrate this
point, recall the set of statements in figure 2. Steensgaard’s pointer analysis (Steensgaard,
1996), which is the most popular inexpensive pointer analysis, does not distinguish between
structure fields; therefore this analysis will erroneously infer that possible targets at indirect
calls through h.chunkfun are xmalloc and xfree. The same imprecision occurs at
indirect calls through h.freefun. The imprecision is due to the fact that the sets of targets
for chunkfun and freefun are merged by the analysis.

We observed this pattern in several of our benchmarks (e.g., m4, unzip). For example,
m4 uses an efficient memory management library, and does not override the default memory
allocation and deallocation functionality provided by that library.

6.3. Polymorphic behavior

Finally, consider the following example which summarizes another frequently used pattern:

void f(void (*fp)()) {...(*fp)()...}.

Suppose that there is a path from the entry node of the program to a call site that invokes f,
and there is a path from the entry node of f to the indirect call site (*fp)() (otherwise
the indirect call would be dead code). For our benchmarks, in all cases of occurrence of this
pattern, the following three conditions are true: (i) the function address is passed directly
at the call to f (i.e., the call site is of the form f(&g)), (ii) the function address is taken
only at calls to f (i.e., all occurrences of &g are of the form f(&g)), and (iii) the function
pointer formal parameter of f is never accessed in f except at the indirect calls. Clearly,
P determines that the possible targets of the indirect call are all functions whose addresses
are used as parameters at calls to f. The FA analysis groups these functions in the PE
equivalence class of *fp. Because of the conditions specified above, it is easy to see that
the equivalence class of formal parameter *fp is guaranteed to contain only functions
whose addresses are taken at calls to f (e.g., g); thus, the solution for the indirect call is the
same as the solution computed by P .

22 MILANOVA, ROUNTEV AND RYDER

For example, one of our benchmark programs (072.sc) uses two polymorphic functions
that evaluate a mathematical function whose address is passed as an argument (e.g., cosine,
tangent, etc.). One function handles functions that require two arguments such as power,
and the other handles functions with a single argument such as cosine. In this case, the
functions whose addresses are taken at distinct call sites are grouped by the FA analysis
into two disjoint sets—the set of two-argument functions and the set of single-argument
functions. In diction, a polymorphic routine parses each input sentence and then invokes
on it a processing function whose address is provided as a parameter. Depending on the
desired functionality, the processing function either identifies commonly misused phrases
(for the diction command), or analyses sentence length and various readability measures
(for the style command).

7. Related work

There is a large body of work on pointer analyses for C with varying degrees of precision
and cost (Landi and Ryder, 1992; Hind et al., 1999; Emami et al., 1994; Andersen, 1994;
Wilson and Lam, 1995; Steensgaard, 1996; Zhang et al., 1996; Shapiro and Horwitz, 1997;
Liang and Harrold, 1999; Foster et al., 2000; Das, 2000; Fähndrich et al., 2000; Cheng
and Hwu, 2000; Rountev and Chandra, 2000). Analysis precision is typically evaluated
with respect to the disambiguation of indirect memory accesses (e.g. in *p=1). The most
frequently used metric is the average size of a points-to set (Steensgaard, 1996; Shapiro and
Horwitz, 1997; Liang and Harrold, 1999; Foster et al., 2000; Das, 2000; Fähndrich et al.,
2000). Our work evaluates pointer analysis precision with respect to the disambiguation of
indirect calls.

Existing work evaluates only the relative precision of different analyses—that is, it com-
pares the solution computed by analysis X with the solution computed by analysis Y . Our
work determines the absolute precision of the FA analysis, by comparing it with the fully
precise analysis P . We believe that such evaluations of absolute precision are more useful
and informative.

Work by Murphy et al. (1998) studies several commercial tools for call graph extraction
for C programs. This work focuses on the complex design and engineering aspects of tool
development, and evaluates how design decisions affect the resulting call graphs. One ob-
servation presented in the paper is that the majority of commercial call graph extraction
tools do not resolve calls through function pointers. Because indirect calls have significant
impact on the call graphs of C programs, it is important to study techniques for the dis-
ambiguation of indirect calls. Our work suggests that an inexpensive analysis can resolve
calls through function pointers precisely, and therefore it can be successfully applied in
production-strength software tools.

Work by Antoniol et al. (1999) provides a comprehensive study of the impact of function
pointers on the call graphs of C programs (e.g., what percentage of all calls are made
through function pointers, and how many functions are reachable only along paths that
contain indirect calls). Similarly to our work, this study uses pointer analysis to disambiguate
indirect calls. The conclusion in Antoniol et al. (1999) is that indirect calls deeply affect the
structure of the call graph, and therefore pointer analysis should be employed to take into

PRECISE CALL GRAPHS FOR C PROGRAMS WITH FUNCTION POINTERS 23

account such calls. Tonella et al. (2000) perform reverse engineering on a large software
system written in C. Their work clearly shows that function pointers are heavily used in
industrial-size software systems and significantly affect the call graph structure. One of the
conclusions in Tonella et al. (2000) is that the disambiguation of indirect calls by using
pointer analysis is necessary in the context of software engineering tasks. The goal of our
work is to evaluate the precision of the FA analysis in the context of this problem.

Recent work by Mock et al. (2002) studies the usage of dynamic points-to data for the
purposes of improving program slicing for C. One of the conclusions of this work is that
imprecise resolution of indirect calls may significantly affect the precision of the resulting
static slices. Our work shows that an inexpensive pointer analysis with certain properties
(e.g., field sensitivity) is capable of constructing precise call graphs.

8. Conclusions and future work

We evaluated the precision of the FA pointer analysis with respect to the disambiguation of
indirect calls in 8 realistic C programs. The results from our experiment indicate that inex-
pensive analyses such as the FA analysis may provide sufficient precision for the purposes
of call graph construction for C programs with function pointers. In this context, the use
of more expensive pointer analyses may result in significantly increased cost without any
corresponding precision gains.

Clearly, one limitation of this study is that it is unclear whether the results will extend
to other data programs. We are particularly interested in obtaining precision results for
larger programs and for programs that may exhibit other patterns of function pointer usage.
The major difficulty in accomplishing a study of larger programs is the need for manual
examination of program code. We are currently developing techniques that can speed up
this process. In addition, we are interested in performing dynamic analysis for the purposes
of assessing analysis precision, and evaluating the possibility of human error.

Obtaining a more comprehensive description of common patterns of function pointer
usage is another interesting area of future research. Such patterns can be used as predictors
of the precision of the FA analysis and other pointer analyses. In addition, these patterns
may be formalized and classified using techniques from the design patterns community.

Appendix A

As described in Section 5, the fully precise analysis P associates a transfer function fn

with each node n in the ICFG. The input of fn is a points-to graph that represents points-
to relationships existing immediately before n, and a calling context for the procedure
containing n. The output of fn is a new points-to graph that shows relationships immediately
after n, as well as an updated calling context.

The transfer functions for some sample statements are shown in figure 7.4 The functions
update the input points-to graph by adding new points-to edges and by removing “killed”
points-to edges, taking into account the current context. Auxiliary function killed(G, x)
removes all points-to edges in G from memory location x . Similarly, killed set(G, S) kills
all points-to edges in G from every location in set S.

24 MILANOVA, ROUNTEV AND RYDER

Figure 7. Sample transfer functions.

The transfer function for a (call, entry) edge updates the calling context by appending
the call site label l to the current invocation string γ . In addition, the function updates
the values of formal parameters fi based on the corresponding actuals ai . The function
for (exit,return) is defined only if the label of the last (call, entry) edge in γ is the same
as the label of the current (exit, return) edge; this ensures that information is propagated
only along realizable paths. Function killed locals removes all points-to graph nodes that
represent local variables whose lifetime is terminated due to the return.

As described in Section 5, the analysis needs to take into account additional (call, entry)
and (exit, return) edges that correspond to indirect calls. Thus, for a path (n0, n1, . . . , nk, n)
in which n is an indirect call through fp, the points-to graph PtG and the context γ produced
by fnk (. . . fn1 (fn0 (∅, ε)) . . .) are used to determine all possible targets of the indirect call—
that is, any func such that (fpγ , func) ∈ PtG.

Acknowledgments

This research was supported by NSF grant CCR-9900988 and by Siemens Corporate Re-
search. The authors would like to thank the SCAM 2002 and JASE reviewers for their
helpful comments.

PRECISE CALL GRAPHS FOR C PROGRAMS WITH FUNCTION POINTERS 25

Notes

1. For simplicity, we present the analysis as if all program statements are handled. Analysis implementations
need to perform appropriate merges only for statements that can be actually reached from the entry point to the
program.

2. If class e1 contains object names ∗fp1, . . . , ∗fpn that appear at indirect calls, and if e1 is merged with a class e2

that contains functions func1, . . . , funcm , the analysis iterates over each call edge (∗fpi , func j) and performs
the appropriate formal-actual merges. Note that each call edge is processed at most once, because each object
name appears in exactly one equivalence class. Thus, the work performed by the analysis is proportional to the
size of the call graph, retaining the almost linear complexity.

3. A heap variable is an auxiliary name representing memory locations allocated on the heap; each allocation site
(e.g., call to malloc) is represented by a unique heap variable.

4. For simplicity, the definition of P in Section 5 only describes node transfer functions. However, this definition
can be trivially extended to associate transfer functions with (call, entry) and (exit, return) edges.

References

Andersen, L. 1994. Program analysis and specialization for the C programming language. Ph.D. thesis, DIKU,
University of Copenhagen.

Antoniol, G., Calzolari, F., and Tonella, P. 1999. Impact of function pointers on the call graph. In European
Conference on Software Maintenance and Reengineering, pp. 51–59.

Cheng, B. and Hwu, W. 2000. Modular interprocedural pointer analysis using access paths. In Conference on
Programming Language Design and Implementation, pp. 57–69.

Das, M. 2000. Unification-based pointer analysis with directional assignments. In Conference on Programming
Language Design and Implementation, pp. 35–46.

Emami, M., Ghiya, R., and Hendren, L. 1994. Context-sensitive interprocedural points-to analysis in the presence
of function pointers. In Conference on Programming Language Design and Implementation, pp. 242–257.

Fähndrich, M., Rehof, J., and Das, M. 2000. Scalable context-sensitive flow analysis using instantiation constraints.
In Conference on Programming Language Design and Implementation, pp. 253–263.

Foster, J., Fähndrich, M., and Aiken, A. 2000. Polymorphic versus monomorphic flow-insensitive points-to analysis
for C. In Static Analysis Symposium, pp. 175–198.

Hind, M. 2001. Pointer analysis: Haven’t we solved this problem yet? In Workshop on Program Analysis for
Software Tools and Engineering, pp. 54–61.

Hind, M., Burke, M., Carini, P., and Choi, J. 1999. Interprocedural pointer alias analysis. ACM Trans. Programming
Languages and Systems, 21(4):848–894.

Landi, W. 1992. Undecidability of static analysis. ACM Letters on Programming Languages and Systems, 1(4):
323–337.

Landi, W. and Ryder, B.G. 1992. A safe approximation algorithm for interprocedural pointer aliasing. In Conference
on Programming Language Design and Implementation, pp. 235–248.

Ryder, B.G., Landi, W., Stocks, P., Zhang, S., and Altucher, R. 2001. A schema for interprocedural side-effect
analysis with pointer aliasing. ACM Trans. Programming Languages and Systems, 23(1):105–186. An earlier
version available as Rutgers Computer Science Department Technical Report DCS-TR-336.

Liang, D. and Harrold, M.J. 1999. Efficient points-to analysis for whole-program analysis. In Symposium on the
Foundations of Software Engineering, pp. 199–215.

Mock, M., Atkinson, D., Chambers, C., and Eggers, S. 2002. Improving program slicing with dynamic points-to
data. In Symposium on the Foundations of Software Engineering, pp. 71–80.

Murphy, G., Notkin, D., Griswold, W., and Lan, E. 1998. An empirical study of static call graph extractors. ACM
Trans. on Software Engineering and Methodology, 7(2):158–191.

Reps, T., Horwitz, S., and Sagiv, M. 1995. Precise interprocedural dataflow analysis via graph reachability. In
Symposium on Principles of Programming Languages, pp. 49–61.

Rountev, A. and Chandra, S. 2000. Off-line variable substitution for scaling points-to analysis. In Conference on
Programming Language Design and Implementation, pp. 47–56.

26 MILANOVA, ROUNTEV AND RYDER

Shapiro, M. and Horwitz, S. 1997. Fast and accurate flow-insensitive points-to analysis. In Symposium on Principles
of Programming Languages, pp. 1–14.

Sharir, M. and Pnueli, A. 1981. Two approaches to interprocedural dataflow analysis. In S. Muchnick and N. Jones,
editors, Program Flow Analysis: Theory and Applications. Prentice Hall, pp. 189–234.

Steensgaard, B. 1996. Points-to analysis in almost linear time. In Symposium on Principles of Programming
Languages, pp. 32–41.

Tonella, P., Antoniol, G., Fiutem, F., and Calzolari, F. 2000. Reverse engineering 4.7 million lines of code.
Software—Practice and Experience, 30(2):129–150.

Wilson, R., and Lam, M. 1995. Efficient context-sensitive pointer analysis for C programs. In Conference on
Programming Language Design and Implementation, pp. 1–12.

Yong, S., Horwitz, S., and Reps, T. 1999. Pointer analysis for programs with structures and casting. In Conference
on Programming Language Design and Implementation, pp. 91–103.

Zhang, S. 1998. Practical pointer aliasing analyses for C. Ph.D. thesis, Rutgers University.
Zhang, S., Ryder, B.G., and Landi, W. 1996. Program decomposition for pointer aliasing: A step towards practical

analyses. In Symposium on the Foundations of Software Engineering, pp. 81–92.

