
On Optimizing Complex Stencils on GPUs

Prashant Singh Rawat†, Miheer Vaidya†, Aravind Sukumaran-Rajam†, Atanas Rountev†,

Louis-Noël Pouchet‡, P. Sadayappan†

†The Ohio State University, USA ‡Colorado State University, USA

{rawat.15,vaidya.56,sukumaranrajam.1,rountev.1,sadayappan.1}@osu.edu, pouchet@colostate.edu

Abstract—Stencil computations are often the compute-
intensive kernel in many scientific applications. With the increas-
ing demand for computational accuracy, and the emergence of
massively data-parallel high-bandwidth architectures like GPUs,
stencils have steadily become more complex in terms of the stencil
order, data accesses, and reuse patterns. Many prior efforts
have focused on optimizing simpler stencil computations on
various platforms. However, existing stencil code generators face
challenges in optimizing such complex multi-statement stencil
DAGs.

This paper addresses the challenges in optimizing high-order
stencil DAGs on GPUs by focusing on two key considerations: (1)
enabling the domain expert to guide the code optimization, which
may otherwise be extremely challenging for complex stencils;
and (2) using bottleneck analysis via runtime profiling to guide
the application of optimizations, and the tuning of various code
generation parameters.

We implement these abstractions in a prototype code genera-
tion framework termed ARTEMIS, and evaluate its efficacy over
multiple stencil kernels with varying complexity and operational
intensity on an NVIDIA P100 GPU.

I. INTRODUCTION

Stencils are a common computational motif in many sci-

entific and engineering applications. A stencil computation

sweeps a computational grid, and updates the value at each

point by reading a fixed neighborhood around it. The extent of

the neighborhood read from the center along each dimension

is called the stencil order. The updates can be either time-

iterated, involving repeated application of the same stencil

operator [1], or spatial and applied to multiple domains in

a sequence of steps, as seen in multi-statement stencil DAGs

and image processing pipelines [2].

In the recent years, stencil computations have evolved in

complexity. From low-order, time iterated stencils, the op-

timization focus has shifted on high-order, multi-statement,

and compute intensive stencil DAGs [3]–[5]. For example,

the stencils in many scientific simulations are order-2 and

above, performing upwards of 300 double-precision floating

point operations (FLOPs), while reading from upwards of 8

3D input domains [3], [4]. We term such stencils as complex

stencils.

Most stencil computations are inherently bandwidth-bound.

Architectures like GPUs provide massive parallelism and

higher bandwidth compared to multi-core CPUs, making them

an ideal acceleration platform for such stencils. For this reason,

there has been a considerable interest in optimizing stencils

on GPUs [1], [6]–[15]. Manual optimization of stencil com-

putations on GPUs is daunting, tedious, and error prone. An

attractive alternative is to automate the code generation from

some input specification of the stencil computation. Halide

[2], Forma [11], PPCG [6], [16], Overtile [1], STENCILGEN

[9], [17], Physis [18], Mint [19], Patus [20], etc. are some

of the code generation frameworks developed over the past

few years that generate optimized stencil code from an input

specification in a domain-specific language (DSL). Many

of these frameworks have demonstrated the effectiveness of

tiling, fusion, and autotuning in optimizing both iterative

and multi-statement stencils on GPUs. However, there still

remains a significant gap between theory and practice when

applying these optimization techniques to complex stencil

computations. The difficulty in bridging this gap arises from

multiple factors, two of which are discussed below.

1. Stencil complexity: The demonstration of high perfor-

mance via automated code generation in many prior works was

limited to low-order, single-precision iterative stencil compu-

tations [1], [6]–[8], [21]. Current GPU devices have under 100

KBytes of shared memory per streaming multiprocessor (SM),

and allow up to 255 registers per thread during compilation.

These hardware constraints are much more severe on complex

stencils as compared to simple low-order stencils. For exam-

ple, to allocate shared memory for 8 or more input domains,

a significant reduction in block size will be required, which

consequently would increase the volume of data movement

as well as recomputations with overlapped tiling, and degrade

performance [1], [11]. This raises a question from the code

generation perspective: Can the same optimizations be applied

to both simpler, low-order stencils and the more complex, high-

order stencils?

2. Limited effectiveness of performance models in code

generators: The current code generators implement a set of

optimization strategies, and either (a) apply all the optimiza-

tions simultaneously on the input stencil [9]; (b) rely on the

user to specify the optimizations [2], [11]; or (c) use heuristics

driven by simple cost models to apply selected optimizations

[16]. Unfortunately, the internal cost models that have been

developed to date are far from satisfactory in their discrimi-

nating power to identify the best or close-to-best version of

code to generate. For example, real world stencils are often

bandwidth-bound at different cache hierarchies, or latency-

limited and register-constrained with low occupancy [22]. Ill-

applied optimizations on them may be counterproductive, like

performing thread coarsening for register-constrained stencils.

The only viable alternative is autotuning, and indeed frame-

works like Facebook’s Tensor Comprehensions rely heavily on

autotuning using a genetic algorithm in order to produce high-



performance code [23]. However, the space of possible GPU

code configurations that can be generated for stencils can be

extremely large, with many possible choices on buffering dif-

ferent arrays in shared-memory or registers, thread-block sizes

along multiple dimensions, thread coarsening factors along

multiple dimensions, loop unrolling factors, tiling strategy,

prefetching strategy, etc. Thus, a question that cannot currently

be effectively answered from a code generation perspective

is: What optimizations should be applied to the given stencil

computation at each step to further improve its performance?

To the best of our knowledge, none of the open-source,

automated stencil code generation frameworks address the

above-mentioned issues for complex stencils on GPUs. PPCG

suffers from inefficient resource assignment heuristics, Forma

and Overtile lack optimizations that would accelerate 3D

stencils, and Halide relies on the application developer to

specify the entire schedule, which requires significant expertise

in code optimization. Even the GPU autoscheduler of Halide

suffers due to the implemented heuristics, leading to a 2×

slowdown in performance for complex stencils [17].

Solution Approach: In this paper, we discuss an approach

that we are currently pursuing to address the above mentioned

problems. We present a GPU stencil code generation frame-

work called ARTEMIS (github.com/pssrawat/artemis), and ex-

perimental results using it on a number of stencils. The key

ideas behind ARTEMIS are as follows:

• The code generation framework must incorporate a vari-

ety of optimization strategies thereby relieving users of

the burden of code generation, but it must allow optional

guidance from expert users on optimization options.

• Accurate performance modeling is extremely hard, but

effective iterative optimization can be performed by fo-

cusing on resource bottlenecks, even without the ability

to accurately predict the performance of alternate config-

urations.

• Autotuning can be a powerful aid to optimization, but the

use of generic search strategies like genetic algorithms

makes it extremely time consuming. Instead, the use

of bottleneck analysis from hardware counter data can

enable rapid and effective autotuning.

These key observations are general enough to be incor-

porated into any code generation framework. Even though

developed as a prototype, the novelty of ARTEMIS itself stems

from the following three factors:

• It implements a wide variety of optimizations that help

accelerate stencils with varying complexity. None of the

other stencil code generations frameworks we know of

implement all the optimizations covered by ARTEMIS.

• It provides an end-to-end solution to optimize complex

stencils by incorporating optimizations, profiling, bot-

tleneck analysis, and autotuning to realize high perfor-

mance. The performance bottleneck analysis helps prune

the autotuning search space, which can be quite vast when

explored with tools like OpenTuner [24].

• It automates all tedious aspects of efficient stencil code

generation, but also allows application experts to op-

tionally provide supplemental information that can guide

code generation. This approach fits nicely between the

two extreme paradigms in code generation: Halide’s

approach of separating schedule from computation, and

the single-shot optimization strategy of Forma, PPCG,

and Overtile.

The rest of the paper is organized as follows. Section II

presents a DSL that captures all the information necessary to

optimize complex stencils on GPUs. Section III describes a va-

riety of stencil optimizations. However, optimizations are only

effective when they target the computation’s bottleneck. To this

end, Section IV describes a profiling strategy that determines

the bottlenecks in the computation, and can be used to decide

the utility/futility of certain optimizations. Sections V and VI

describe the autotuning strategies for both iterative and spatial

stencils, centered around bottleneck analysis and alleviation.

Section VII summarizes the integration of these different

optimization techniques, and the overall flow of ARTEMIS.

Section VIII presents experimental evaluation, comparing the

performance of ARTEMIS with other special-purpose stencil

code generators. Section IX discusses the related work, and

Section X presents our conclusions.

II. DOMAIN-SPECIFIC LANGUAGE

DSLs are often used to expose the three P’s (performance,

portability, and productivity) in specific domains. Halide [2],

PolyMage [25], SDSL [26], Forma [11], and Pochoir [27] are

a few popular examples of stencil DSL frameworks. Since

all these frameworks were developed independently, each

uses its own distinct language to capture the semantics of

the computation. Despite this, the common aspects of their

languages becomes apparent on closer inspection.

All stencil DSLs require the user to declare the arrays and

scalars used in the stencil computation, along with the read-

only iterators that are mapped to the unique dimensions of

the computational loop nest. For GPUs, the DSLs may also

expect the user to specify arrays and scalars that must be

copied from host (device) to device (host). The core stencil

computation is often expressed in a restricted subset of C:

all the memory accesses in the stencil function are scalars or

array elements, and the array index expressions are an affine

function of the loop iterators and constants [1], [2], [25]–[27].

A loop construct may be used to specify the time loop for

iterative stencils [26]. Different DSLs use different techniques

to transfer other auxiliary information, like the block/grid size

to be used during code generation.

A. A Minimal Stencil Language

Listing 1 shows a minimal DSL, similar in construct to

SDSL [26] and Forma [11], that concisely captures the seman-

tics of a 3D 7-point Jacobi stencil from HPGMG [28]. This

minimal DSL serves as the starting point of ARTEMIS lan-

guage. The read-only parameters L, M and N in line 1 are

used to describe the dimensions of the input and output

arrays. Line 2 declares the read-only iterators from outermost

to innermost; these are assumed to be incremented in unit

steps by the increment condition of the loop. All declared

https://github.com/pssrawat/artemis


Listing 1: Representative DSL for Jacobi stencil [28]

1 parameter L=512, M=512, N=512;

2 iterator k, j, i;

3 double in[L,M,N], out[L,M,N], a, b, h2inv;

4 copyin out, in, h2inv, a, b;

5 #pragma stream k block (32,16) unroll j=2

6 stencil jacobi (B, A, h2inv, a, b) {

7 double c = b * h2inv;

8 B[k][j][i] = a*A[k][j][i] - c*(A[k][j][i+1]

9 + A[k][j][i-1] + A[k][j+1][i] + A[k][j-1][i] +

10 A[k+1][j][i] + A[k-1][j][i] - A[k][j][i]*6.0);

11 }

12 jacobi (out, in, h2inv, a, b);

13 copyout out;

arrays and scalars in line 3 will be passed as arguments to

the generated host function. Line 4 (line 13) specifies the

arrays that must be copied from host to device (device to

host). Lines 6–11 define the jacobi stencil. Many DSLs

represent the stencil computation as shift vectors, storing

just the offsets from the center point along each dimension

[9], [11]. With such DSLs, one cannot express computations

involving domains of different dimensionalities. It also means

that the user has to spend significant time in rewriting the core

stencil computation from C/C++/Fortran to shift vectors. For

this reason, we choose to retain the C/C++ flavor for the stencil

function in the minimal DSL (lines 8–10). The #pragma at

line 5 accepts auxiliary information for the optimizations to be

applied (described later in Section III): streaming dimension,

block size, and the unroll factors. This information will be

used in generating code for the stencil definition immediately

following the pragma.

B. ARTEMIS-Specific Extensions to the Minimal Language

1) User-Guided Resource Assignment: An efficiently op-

timized GPU code must allocate appropriate GPU memory

resources, like shared/constant memory and registers, to the

input/output/intermediate arrays. Most code generators auto-

matically determine this resource assignment (or mapping), but

without considering the resource limits of the underlying GPU

device. The challenges in resource assignment exacerbate for

high-order stencils, since the resource consumption increases

with the stencil order. To illustrate this, consider the rhs4center

kernel from SW4 routine [4]. The kernel is an order-2 double-

precision stencil, reading from five 3D input arrays, namely

u0, u1, u2, mu, and la. Even if we assume that all the code

generators are capable of generating a code with streaming,

most code generators will still use 5 shared memory buffers

per input array. This implies that on a GPU device with 48KB

shared memory, we must use a block size strictly smaller than

16×16, since 48∗1024
16∗16∗8∗5∗5 < 1. Apart from reduced occupancy,

a consequence of such small block size is an increase in

recomputation volume, which adversely affects performance.
Proposed Extension: Clearly the code generator must

automatically determine the resource mapping. However, we

propose that the domain expert be allowed to optionally

specify some resource assignments in the input specification

that the code generator must adhere to. We extend the represen-

tative DSL of listing 1, and allow the user to write “#assign

shmem (u0,u1,u2), gmem (mu,la)” within the stencil function,

indicating that arrays u0, u1, u2 must be cached in shared

memory, and arrays mu, la must be read directly from global

memory. Now we can use a 16×16 block, alleviating some

occupancy drop and reducing the recomputation volume.

2) User-Guided Resource Rationing: Current code genera-

tors do not take register pressure into account while perform-

ing resource assignment or optimizations. It has been shown

that some kernels perform better at lower occupancy due to

lesser contention at L2 cache [29]. Also, the performance of

compute-intensive kernels with many-to-many reuse can be

extremely sensitive to register pressure [22]. For example,

even if the compiler generates spill-free code at both 128 or

255 registers, instruction-level parallelism (ILP) can be signifi-

cantly lower at 128 registers, restraining performance. Often, a

domain expert has a better understanding of such performance

quirks, and may want to target a lowered occupancy, thereby

allowing more shared memory and registers per thread block.

Proposed Extension: Since statically estimating an opti-

mal occupancy is extremely error-prone [30], we propose that

the domain expert be allowed to optionally specify the target

occupancy for kernels. We can extend the pragma of Listing

1 with clause “occupancy t”, where 0 < t ≤ 1, indicating

that tX out of X threads must be active per SM. If the shared

memory per block prevents the code generator from generating

code for the targeted occupancy, then the resource mapping

algorithm must choose a shared memory buffer with minimum

number of accesses, and demote its storage to global memory.

This process is repeated till the shared memory usage is no

longer a bottleneck in achieving the targeted occupancy.

III. OPTIMIZATIONS OF INTEREST FOR STENCILS

A. Current State-of-the-Art

It will not be an exaggeration to say that optimizations form

the crux of stencil code generation frameworks. We briefly

discuss four optimizations that are common to multiple stencil

code generators, including ARTEMIS.

1) Overlapped Tiling: Overlapped tiling [1] is used to

achieve concurrent execution of thread blocks assigned to

different tiles of the output domain [1], [2], [8], [9], [13].

Figure 1b shows the overlapped tiling scheme to time-tile the

j1d3pt stencil of Figure 1a. The domain points highlighted in

red (green) are the redundant computations (loads), which is

a consequence of the overlap.

2) Serial Streaming: Streaming [8], [14], [15] is an opti-

mization to reduce the redundancy in overlapped tiling. The

idea of streaming is based on the observation that in an order-

k 3D stencil, at most 2k + 1 planes of an input domain are

needed in memory to compute an output plane. Therefore, one

can overlap-tile just the two dimensions of the 3D domain,

and stream along the third dimension. This strategy exposes

spatial reuse along the streamed dimension, and reduces the

shared memory utilization, thereby allowing an increase in

the thread block size to reduce redundancy. Figure 1c depicts

the streaming strategy for j1d3pt stencil. Different colors at

different time steps correspond to distinct shared memory

buffers. In the steady state, two out of the three points at each

time step are cached in shared memory. One input point needs



1 double A[2][N], c;
2 for (int t=0; t<2; t++) {

3 int w = (t+1)%2, r = t%2;

4 for (int i=0; i<N; i++) {

5 A[w][i] = c*(A[r][i+1] +

6 A[r][i] +

7 A[r][i-1]) / 3.0;

8 }

9 }

(a) Two time steps of j1d3pt

0

1

2

0 1 2 3 4 5 6 7 8 9

t TB0 TB1

redundant loads

(b) Overlapped tiling

0

1

2

0 1 2 3 4 5 6 7 8

t

cached data ld1 ld2 ld3

st1 st2 st3 . . .

(c) Streaming

Fig. 1: Different tiling schemes for 3-point 1D Jacobi computation

to be loaded along the streaming dimension at time step 0 to

compute a new output value at other time steps.

3) Loop Unrolling: Loop unrolling is traditionally used to

expose ILP in the computation. Consider a warp in a block

where each thread is responsible for computing two output

points, i.e., the unrolling factor is 2. Then, the unrolled version

can have the following two work distribution strategies: (1)

cyclic, where thread in lane i computes output points indexed

at m+ i and m+32+ i; and (2) blocked, where thread in lane

i computes output points indexed at m + 2 ∗ i and m + 2 ∗

i+ 1. There will be a better register-level reuse with blocked

distribution due to the near-neighbor dependences of stencil

computations; this reuse can be further optimized for CSE or

register pressure using other DSL code generators [22].

4) Prefetching: The main computational loop with stream-

ing (Figure 1c) comprises three phases: (1) computation of an

output point per time step; (2) shifting of the data in the shared

memory buffers; and (3) loading a new point from the input

array into the least recently written shared memory buffer.

To guarantee correctness, there must be a synchronization

barrier between the first phase and the second phase. This

barrier prevents an overlap of compute and memory access

operations between the phases. With prefetching, one can

load the elements for the third phase into prefetch registers

simultaneously with the computation in the first phase. Since

there is no synchronization barrier between the load and

compute phase now, the compiler interleaves the memory and

compute operations to hide the data transfer latency.

Different frameworks implement different optimizations, de-

pending on the targeted stencil application. Halide implements

inlining for nodes with producer-consumer relationship in im-

age processing pipelines. Overtile and Forma implement time

tiling for iterative stencils. Zhang et al. [10] implement thread

coarsening for spatial stencils. Streaming is implemented in

[2], [9], [12], [13], and loop unrolling is implemented in [1],

[2], [6], [7], [10]. Prefetching is implemented in frameworks

optimizing GEMM kernels [31].

B. ARTEMIS-Specific Optimizations

Below, we discuss four other optimization strategies that,

to the best of our knowledge, are novel with respect to

automation in ARTEMIS.

1) Concurrent streaming: The streaming discussed in Sec-

tion III-A2 is serial, where the N − 1 dimensions of an N -

dimensional domain are tiled, and a thread block traverses

the untiled dimension in serial. In concurrent streaming, all

N dimensions are overlap-tiled, and a thread block traverses

one of the tiled dimension in serial. Concurrent streaming

improves the performance of computations that suffer from

low execution concurrency with serial streaming [8].

2) Statement decomposition and retiming: The manual

retiming approach of Rawat et al. [8] involves leveraging

operator associativity and distributivity to decompose a stencil

statement into a set of accumulation sub-statements. A direct

consequence of retiming is better balancing of GPU resource

usage between memory and registers. STENCILGEN [9], [17]

retimes the computation if the stencil statements are manually

massaged to a form that is amenable to retiming. We eliminate

the need for any manual transformation by automating both

statement decomposition and retiming in ARTEMIS.

For retiming, ARTEMIS checks if the RHS of each sub-

statement is homogenizable. An expression can be homoge-

nized if the offset along the streaming dimension (or the slow-

est varying dimension if streaming is disabled) can be reduced

to 0 for all the accesses in it. For example, when streaming

along k dimension, the RHS of statement B[k][j][i] = A[k −

1][j][i] can be homogenized by adding 1 to the array access

expression involving k on both sides. In contrast, the RHS in

the statement B[k][j][i] = C[k+1][j][i]∗A[k−1][j][i] cannot

be homogenized. If the RHS in all the sub-statements can be

homogenized, then ARTEMIS retimes the computation.

3) Thread block load/compute adjustment: Assume that

for an order-k stencil, the output tile size is by × bx, and

the input tile size is (by + 2k) × (bx + 2k). Most code

generation frameworks use one of the following strategies

to choose thread block size: (1) output perspective: create

by×bx thread blocks, so that each thread computes one output

point. The k threads at each block boundary may need to load

additional k elements from the input domain, while the internal

threads remain idle [10]; and (2) input perspective: create

(by +2k)× (bx+2k) thread blocks, so that each thread loads

exactly one input element. The 2k∗(bx+2k)+2k∗by threads

at the boundary may not be involved in the computation of

the output domain [11].

A thread block with output perspective may issue non-

coalesced load transactions at boundary, which can be partic-

ularly wasteful for bandwidth-bound stencils. However, when

the occupancy is really low, then input perspective can be

detrimental to performance, since at least 2k warps along

the y dimension will be idle after the initial loads. Clearly,

which perspective to choose should depend on the target

occupancy of the kernel. Apart from these two perspectives,

ARTEMIS provides an additional mixed perspective with block



Listing (2) Optimized code for the spatial 3D 7-point stencil

1 in_shm_c0[j-j0][i-i0] = in[1][j][i];

2 in_reg_m1 = in[0][j][i];

3 in_reg_p1 = in[2][j][i];

4 for (k=1; k<N-1; k++) {

5 __syncthreads ();

6 if (j>=j0+1 & j<=min(j0+blockDim.y-2, M-2) & . . .)
7 out[k][j][i] = a*in_shm_c0[j-j0][i-i0] - . . .;
8 __syncthreads ();

9 in_reg_m1 = in_shm_c0[j-j0][i-i0];

10 in_shm_c0[j-j0][i-i0] = in_reg_p1;

11 in_reg_p1 = in[max(L-1,k+2)][j][i];

12 }

Listing (3) Reducing memory footprint for Listing 2

in_shm_c0[j-j0][i-i0] = in[0][j-j0][i-i0];

in_reg_m1 = in[0][j-j0][i-i0];

in_reg_p1 = in[0][j-j0][i-i0];

for (k=1; k<N-1; k++) {

__syncthreads ();

if (j>=j0+1 & j<=min(j0+blockDim.y-2, M-2) & . . .)
out[0][j-j0][i-i0] = a*in_shm_c0[j-j0][i-i0] - . . .;

__syncthreads ();

in_reg_m1 = in_shm_c0[j-j0][i-i0];

in_shm_c0[j-j0][i-i0] = in_reg_p1;

in_reg_p1 = in[0][j-j0][i-i0];

}

size by × (bx+2k) which eliminates any idle warps along the

y dimension, and any non-coalesced loads along x dimension

if bx + 2k is a multiple of the warp size.

4) Storage and Computation Folding: A common motif in

many spatial stencils is an element-wise operation between two

or more arrays. If all the accesses to arrays Ar, 0 ≤ r ≤ n

are of the form
n
⊙

r=0
Ar[i] at each domain point i, where ⊙ is

any point-wise mathematical operation, then instead of storing

A0, . . . , An independently in shared memory or register, we

can simply store the result of
n
⊙

r=0
Ar[i] in shared memory or

register. This not only reduces the resource usage, but also

optimizes away the recomputations at source level.

Automating such a wide set of optimizations within a

single framework is a significant engineering effort. Armed

with these optimizations, ARTEMIS can accelerate both time-

iterated 2D/3D stencils, and complex spatial stencils with

many-to-many reuse alike.

IV. PROFILING FOR BOTTLENECKS

A detail that is well known to the application developers,

but usually not addressed by the current generation of auto-

mated code generators is the fact that an optimization is only

effective if it alleviates one or more performance bottleneck of

the computation. Merely implementing a set of optimization

strategies in itself is not enough. There should be an analysis

to estimate the bottlenecks of the computation, and the opti-

mizations applied must be driven by those bottlenecks. This

section describes a simple profiling technique implemented

in ARTEMIS, that is used to gauge the profitability of some

of the optimizations described in Section III. Additionally, as

elaborated later in Section VI-A, the profiling component is

also used in tandem with autotuning to determine the degree

of fusion in iterative stencils.

While executing on GPU, the stencil data is cached at

different levels in the GPU memory hierarchy, e.g., DRAM,

texture/L2 cache, shared memory, registers, etc. Depending

on the complexity of the accesses and computation, the kernel

may be bottlenecked at different GPU resources. A crucial step

in optimizing the performance is to analyze the performance

bottlenecks for different GPU resources.

Performance characterization of computations on GPUs is

a vast research topic in itself. Several analytical models have

been proposed with the objective of estimating the execution

time of the computation on GPUs [32]–[35], but they can

be quite inaccurate across applications. On the other hand,

cycle-accurate simulators are much slower than executing

the application itself. Both these approaches are therefore

unsuitable for performance bottleneck analysis.

The profiling component implemented in ARTEMIS over-

comes the unreliability of analytical models by using the

roofline model [36] in conjunction with NVIDIA’s profiling

tool, nvprof [37]. It first uses nvprof to execute and profile the

kernel to collect the counters for metrics of interest, and then

uses those metrics to compute the operational intensity (OI)

for different memory levels in the memory subsystem. For

memory level M , the operational intensity, OIM , is defined

as the ratio of the FLOPs computed relative to the data

accesses in bytes from M . ARTEMIS currently computes the

OI for DRAM (OIdram), texture cache (OItex ), and shared

memory (OIshm ) only. For memory level M , the maximum

FLOPs that can be computed per byte accessed from M is
α
βM

, where α is the peak performance of the device, and

βM is the peak bandwidth for memory level M . The user

is expected to provide these theoretical peak values for the

GPU device to ARTEMIS. Then, using the roofline model [36],

ARTEMIS classifies a kernel as:

• bandwidth-bound at memory M , if OIM ≪ α
βM

. This

happens when the data transfers dominate the execution

time.

• compute-bound at memory M , if OIM ≥ α
βM

. This

happens when the computations dominate the execution

time.

Additionally, a kernel can be latency-bound when the GPU

does not have enough concurrency to hide the latency of

arithmetic instructions. Such kernels are neither bandwidth-

bound at any memory level, nor compute-bound.

When OIM is closer to α
βM

, categorizing the kernel as

bandwidth- or compute-bound is difficult. For such kernels,

ARTEMIS uses code differencing: for an input V , it automati-

cally generates a modified version V ′ with drastically reduced

accesses to M . For example, Listing 3 illustrates the modified

version V ′ generated for the code V in Listing 2. For a

32 × 32 block, the values of i-i0 and j-j0 (highlighted in

blue in Listing 3) correspond to the thread index along i and

j dimension, respectively. Therefore, the DRAM accesses in

Listing 2 are confined to a 32×32 block for each global array

in Listing 3. Consequently, DRAM transactions can no longer

be a bottleneck in V ′. If the performance of V ′ improves over

V , then V is classified as DRAM bandwidth-bound.



A. Key Insights from Profiling

With the profiling information, ARTEMIS internally decides

which optimizations to apply. In some cases, it also generates

alternate versions for the user to optimize, and outputs some

textual optimization hints based on the following guidelines:

• If the stencil is compute-bound, then shared memory op-

timizations, or optimizations like unrolling that improve

ILP, are not useful, and turned off. On the other hand,

optimizations that reduce the FLOPs are applied.

• If the stencil exhibits high register pressure or regis-

ter spills, then loop unrolling is turned off. Instead,

ARTEMIS generates versions of the kernel with varying

degree of fission (Section VI-B).

• If an iterative stencil is bandwidth-bound at texture cache

and/or DRAM, then further fusion will help by reducing

texture cache accesses; ARTEMIS generates a kernel with

higher fusion degree for such stencils (Section VI-A).

• If a spatial stencil is texture cache bandwidth-bound, then

shared memory optimization is turned on by default.

• If a spatial stencil is highly DRAM bandwidth-bound

with shared memory, then ARTEMIS generates its global

memory version for the user to optimize. This is because

the shared memory version may experience a perfor-

mance degradation due to the additional shared load/store

transactions. ARTEMIS also hints the user to manually

perform any algorithmic optimization that would possibly

reduce DRAM accesses or stencil order.

• If a kernel is bandwidth-bound at shared memory, then

the register-level optimizations from Section III are turned

on.

V. HIERARCHICAL AUTOTUNING

Stencil code generation frameworks often incorporate an

autotuning component to find the near-optimal thread block

configuration and/or unrolling factors [26], [38], [39]. For

example, Overtile use a customized autotuner, whereas Halide

uses OpenTuner [24], that can be customized to different

frameworks. A general concern with autotuning is the amount

of time taken to explore the vast optimization space.

We incorporate a customized autotuner in ARTEMIS to

tune the parameter configurations like unrolling factors, thread

block size, etc. Instead of relying on an analytical model, our

autotuner, like OpenTuner, generates multiple versions of the

code, and executes them to measure performance. The auto-

tuner initially prunes the search space by making the following

three logical choices based on the computation: (1) the block

sizes and unrolling factors are limited to powers of two along

each dimension; (2) the block sizes are lower-bounded by 4

and upper-bounded by 256 along each dimension; and (3) the

unrolling factor are upper-bounded by 8 and 4 along each

dimension for theoretically bandwidth-bound and compute-

bound stencils, respectively. These choices conform to the

tuned parameters discovered by other autotuners [10], [26].

The search space is further pruned with hierarchical au-

totuning, i.e., autotuning in steps. To illustrate hierarchical

autotuning, assume that the profiling information indicates that

all the optimizations described in Section III can benefit the

computation. As a first step, the autotuner tunes the computa-

tion for just the high-impact optimizations like loop unrolling

factors and thread block size variations, with serial streaming

enabled by default if shared memory is used. It then selects

a few high-performing candidates, and applies optimizations

like prefetching, concurrent streaming, and thread block load-

/compute adjustment to just those candidates. Depending on

the desired granularity of tuning, ARTEMIS allows the user to

define their own hierarchy of optimizations for autotuning.

The unrolled versions are explored in a sequence so that

the number of stencil statements post unrolling monotonically

increases. For example, if the unrolling factors are (uz, uy, ux)
along dimensions (z, y, x), then the autotuner explores the

versions in increasing order of uz × uy × ux. The higher the

unrolling factor, the more registers each thread is expected to

use. This allows the autotuner to dynamically increment the

registers per thread (between 32, 64, 128, and 255) during

autotuning, so that only non-spill configurations are explored.

For a spatial 7-point Jacobi stencil, OpenTuner took more

than 24 hours for exhaustive autotuning, whereas hierarchical

autotuning arrived at a version with similar performance in

less than 5 hours.

VI. MISCELLANEOUS OPTIMIZATIONS AND TUNING

The hierarchical autotuning described in Section V only

tunes for the kernel/launch parameters, without changing the

kernel semantics. However, in some cases, optimizations like

time tiling (kernel fusion), and kernel fission, which change

the number of kernels launched on the device, are key to

improving the performance in the generated code. Kernel

fusion in stencil DAGs is a well researched problem [2],

[9], [12], [13], [25]. However, we show in Section VI-B

that for register-constrained stencils, the opposite optimization,

i.e., kernel fission is more promising. We have therefore

implemented a novel, non-trivial kernel fission strategy in

ARTEMIS for spatial stencils. This section describes the kernel

fusion and fission strategies implemented in ARTEMIS.

A. Fusion for Arbitrary Time Iterations

Iterative stencils are usually central to PDE solvers [28],

imaging pipelines [40], etc. The time iteration count in many

such applications is variable, since the accuracy of the solution

depends on it. For example, the desired degree of smoothing

determines the time iterations of the smoothers in HPGMG

[28]. In such cases, an important tuning problem is to deter-

mine a profitable fusion degree for arbitrary time iterations. If a

bandwidth-bound, order-1 stencil S has only 2 time iterations,

then the choice is straightforward – fuse the two time steps.

However, if in the next invocation, the time iterations of

S increase, then perhaps a different degree of fusion may

achieve better performance. ARTEMIS supports deep tuning

to determine the profitable fusion for iterative stencils with

varying time iterations.

Let us denote a version that has y invocations of a fused

kernel, each with time tile size of x, as (x× y). Thus, if the

stencil S has 13 time iterations, the possible output versions



(a) dependency graph for rhs4center kernel (b) trivial fission into three sub-kernels

stencil sw4_0 (uacc0, . . .) {

mux1 = . . .; . . . muz4 = . . .;
r0 = . . .; uacc0 = . . .; }

stencil sw4_1 (uacc1, . . .) {

mux1 = . . .; . . . muz4 = . . .;
r1 = . . .; uacc1 = . . .; }

stencil sw4_2 (uacc2, . . .) {

mux1 = . . .; . . . muz4 = . . .;
r2 = . . .; uacc2 = . . .; }

sw4_0 (uacc0, . . .);
sw4_1 (uacc1, . . .);
sw4_2 (uacc2, . . .);

(c) Generated DSL specification

Fig. 3: Trivial fission for the rhs4center kernel from SW4 [4]

are (1×13), (2×6⊕1×1), (3×4⊕1×1), (4×3⊕1×1), (3×
3⊕ 4× 1), etc., where ⊕ denotes kernel composition. If S is

bandwidth-bound, then it is possible that version (2×6⊕1×1)
performs better than (1×13), version (3×4⊕1×1) performs

better than (2×6⊕1×1), and so on, up to a certain point where

either the kernel is not bandwidth-bound, or any further benefit

from fusion is outweighed by the increase in recomputation

volume with overlapped tiling [9]. Due to this trade-off, some

configurations will never be beneficial from the perspective of

fusion. For example, with overlapped tiling, version (8 × 1)
of a 3D 7-point stencil is not likely to be better than (4× 2)
on any of the current generation of GPU devices.

ARTEMIS leverages this insight to deep-tune the iterative

stencils with variable time iterations. It automatically generates

version (x × 1) of the stencil, where x is both the time

tile size and the time iteration count, starting with x = 1.

The version (x × 1) is first autotuned, and its execution

time and tuned parameter configuration is recorded. It is then

profiled for bottlenecks. Since fusion helps bandwidth-bound

stencils by reducing the data transfer volume, we need to tune

version ((x + 1) × 1) only if version (x × 1) is determined

to be bandwidth-bound at DRAM, texture cache, or shared

memory by the profiler. Let k be the number of versions thus

generated and tuned by ARTEMIS. Once the execution time

and parameter configurations for the (x × 1), 1 ≤ x ≤ k

versions are recorded, a good fusion schedule can be found

for any time iteration count T using a dynamic program with

the following optimal substructure:

opt(T ) =







0 T = 0

min(
min(k,T )

∀
x=1

f(x) + opt(T − x)) otherwise

where f(x) is the execution time for version (x×1). Usually,

k ≤ 4 for most order-1 stencils, and much smaller for high-

order stencils. Therefore, due to the synergistic coupling of

autotuning and profiling, at most 4 fusion candidates must be

tuned by ARTEMIS to find profitable fusion degree for any

arbitrary time iteration. Furthermore, the deep tuning is done

only once. For most applications, its cost will be amortized

over the stencil invocations.

B. Kernel Fission for Register-Constrained Stencil DAGs

One can visualize fusion as constructing a forest of disjoint

trees, where the leaf nodes correspond to individual stencil

statements, and an internal node corresponds to a state where

all its descendants are fused. A forest with a single tree would

correspond to a maximal fusion, and a forest with trees having

just one leaf node corresponds to a minimal fusion. Given just

the leaf nodes, there are various ways to construct distinct

forest of trees. One among such forests corresponds to an

optimal fusion state. Clearly, finding it is non-trivial. However,

we make the following two observations: (1) increase in

recomputations post fusion can offset any fusion benefit. For

example, in our experimentation, we never encountered an

iterative order-1 or order-2 3D stencil that benefited from a

time tile size upwards of 4 or 2, respectively; and (2) for

stencils where fusion does not increase the recomputation

volume, a higher degree of fusion is often achievable without

incurring register spills, by using more registers per thread.

Through experimentation, we observe that in many such cases,

the occupancy loss is compensated by the increase in ILP,

resulting in performance improvement.

For optimizing stencil DAGs on GPUs, we can find a near-

optimal fusion state quickly if we start from a forest where

the root of each tree has at most 4 descendants involved in a

RAW dependence that results in an increase in recomputation

volume, and then perform fission on the root of such trees

such that there are no register spills and/or excessive recom-

putations. These observations motivate the incorporation of a

fission component in ARTEMIS.

For automated fission, ARTEMIS generates split versions

from the input stencil specification, and writes them out as

DSL specification files. Should the users desire, they can

then optimize the generated DSL files of fission candidates.

ARTEMIS currently generates the following three DSL speci-

fication versions:

1) maxfuse: all the stencil functions with the same domain

are fused to create the maxfuse version.

2) trivial-fission: each distinct array output in the compu-

tation is placed in a separate kernel, along with the

temporary values required to compute it.

3) recompute-fission: The array outputs in a stencil function

are split so that the recomputation halo for each kernel

is ≤ max(4, r), where r is the maximum among stencil

order of individual statements in the kernel.

Fission (fusion) may require replication (elimination) of

statements computing temporary scalars across kernels, as

illustrated in Figure 3. Figure 3a shows the data dependence



graph for the rhs4center kernel from SW4 [4]. In the figure,

all the 3D input arrays are in orange, 1D arrays are in green,

temporary scalars computed are in blue, and the 3D output

arrays are in violet. Figure 3b shows the sub-kernels created

with trivial fission. The three outputs uacc0, uacc1, uacc2 are

placed in three sub-kernels, along with r1, r2, r3 respectively.

The temporary input values mux1, . . ., muz4 contribute to

r1, r2, r3, and hence get replicated in all three kernels. The

generated DSL specification is shown in Figure 3c.

VII. END-TO-END USE SUMMARY

We summarize the steps taken by ARTEMIS to optimize an

input stencil S.

• Using the auxiliary information passed by the user with

#pragma in the DSL (Section II), ARTEMIS generates a

baseline version for S.

• If the user wants to tune the baseline version of S,

ARTEMIS automatically profiles the baseline version to

determine the (un)profitable optimizations (Section IV)

and prune the autotuning space. ARTEMIS then performs

hierarchical autotuning (Section V) to find profitable

parameter configurations. Finally, it profiles the best-

performing version discovered via autotuning to deter-

mine the performance bottlenecks. Based on the bottle-

necks, ARTEMIS may generate some optimization hints

for the user in the form of textual output, or some

fission/fusion candidates (Section VI-B) that the user

might want to optimize.

• The user must manually decide if some constraints/guid-

ance must be added to the input DSL based on the gen-

erated hints, or if the generated fission/fusion candidates

must be explored based on the profiling feedback.

• If S is a time-iterated stencil, the user can perform deep

tuning with ARTEMIS to find a near-optimal fusion sched-

ule for it (Section VI-A). ARTEMIS can automatically

generate fusion candidates for S, record their execution

times and parameter configurations, and then use the

information to generate the near-optimal fusion schedule.

Here, profiling is used to determine the number of fusion

candidates that must be tuned.

VIII. EXPERIMENTAL EVALUATION

A. Evaluation Setup

We explore a set of 11 3D double-precision stencils that are

listed in Table I. The first three stencils are smoothers from

the geometric multigrid benchmark, HPGMG [28]. denoise is

a multi-statement stencil from the CDSC image processing

pipeline [40]. miniflux is a computational fluid dynamics

benchmark from [5]. The next two stencils are extracted

from ExpCNS Compressible Navier-Stokes Department of

Energy (DoE) mini-application [3]. SW4lite is a DoE Exascale

Computing Project proxy application suite, that is designed to

optimize the performance of key numerical kernels from the

Geodynamics Seismic Wave (SW4) application [4]. The last

four stencils are the compute-intensive kernels in SW4lite. The

benchmarks are a mix of iterative stencil patterns representa-

tive of computations evaluated in other efforts, and complex,

Benchmark Domain T k # Flops # IO Arrays

7pt-smoother 512
3 12 1 10 2

27pt-smoother 512
3 12 1 32 2

helmholtz 512
3 12 2 17 2

denoise 512
3 12 1 61 4

miniflux 320
3 1 2 135 25

hypterm 320
3 1 4 358 13

diffterm 320
3 1 4 415 11

addsgd4 320
3 1 2 373 10

addsgd6 320
3 1 3 626 10

rhs4center 320
3 1 2 666 8

rhs4sgcurv 320
3 1 2 2126 13

T: time tile size, k: stencil order

TABLE I: Characteristics of the 3D benchmarks

1 2 3 4 5
0

0.2

0.4

0.6

0.8

7pt-smoother

P
er

fo
rm

an
ce

(T
F

L
O

P
S

)

1 2 3 4 5
0

0.3
0.6
0.9
1.2
1.5
1.8

27pt-smoother

Fig. 4: Deep tuning for arbitrary time iterations

high-order spatial stencils from mini-applications that are more

recent, relatively unexplored, and of significant interest to the

Exascale research community.

We evaluate the benchmarks on an NVIDIA Pascal P100

GPU device (double-precision α = 4.7 TFLOPS, α
βdram

=

6.42, α
βtex

= 2.35, α
βshm

= 0.49 [41]). The code is compiled

with NVCC-9.1, using flags -O3 -maxrregcount=r –use_fast_-

math -Xptxas “-dlcm=ca". The value of r in maxrregcount

corresponds to the registers available to a thread, and must

be strictly below 256. dlcm modifies the caching behavior;

with ca, the global memory accesses are cached in both L1

and L2 cache. The use_fast_math flag allows the compiler to

optimize some math library calls, and use fused multiply-add

instructions for better performance [42].

B. Optimizing Iterative Stencils

The first four benchmarks from Table I are bandwidth-bound

iterative stencils, and therefore would benefit from fusion. We

use the deep tuning strategy described in Section VI-A to find

an optimal fusion degree for these stencils. Figure 4 plots the

results of deep tuning for 7pt-smoother and 27pt-smoother. For

each time tile size 1 ≤ t ≤ 5, version (t× 1) was extensively

autotuned for at most 5 hours to find profitable parameter

configurations. As the time tile size increases, the resource

constraints limit the feasible configurations, and the autotuning

time drastically reduces. For example, while autotuning the

(1 × 1) version took 5 hours in some cases, autotuning the

(5 × 1) version took less than 15 minutes in all cases. The

autotuning time can be further reduced if the smaller domain

sizes are used for autotuning.

Deep tuning results in Figure 4 reveal a cusp – the perfor-

mance improves till a certain fusion degree, and then drops. To

illustrate this trend, we compute the OI at each memory level



M global 1× 1 2× 1 3× 1 4× 1 5× 1

OIdram 0.97 0.97 2.01 2.84 4.26 5.90

OItex 0.29 0.98 3.06 4.51 5.56 6.42

OIshm - 0.22 0.25 0.24 0.22 0.21

TABLE II: OI for different fusion degree of 7pt-smoother

for different versions of 7pt-smoother stencil. The results are

presented in Table II. We observe that with an increase in the

fusion degree, the computation becomes less bandwidth-bound

at DRAM and texture cache, and the bound shifts onto shared

memory. The 4 × 1 version is almost compute-bound at both

DRAM and texture cache; at this point, ARTEMIS observes no

performance benefit of any further fusion through profiling and

code differencing, and stops exploring higher fusion degree.

Circled in pink in Figure 4 is the tipping point, which is the

time tile size at which the stencil stops benefitting from fusion.

The tipping point coincides with the first time tile size where

better performance can be achieved by performing fission. For

27pt-smoother, versions (2 × 1 + 1 × 1) or (1 × 3) cannot

achieve better performance than version (3 × 1). However,

version (2× 2) does achieve better performance than version

(4 × 1). The tipping point was under 4 time steps for all the

evaluated iterative stencils.

ARTEMIS uses the results of deep tuning to optimize these

iterative stencils for arbitrary time iterations.

C. Optimizing Spatial Stencils

The last seven stencils in Table I are spatial, high-order sten-

cils. Table III tabulates the theoretical OI, and nvprof-based

OIdram and OItex for their tuned global memory version.

From Table III, it is clear that the global memory version for

all the stencils is severely bandwidth-bound at texture cache.

Since time tiling is not feasible for these spatial stencils, one

can only improve performance by reducing the data transfers

to global memory and texture cache by using shared memory

and increasing reuse in registers. Unfortunately, all of these

stencils also exhibit very low occupancy (between 12.5% –

25%) because of the high per-thread registers required for

spill-free compilation. This makes the remedial loop unrolling,

which improves ILP and/or register-level reuse, impossible

without incurring expensive spills.

After initial profiling, ARTEMIS classifies miniflux kernel

as bandwidth-bound at both texture cache and DRAM (Table

III). Since using shared memory may be beneficial based

on the profiling guidelines of Section IV, ARTEMIS then

tunes the shared memory versions of the kernel. With shared

memory, both OIdram and OItex increase to 1.06 and 1.33,

respectively, indicating a performance improvement. On the

other hand, the total DRAM transactions remain unchanged for

hypterm despite using shared memory, and code differencing

indicates that the kernel is DRAM bandwidth-bound despite

using shared memory. Based on the insights from Section IV,

ARTEMIS tunes the global memory version for hypterm. Both

rhs4center and rhs4sgcurv are not severely DRAM bandwidth-

bound to begin with, but texture cache bandwidth-bound, and

therefore ARTEMIS tunes their shared memory versions.

Bench. OIT FLOP Bytedram OIdram Bytetex OItex

miniflux 0.67 3.53e+9 6.5e+9 0.54 1.56e+10 0.22

9.77e+8 6.92e+9 0.14 9.15e+9 0.10

hypterm 3.44 1.08e+10 5.27e+9 2.06 3.58e+10 0.30

diffterm 4.71 3.28e+9 3.73e+9 0.87 1.79e+10 0.18

9.02e+9 6.75e+9 1.33 3.92e+10 0.23

addsgd4 4.66 9.37e+9 4.48e+9 2.08 2.63e+10 0.35

addsgd6 7.82 1.67e+10 5.32e+9 3.13 3.81e+10 0.43

rhs4center 10.4 1.93e+10 3.39e+9 5.69 4.19e+10 0.46

rhs4sgcurv 20.4 2.44e+10 4.65e+9 5.26 4.88e+10 0.50

2.47e+10 5.81e+9 4.25 4.88e+10 0.50
1.99e+10 4.82e+9 4.14 3.86e+10 0.51

OIT : theoretical operational intensity

TABLE III: nvprof metrics and OI for the spatial stencils. Each

entry corresponds to a distinct kernel.

D. Exploring Fission Candidates

rhs4sgcurv routine is implemented as a monolithic (max-

fuse) kernel in SW4lite, which incurs register spills even when

compiled with 255 registers per thread. The trivial-fission

version generated by ARTEMIS splits the monolithic kernel

into three spill-free sub-kernels. The trivial-fission outperforms

the maxfuse version significantly (1.048 TFLOPS vs. 0.48

TFLOPS), demonstrating the importance of kernel fission.

E. Domain Expert Guided Resource Assignment

We specify resource assignments in the input specification

for all the kernels from SW4lite benchmark. Essentially, all the

1D arrays, and some 3D arrays are assigned to global memory,

so that ARTEMIS does not cache them in shared memory.

To observe the effect of user intervention, we generate code

for addsgd4 with and without explicit resource assignment in

the input specification. Without explicit resource assignment,

addsgd4 achieves 0.65 TFLOPS. With the user specifying the

constraints, the performance improves to 1.05 TFLOPS.

F. Comparison With Other Code Generators

We compare the performance of ARTEMIS against PPCG-

0.08 [16], and STENCILGEN [17]. PPCG is a polyhe-

dral framework that generates CUDA/OpenCL code from

a pragma-demarcated input C code. STENCILGEN is state-

of-the-art CUDA code generator that outperforms several

other stencil optimization frameworks [17]. It incorporates

time tiling with associative reordering, and fusion for multi-

statement stencils. In addition to the optimized version that

appropriately uses shared memory and registers, we also

present the performance results for two additional versions

generated by ARTEMIS that only use global memory and no

shared memory: (i) global-stream: the global memory version

which streams along the slowest varying dimension; and (ii)

global: the global memory version that tiles all the three

dimensions. The performance results are plotted in Figure 5.

We tuned STENCILGEN for different fusion degree and

block dimensions. For PPCG, we extensively autotuned for

block dimensions, unrolling factors, and per-thread registers.

Each benchmark was allowed to be tuned for 6 hours. For

ARTEMIS, the deep tuning took 8 hours per iterative stencil.

In contrast, each shared memory version of the spatial stencil

took less than 20 minutes for tuning, since the resource

constraints reduce the autotuning space. The global memory

versions for the spatial stencils took less than 2 hours to tune.



7pt-smoother

27pt-smoother

helmholtz

denoise

miniflux

hypterm

diffterm

addsgd4

addsgd6

rhs4center

rhs4sgcurv

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
er

fo
rm

an
ce

(T
F

L
O

P
S

)
PPCG global-stream global STENCILGEN ARTEMIS

Fig. 5: Performance of benchmarks on Pascal P100

In all cases, we report the best performance. For example, all

the results for rhs4sgcurv kernel with ARTEMIS are reported

on the trivial-split kernel instead of the maxfuse routine.

ARTEMIS profiling is nvprof-based, and therefore the profiling

time depends on the execution time of the kernel, and the

number of metrics collected. Since we collect less than 10

metrics at present, and the execution time of each kernel is in

milliseconds, the current profiling overhead in our runs is less

than a minute for each benchmark.

PPCG is significantly outperformed by the tuned global

memory versions, especially for the spatial high-order sten-

cils. This is due to the poor fusion/fission choices, and the

complex conditionals in the PPCG-generated code. Streaming

is often assumed to result in better cache utilization [15].

Surprisingly, the global-stream version incurs much higher

DRAM transactions and memory stalls than global version for

all the benchmarks. Though streaming is crucial to reduce the

shared memory usage per kernel, it results in poor L2 locality

when shared memory is not used. ARTEMIS outperforms

STENCILGEN for all the iterative stencils, highlighting the

importance of optimizations like loop unrolling, load/compute

adjustment, concurrent streaming, and prefetching, which are

not implemented in STENCILGEN.

For spatial stencils, we edited the code generation pass in

STENCILGEN to allow a higher degree of fusion. However,

as discussed earlier, shared memory version cannot improve

performance for the DRAM bandwidth-bound hypterm. With

ARTEMIS, we were able to generate a shared memory version

for hypterm that uses thread block load/compute adjustment

to match the performance of the global memory version. We

could not generate code for the kernels from SW4lite with

STENCILGEN, since it does not support domains with different

dimensions within the same stencil function.

ARTEMIS can generate plug-and-replace functions for the

manually optimized kernels in SW4lite, and achieve similar

or higher performance. For example, the ARTEMIS-optimized

rhs4center kernel achieves 1.29 TFLOPS, compared to 1.13

TFLOPS achieved by the manually optimized version in

SW4lite. We plan to integrate ARTEMIS-optimized kernels into

SW4lite in the future.

7pt-smoother

27pt-smoother

helmholtz

denoise

miniflux

hypterm

diffterm

addsgd4

addsgd6

rhs4center

rhs4sgcurv

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
er

fo
rm

an
ce

(T
F

L
O

P
S

)

globalbase globalTB globalunroll globalmisc

(sh+reg)base (sh+reg)TB (sh+reg)unroll (sh+reg)misc

Fig. 6: Performance breakdown of various versions generated

with ARTEMIS on Pascal P100

G. Interaction Between Optimizations and Autotuning

Figure 6 plots the interaction between autotuning and op-

timizations with ARTEMIS. In the figure, global corresponds

to generated versions with just global memory, and sh+reg

corresponds to versions that use both shared memory and

registers. The baseline versions globalbase and (sh+reg)base

have no optimizations enabled, and the thread block size is

fixed to (x=32,y=16) for iterative 3D stencils with stream-

ing, (x=16,y=16) for register-constrained spatial stencils with

streaming, and (x=16,y=4,z=4) for the non-streaming ver-

sions. On top of this baseline, we apply one optimization at

a time, and plot the performance with the standalone opti-

mization. For example, with autotuning, we explore versions

globalTB and (sh+reg)TB by just varying the thread block

size. Many iterative and spatial stencils benefit from thread

block size variation, but the impact is more pronounced

for the shared memory versions of high-order stencils like

helmholtz, diffterm and addsgd6. For versions globalunroll and

(sh+reg)unroll, we fix the thread block size to the baseline,

and autotune the unrolling factors along different dimensions.

Unrolling helps the shared memory versions of the iterative

stencils where register pressure is not a performance limiter.

This justifies the decisions made in ARTEMIS by the profiling

component to suppress loop unrolling in hierarchical auto-

tuning for spatial stencils. Also, the unrolling factors leading

to higher performance vary significantly across benchmarks,

highlighting the need for autotuning. Versions globalmisc and

(sh+reg)misc plot the performance improvement with all the op-

timizations like unrolling, thread block size variation, prefetch-

ing, retiming, computation folding, and load/compute adjust-

ment simultaneously enabled. These sundry optimizations lead

to significant performance improvements across all stencils.

For example, retiming is the key to achieving high perfor-

mance in 27pt-smoother, load/compute adjustment leads to

significant performance improvement for the shared memory

version of hypterm, and computation folding is beneficial for

addsgd6. On a higher level, these trends imply that (a) a

single optimization cannot uniformly benefit all the stencils,



various optimizations must interact synergistically to improve

the performance of stencils with varying order and complexity;

and (b) autotuning and profiling are crucial to steer the code

generation towards versions that achieve higher performance.

IX. RELATED WORK

Many prior research efforts have explored the acceleration

of stencil computations on GPUs [1], [6]–[13], [16], [18],

[19], [21], [39], [43]. Verdoolaege et al. develop PPCG

[16], a source-to-source compiler that generates time-tiled

OpenCL/CUDA code from an annotated sequential program.

Holewinski et al. develop Overtile [1], Ravishankar et al. de-

velop Forma [11], and Rawat et al. develop STENCILGEN [9],

[17], all of which use overlapped tiling. However, of the three,

only STENCILGEN automates the spatial/temporal streaming

approach that was used by Micikevicius [14] and Nguyen et

al. [15] to optimize 3D stencils. Grosser et al. [7] present

a code generator that adapts split tiling from [26] to GPUs.

Grosser et al. [6] also implement hexagonal tiling [6] in

PPCG. These tiling schemes differ in the communication and

recomputation trade-off. ChiLL [44] is a composable loop

transformation framework which allows the user to script loop

transformations for stencil computations. Basu et al. [45] use

ChiLL to generate, and autotune the miniGMG benchmark

on GPUs. Hagedorn et al. [21] extend the LIFT language

with primitives to support stencil computations. Unlike the

aforementioned code generators that can perform time tiling,

several code generators perform only spatial tiling on the input

stencil. Mint [19] is a pragma-based source-to-source transla-

tor implemented in the ROSE compiler [46] that generates a

spatially tiled CUDA code from traditional C code. Physis

[18] translates user-written stencil code into CUDA+MPI

code for GPU-equipped clusters. ARTEMIS optimizes both

spatial and time-iterated stencils, gives the user some control

over the resource allocation, and incorporates a plethora of

optimizations. Another novel aspect of ARTEMIS is its ability

to perform kernel fission in order to alleviate register pressure

for resource-constrained complex stencils. Our experimental

results demonstrate that ARTEMIS consistently outperforms

STENCILGEN, which outperforms PPCG, Overtile, Forma, and

Halide autoscheduler [9], [17].

Since the performance of the generated code is affected

by the interaction of various code generation parameters

and hardware, autotuning of stencil applications has gained

popularity in recent years. Zhang and Mueller [10] evaluate a

code generator and autotuner for 3D stencils on GPU clusters.

They tune for unrolling factor along different dimensions,

but the code generation is restricted to spatial tiling. Halide

decouples algorithm specification from schedule; the schedule

can be either written by a domain expert [2], auto-generated

[43], or autotuned independently by OpenTuner [24]. Prajapati

et al. [32] develop an analytical model that predicts the

execution time of the code generated with hexagonal tiling.

ARTEMIS incorporates a profiling and autotuning strategy that

is simple to automate, and uses sample-based profiling via

nvprof instead of relying on analytical models which can

be imprecise for register-constrained stencils [30], [32]. The

hierarchical autotuning also allows for a faster tuning than

OpenTuner.

Applications in image processing are often expressed as

stencil DAGs. Individual stencils in the DAG are often

bandwidth-bound, therefore fusion across the nodes in the

DAG improves performance. Recent research has focused on

integration of analytical models into code generators to guide

kernel fusion [30], [32]–[35]. A common limitation of such

analytical models is the precision in prediction, stemming

from the complexity of the underlying hardware. Wahib and

Maruyama [13], and Gysi et al. [12] use an analytical per-

formance model to find a near-optimal fusion configuration.

Wahib and Maruyama [13] further prune the search space

using a search heuristic based on a hybrid grouping genetic

algorithm. Unlike these approaches, ARTEMIS uses a fission-

driven approach that is driven by the resource constraints of

the underlying GPU device.

X. CONCLUSION

High-order, multi-statement stencils are becoming com-

monplace in scientific computations. Such stencils present

optimization challenges that were not observed with simpler

stencils. This paper identifies abstractions that are imperative

to performance for high-order, complex stencil computations:

user-guided optimizations, and integration of code generation

and tuning with bottleneck profiling. The developed abstrac-

tions are implemented into a prototype code generation frame-

work, ARTEMIS. Experimental evaluation of ARTEMIS on

several stencil kernels demonstrates consistent performance

improvement over other state-of-the-art code generators.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-

back and suggestions that helped improve the paper. This work

was supported in part by the Exascale Computing Project (17-

SC-20-SC), a collaborative effort of the U.S. Department of

Energy Office of Science and the National Nuclear Security

Administration; in part by the U.S. National Science Foun-

dation (NSF) under Awards 1440749 and 1513120; and in

part by an award for use of computing resources at the Ohio

Supercomputer Center.

REFERENCES

[1] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance
code generation for stencil computations on GPU architectures,” in Pro-

ceedings of the 26th ACM International Conference on Supercomputing,
ser. ICS ’12. ACM.

[2] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13. ACM.

[3] “ExaCT: Center for Exascale Simulation of Combustion in Turbulence:
Proxy App Software,” https://exactcodesign.org/proxy-app-software/.

[4] “Seismic Wave Modelling (SW4) - Computational Infrastructure for
Geodynamics,” https://geodynamics.org/cig/software/sw4/.

[5] E. C. Davis, M. M. Strout, and C. Olschanowsky, “Transforming
loop chains via macro dataflow graphs,” in Proceedings of the 2018

International Symposium on Code Generation and Optimization, ser.
CGO ’18. ACM.

https://exactcodesign.org/proxy-app-software/
https://geodynamics.org/cig/software/sw4/


[6] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Verdoolaege,
“Hybrid hexagonal/classical tiling for GPUs,” in Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimiza-

tion, ser. CGO ’14. ACM.
[7] T. Grosser, A. Cohen, P. H. J. Kelly, J. Ramanujam, P. Sadayappan,

and S. Verdoolaege, “Split tiling for GPUs: Automatic parallelization
using trapezoidal tiles,” in Proceedings of the 6th Workshop on General

Purpose Processor Using Graphics Processing Units, ser. GPGPU ’13.
ACM.

[8] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet,
and P. Sadayappan, “Effective resource management for enhancing
performance of 2D and 3D stencils on GPUs,” in Proceedings of the
9th Annual Workshop on General Purpose Processing Using Graphics

Processing Unit, ser. GPGPU ’16. ACM.
[9] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet,

A. Rountev, and P. Sadayappan, “Resource conscious reuse-driven tiling
for GPUs,” in Proceedings of the 2016 International Conference on

Parallel Architectures and Compilation, ser. PACT ’16. ACM.
[10] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3D stencil

codes on GPU clusters,” in Proceedings of the Tenth International

Symposium on Code Generation and Optimization, ser. CGO ’12. ACM.
[11] M. Ravishankar, J. Holewinski, and V. Grover, “Forma: A DSL for

image processing applications to target GPUs and multi-core CPUs,”
in Proceedings of the 8th Workshop on General Purpose Processing

Using GPUs, ser. GPGPU ’12. ACM.
[12] T. Gysi, T. Grosser, and T. Hoefler, “MODESTO: data-centric analytic

optimization of complex stencil programs on heterogeneous architec-
tures,” in Proceedings of the 29th ACM on International Conference on
Supercomputing, ser. ICS ’15. ACM.

[13] M. Wahib and N. Maruyama, “Scalable kernel fusion for memory-bound
GPU applications,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’14. IEEE Press.

[14] P. Micikevicius, “3D finite difference computation on GPUs using
CUDA,” in Proceedings of 2nd Workshop on General Purpose Pro-
cessing on Graphics Processing Units, ser. GPGPU ’09. ACM.

[15] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-D
blocking optimization for stencil computations on modern CPUs and
GPUs,” in Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’10. IEEE Computer Society.

[16] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado, and
F. Catthoor, “Polyhedral parallel code generation for CUDA,” ACM

TACO, 2013.
[17] P. S. Rawat, M. Vaidya, A. Sukumaran-Rajam, M. Ravishankar,

V. Grover, A. Rountev, L. Pouchet, and P. Sadayappan, “Domain-specific
optimization and generation of high-performance GPU code for stencil
computations,” Proceedings of the IEEE, 2018.

[18] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: An
implicitly parallel programming model for stencil computations on
large-scale GPU-accelerated supercomputers,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,

Storage and Analysis, ser. SC ’11. ACM.
[19] D. Unat, X. Cai, and S. B. Baden, “Mint: Realizing CUDA performance

in 3D stencil methods with annotated C,” in Proceedings of the Inter-
national Conference on Supercomputing, ser. ICS ’11. ACM.

[20] M. Christen, O. Schenk, and H. Burkhart, “PATUS: A code generation
and autotuning framework for parallel iterative stencil computations on
modern microarchitectures,” in Proceedings of the 2011 IEEE Interna-

tional Parallel & Distributed Processing Symposium, ser. IPDPS ’11.
IEEE Computer Society.

[21] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach,
“High performance stencil code generation with lift,” in Proceedings of

the 2018 International Symposium on Code Generation and Optimiza-
tion, ser. CGO ’18. ACM.

[22] P. S. Rawat, A. Sukumaran-Rajam, A. Rountev, F. Rastello, L.-N.
Pouchet, and P. Sadayappan, “Register optimizations for stencils on
GPUs,” in Proceedings of the 23nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’18.
ACM.

[23] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstrac-
tions,” arXiv preprint arXiv:1802.04730, 2018.

[24] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “OpenTuner: An extensible frame-

work for program autotuning,” in Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation, ser. PACT ’14.
ACM.

[25] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Automatic
optimization for image processing pipelines,” in Proceedings of the
Twentieth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ser. ASPLOS ’15. ACM.
[26] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and

P. Sadayappan, “A stencil compiler for short-vector SIMD architectures,”
in Proceedings of the 27th International ACM Conference on Interna-

tional Conference on Supercomputing, ser. ICS ’13. ACM.
[27] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leis-

erson, “The pochoir stencil compiler,” in Proceedings of the Twenty-third

Annual ACM Symposium on Parallelism in Algorithms and Architectures,
ser. SPAA ’11. ACM.

[28] “High-Performance Geometric Multigrid,” https://hpgmg.org/.
[29] X. Xie, Y. Liang, X. Li, Y. Wu, G. Sun, T. Wang, and D. Fan, “Enabling

coordinated register allocation and thread-level parallelism optimization
for GPUs,” in Proceedings of the 48th International Symposium on

Microarchitecture, ser. MICRO-48. ACM, 2015.
[30] S. Hong and H. Kim, “An analytical model for a GPU architecture with

memory-level and thread-level parallelism awareness,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09, New York, NY, USA.

[31] J. Lai and A. Seznec, “Performance upper bound analysis and opti-
mization of SGEMM on fermi and kepler GPUs,” in Proceedings of

the 2013 IEEE/ACM International Symposium on Code Generation and

Optimization, ser. CGO ’13, Washington, DC, USA.
[32] N. Prajapati, W. Ranasinghe, S. Rajopadhye, R. Andonov, H. Djidjev,

and T. Grosser, “Simple, accurate, analytical time modeling and optimal
tile size selection for GPGPU stencils,” in Proceedings of the 22Nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, ser. PPoPP ’17. ACM.
[33] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance analysis

framework for identifying potential benefits in GPGPU applications,” in
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, ser. PPoPP ’12. ACM.
[34] Y. Zhang and J. D. Owens, “A quantitative performance analysis

model for GPU architectures,” in Proceedings of the 2011 IEEE 17th

International Symposium on High Performance Computer Architecture,
ser. HPCA ’11. IEEE Computer Society.

[35] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.
Hwu, “An adaptive performance modeling tool for GPU architectures,”
in Proceedings of the 15th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, ser. PPoPP ’10. ACM.
[36] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful

visual performance model for multicore architectures,” Commun. ACM.
[37] “NVIDIA Profiler,” http://docs.nvidia.com/cuda/profiler-users-guide.
[38] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams, “An auto-

tuning framework for parallel multicore stencil computations,” in 2010

IEEE International Parallel and Distributed Processing Symposium, ser.
IPDPS ’10.

[39] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick, “Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures,” in Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, ser. SC ’08.
IEEE Press.

[40] “Center for Domain-Specific Computing,” https://code.google.com/
archive/p/cdsc-image-processing-pipeline/ .

[41] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
NVIDIA volta GPU architecture via microbenchmarking,” CoRR, vol.
abs/1804.06826.

[42] “NVCC,” docs.nvidia.com/cuda/cuda-compiler-driver-nvcc.
[43] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fa-

tahalian, “Automatically scheduling halide image processing pipelines,”
ACM Trans. Graph.

[44] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and M. M. Khan,
“Loop transformation recipes for code generation and auto-tuning,” in
Proceedings of the 22Nd International Conference on Languages and

Compilers for Parallel Computing, ser. LCPC ’09.
[45] P. Basu, S. Williams, B. V. Straalen, L. Oliker, P. Colella, and M. Hall,

“Compiler-based code generation and autotuning for geometric multigrid
on GPU-accelerated supercomputers,” Parallel Computing.

[46] D. J. Quinlan, “ROSE: Compiler support for object-oriented frame-
works.” Parallel Processing Letters.

https://hpgmg.org/
http://docs.nvidia.com/cuda/profiler-users-guide
https://code.google.com/archive/p/cdsc-image-processing-pipeline/
https://code.google.com/archive/p/cdsc-image-processing-pipeline/
docs.nvidia.com/cuda/cuda-compiler-driver-nvcc

