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Abstract—Mobile app analytics gathers detailed data about
millions of app users. Both customers and governments are
becoming increasingly concerned about the privacy implications
of such data gathering. Thus, it is highly desirable to design
privacy-preserving versions of mobile app analytics. We aim to
achieve this goal using differential privacy, a leading algorithm
design framework for privacy-preserving data analysis.

We apply differential privacy to dynamically-created content
that is retrieved from a content server and is displayed to the
app user. User interactions with this content are then reported
to the app analytics infrastructure. Unlike problems considered
in related prior work, such analytics could convey a wealth of
sensitive information—for example, about an app user’s political
beliefs, dietary choices, health conditions, or travel interests. To
provide rigorous privacy protections for this information, we
design a differentially-private solution for such data gathering.

Our first contribution is a conceptual design for data collection.
Since existing approaches cannot be used to solve this problem,
we develop a new design to determine how the app gathers data
at run time and how it randomizes it to achieve differential
privacy. Our second contribution is an instantiation of this design
for Android apps that use Google Firebase. This approach keeps
privacy logic separate from the app code, and uses code rewriting
to automate the introduction and evolution of privacy-related
code. Finally, we develop techniques for automated design space
characterization. By simulating different execution scenarios and
characterizing their privacy/accuracy trade-offs, our analysis
provides critical pre-deployment insights to app developers.

I. INTRODUCTION

Android apps commonly use app analytics infrastructures
provided by companies such as Google and Facebook. For
example, Google Firebase [1] is used by 48% of the thousands
of apps investigated in a recent study [2]. Such analytics
machinery gathers a wealth of data about the app user, typically
without clarity or guarantees on the intended use of this data.
Millions of app users are regularly subjected to such poorly-
understood/regulated data gathering and analysis. Powerful
data mining can be applied to this data and to other sources of
information about the same user, giving significant powers of
inference and learning to entities whose intentions are unclear
at best and malicious at worst. Not surprisingly, both customers
and governments are becoming increasingly concerned about
the privacy implications of such widespread data gathering.

In this technological and societal context, a promising
direction for research and practice is to design privacy-
preserving data gathering. While many mechanisms have

been proposed to achieve this goal, in this work we focus
on differential privacy [3]. This theoretical approach has
emerged as a leading algorithm design framework for privacy-
preserving data analysis, due to its rigorous privacy definitions,
extensive body of powerful algorithmic solutions, and a number
of practical applications in industry and government. With
differential privacy, useful statistics can be collected about
a population, without revealing details about any individual
member of the population. These privacy protections are
achieved by adding random noise to the raw data, and reporting
and analyzing only this perturbed data. This approach is
appealing as it provides well-defined probabilistic guarantees
about the privacy protection of individual user’s data, even
in the presence of unknown additional data about this user,
and regardless of any powerful and unanticipated statistical
analyses that may be applied to the data by adversarial entities.

A. Fixed vs Dynamic Data

A common use of mobile app analytics is to track frequencies
of fixed events—for example, views of GUI screens— which
are then reported to the analytics server. The set of such events
is fixed ahead of time, before app deployment, and is the same
for all app users. Some prior work has considered privacy-
preserving designs for such data gathering [4]–[6].

However, there is an even more important category of data
that has not been considered in any prior work. In this scenario,
dynamically-created content at a content server is retrieved
by the app and displayed to the app user. User interactions
with this content are then reported to the mobile app analytics
infrastructure (i.e., to an analytics server), and ultimately to
the app developers. Unlike fixed events in which app structural
information is typically gathered, here content-related events
can be used to attempt inferences about the app user. For
example, as illustrated later via several real apps we studied,
this type of analytics could potentially convey a wealth of
information about a user’s political beliefs, her dietary choices,
her health conditions, or her travel interests. Furthermore, this
data could be combined with widely-available data from other
sources (e.g., public government databases; consumer data from
business analytics companies) to draw even more powerful
inferences about the user. Note that such inferences could be
attempted not only by unknown privacy adversaries, but also
by the analytics server and the app developers themselves.



Privacy protection for such content data is arguably more
important than protecting fixed events such as GUI screen
views. Consider this question: which is more revealing, (1)
that the app user tapped a GUI button to label an article
as “favorite”, or (2) that the user did this for a particular
article, uniquely identifiable by a public article id, in which the
topic was a sensitive subject such as anti-government protests?
Would an app user be equally comfortable with (1) or (2)
being shared with the unknown developers of some app and
the analytics servers under the control of Google? We believe
that the second scenario is much more sensitive, but no existing
work has considered how to add privacy protection in mobile
apps that gather such data.
Problem statement. Our goal is to design a differentially-
private solution for such data gathering, in a way that (1)
preserves the privacy of individual app users, while at the same
time (2) provides accurate statistics over the entire population
of users. We consider this to be a software transformation
problem: given an app that already uses mobile app analytics
of dynamic content, how should it be modified to introduce
differential privacy protections?

B. Challenges

Challenge 1. Unlike differentially-private data collection for a
pre-defined set of fixed events, the problem we consider has
two new features that have not been addressed in existing work.
First, the content items retrieved from the content server by
one app instance could be different from the ones retrieved by
another app instance. Thus, each individual app user locally
observes and interacts with a different set of items, compared to
other users. Further, the local behavior of an app interleaves two
types of state changes: (1) content retrieval from the content
server, and (2) user interactions with this content, resulting
in event reports to the analytics server. Existing designs for
differentially-private data analysis do not handle these two
novel aspects of the collection process.
Challenge 2. There could be substantial effort to introduce
and maintain the code that implements the differential privacy
mechanisms. Given an app with mobile app analytics, the in-
troduction of such privacy-preserving code presents a software
evolution challenge. When such functionality is introduced for
the first time, this may require code changes in various parts
of the program, at places where analytics-related code already
exists. As the app evolves, changes to privacy-preserving
code may need to be introduced to keep it “in sync” with
the corresponding analytics code. Such code changes require
programmer effort and are error prone.
Challenge 3. Effective integration of differential privacy re-
quires pre-deployment analysis and calibration of a fundamental
trade-off: accuracy vs privacy. Stronger privacy guarantees
require more random noise, which leads to lower accuracy of
population-wide statistics. For an app developer who introduces
differentially-private data gathering in her app, it is important
to characterize and tune the effects of various design choices
to achieve practical trade-offs, and to do this with little effort.

C. Contributions

Our work makes the following contributions to address the
challenges outlined above.
Contribution 1. We propose a new differentially-private data
analysis for dynamic content in mobile apps (Section IV-C).
The developed conceptual design includes an abstract problem
statement and a mathematical definition of how the data is
gathered and processed in the app and in the analytics server.
The approach handles both problems outlined above: it accounts
for the differences in local information for each app user, and
incrementally handles the interleaving between content retrieval
and user-triggered events on this content.
Contribution 2. As a proof of concept, we develop an
instantiation of this design for Android apps that use Google
Firebase (Section V-A). Our approach keeps all differential
privacy logic separate from the original app code, and uses
code rewriting to automate the introduction and evolution of
privacy-related code. The rewriting introduces calls to a separate
run-time layer which wraps the Firebase analytics libraries.
The resulting solution makes it easy to add differential privacy
functionality to an existing app and to evolve it with the
evolution of the app.
Contribution 3. We develop techniques for automated design
space characterization (Section V-C). By simulating different
execution scenarios and characterizing the resulting privacy/ac-
curacy trade-offs, our analysis provides critical pre-deployment
insights to app developers.

II. MOBILE APP ANALYTICS

A. Google Firebase

Developers of Android apps can use several analytics
infrastructures to record and analyze run-time app execution
data. Currently the most popular such infrastructure is Google
Firebase (“Firebase” for short) [1]. Based on recent statistics of
popular apps, Firebase is used by 48% of the analyzed apps [2].
While focused on Firebase, the core techniques developed by
our work also apply to other app analytics frameworks such as
Facebook Analytics [7] and Flurry [8]. The operation of app
analytics is illustrated in Figure 2; details of this figure will be
discussed shortly. In this paper we focus on event frequencies,
which are the most basic and popular form of mobile app
analytics provided by Firebase and similar infrastructures.

There are two broad categories of data that are collected via
app analytics. One category is app-specific data. One simple
example of such data are events of the form “the app user has
viewed screen s” where s is a structural element of the app
(e.g., an Android activity). The set of all such possible events
is known ahead of time, before the app is distributed to users.
Frequencies of such events, gathered over a large number of
app users, can help the app developers understand what are
the most common features of the app, and how users typically
navigate through app functionality.

A second category of data—the one studied in our work—is
dynamic user-specific data. Such data is not known ahead of
time before app deployment; it is dynamically created over



time and the user’s interactions with it are logged by mobile
app analytics. Such data is much more revealing. For example,
consider the infowars app which was included as a subject
in our study (Section VI). The dynamic content here is a set
of news articles posted at the controversial infowars.com
website. Each article has a unique publicly-available identifier
inside the app. The articles available at the website changes
over time. When the app user views an article retrieved from
the website, and clicks the “Favorite” button, an event is sent to
Firebase to log this action. This event includes the identifier for
the article. Such information can be used to infer the political
inclinations of the specific app user being tracked.

As another example, app cookbook, which was also used in
our study, allows users to browse and view a large collection of
recipes. The content items are the recipes. When the user selects
a recipe to view its details, this event is sent to Firebase together
with the recipe identifier. By observing such information, it is
possible to infer information about user’s diet (e.g., vegetarian
or gluten-free) and underlying health conditions (e.g., high
blood pressure, which is correlated with low-sodium recipes).
As a last example, consider two of the other apps we studied:
reststops and opensnow. The first one displays details about
rest stops along highways. The second one shows information
about skiing locations. Using Firebase, the apps collect the ids
of viewed content items. This information could potentially be
used to infer the user’s travel interests and plans.

Firebase does have high-level guidelines to avoid collect-
ing user-identifiable information [9]. However, there is no
enforcement of such guidelines. Even if such protections
were rigorously defined and enforced, the “leaking” of user-
specific information still makes it possible to construct various
privacy attacks by unethical business entities, malicious actors,
disgruntled employees, or government agencies. For example,
techniques such as anonymization cannot provide strong privacy
guarantees and are susceptible to privacy attacks that utilize
additional sources of information external to the anonymized
data collection (e.g., [10], [11]).

B. Example

Figure 1 shows a code example derived and simplified from
the cookbook app. Class SparkRecipesBaseActivity has
a field f which stores a reference to a FirebaseAnalytics

object. When a “select” event happens on a recipe, the app code
calls DoFireBaseSelectContent and provides the string id
of this recipe as parameter id. Inside the method, a bundle is
created to store this id, associated with a pre-defined constant
ITEM_ID defined by Firebase. The call to logEvent then sends
an event of type “select content” to the Firebase analytics server.
The recipe id is provided as part of the logged event. Note
that all recipe ids provided by the content server are public
knowledge and are easily mapped to the actual recipe details.

Many recipes are retrieved from the content server and their
summaries/images are displayed in the app, but only a subset
of these are selected by the user for detailed view and are
recorded by Firebase via logEvent. Specifically, the recipe
summaries and images are displayed in a ListView (Android’s

class SparkRecipesBaseActivity ... {
FrebaseAnalytics f;
public void onCreate(...) {
...
f = FirebaseAnalytics.getInstance(this);
}
public void DoFireBaseSelectContent(String id) {
Bundle b = new Bundle();
b.putString(FirebaseAnalytics.Param.ITEM_ID,id);
f.logEvent(FirebaseAnalytics.Event.SELECT_CONTENT,b);
}
}
class MainFragment ... {
public void ProcessMainScreenData(String data) {
...
JSONObject jsonRecipe = ...;
long id = jsonRecipe.getLong("recipe_id");
...
}
}

Fig. 1. Code derived from the cookbook app.

GUI widget for a list), and clicking a list item displays the
details of the recipe and records the “select” event by calling
DoFirebaseSelectContent. The data retrieval from the
content server is done via HTTP. The actual data uses JSON, as
illustrated by method ProcessMainScreenData in Figure 1.
The parameter of this method is the string representation of the
recipe data, obtained via HTTP from the server. The information
about individual recipes is retrieved from this data, including
the recipe id. This information is then used to populate GUI
widgets that display recipe summaries and images.

III. DIFFERENTIAL PRIVACY

Differential privacy [12] is a rigorous theoretical approach
that allows systematic design of privacy-preserving data collec-
tion. Both theoretical foundations [3] and practical applications
in industry/government [13]–[16] have been studied exten-
sively in the last decade. Intuitively, differentially-private data
gathering and analysis aim to provide accurate estimates of
population-wide statistics, while “hiding”, in a well-defined
probabilistic sense, data from individuals who are members of
this population. As a simple example, with differential privacy,
it becomes possible to estimate accurately the total number of
app users who have labeled a certain news article as favorite,
while it is not possible to assert with high certainty whether
any particular app user has done so.
Example. We illustrate this approach with a key exemplar
problem that has been studied extensively [13], [17], [18].
(The next section describes in detail the more general problem
we solve, and the threat model assumed by that solution.)
Consider some publicly-known data dictionary V . Suppose we
have n users u1, . . . un, and each user ui has a single private
data item vi ∈ V . The problem is to determine, for every v ∈ V ,
how many users ui have vi = v. We would like to estimate
the population-wide frequency f(v) of each v, following the
so-called model of local differential privacy. In this model, any
data shared by the user is considered to be potentially-abused
by external observers, including the analytics server.



The differential privacy scheme perturbs the local informa-
tion of each user. If this perturbation is designed correctly,
malicious actions of the analytics server or the clients of this
server cannot break the differential privacy guarantee (this
guarantee is described shortly). A differentially-private version
of this analysis will randomize the local item vi of user ui
using a local randomizer R : V → P(V). Here P(. . .) denotes
the power set. Thus, the user reports a set of events R(vi) ⊆ V
to the analytics server. After such data is collected from all
users, for every v ∈ V the server computes |{i : v ∈ R(vi)}|
and uses it to estimate the true frequency |{i : v = vi}|.

The randomizer creates an output from which it is difficult to
determine, in a probabilistic sense, what was the randomizer’s
input. For every possible randomizer output z ⊆ V and for any
two v1 and v2 from V , the probability that R(v1) = z is close
to the probability that R(v2) = z. Thus, anyone observing z
cannot distinguish with high probability the case where the real
data was v1 from the case where the real data was v2. Such
indistinguishability is the essence of differential privacy. In the
above definition, two probabilities are considered close to each
other if their ratio is bounded from above by eε, where ε is a
parameter defining the strength of indistinguishability. Values of
ε in prior work range from 0.01 to 10 [19]. In related work that
uses the style of randomization we employ, exemplar values are
ln(3), ln(9), and ln(49) [13], [18]; for example, the last two
values are used in the first stage of a two-stage randomizer [13].
Larger values of ε weaken the indistinguishability guarantee,
but increase the accuracy of estimates since the randomizer
needs to add less noise to ensure this guarantee.

A well-known approach to meet the requirements of this
definition is the following [13], [18]. The local data of user
ui is represented as a bitvector, with one bit for each element
of V . For the item vi held by ui, the corresponding bit is 1;
the rest of the bits are 0. The randomizer takes this bitvector
as input and for each bit, independently from the other bits,
inverts the bit with certain probability dependent on ε. The
resulting perturbed bitvector is the output of the randomizer
and is a representation of set R(vi). This set is shared with
the analytics server. When the analytics server receives all user
data R(vi), it computes a global frequency |{i : v ∈ R(vi)}|
for every v. This frequency is then calibrated to account for
the presence of noise over all n users, which produces the
final frequency estimate for v. A key observation behind this
approach is the following: when data is collected from a large
number of users, the individual noises cancel each other out
in a probabilistic sense, leaving a final estimate that is close
to the actual value being estimated.

IV. PROBLEM DEFINITION AND SOLUTION DESIGN

A. Problem Statement

A content server (e.g., a news server, a recipe server, a
live events server) continuously delivers dynamic content. In
our model, this content is a stream of items, each identified
by a unique id. Without loss of generality, we will represent
the stream as a sequence of integer ids c1, c2, . . . where cj is
the integer id of the j-th content item. The app running on
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Fig. 2. Data collection using Firebase, without differential privacy.

the device of user ui interacts with the server and retrieves a
subset of these ids cj . This retrieval could be done, for example,
based on time of content publishing (e.g., upon startup, the
infowars app retrieves the ids and titles of the latest 50
news articles) or based on preset user preferences. The set of
content items retrieved by user ui will be denoted by Ci and
will be referred as the local dictionary of user ui.

When the user interacts with the content displayed by the
app, user actions can trigger analytics events (e.g., making
“favorite” a news article with id c, or viewing the details of a
recipe with id c). To simplify the discussion, we will consider
a single type of event; generalizing to multiple event types is
trivial. We will abstract the set of app-user-triggered events
via a subset Ei ⊆ Ci of the local dictionary. If c ∈ Ei, this
means that an event was triggered by the app user on content
item c. For simplicity, we will often use c to denote both the
content item and the event that occurred on it.
Frequency analysis. For every item c published by the server,
our goal is to estimate the number of users that triggered an
event on c: that is, the frequency f(c) = |{i : c ∈ Ei}|.
Such frequency information is useful to the content provider
to understand how the user population interacts with published
content, for example, which items are most popular. In
particular, such data collection is a key functionality of the
Android apps we have studied and used for our evaluation:
given some set of content items retrieved from a content
server, the app reports events related to these items to the
Firebase analytics server. App developers (working on behalf of
content providers) can then use standard Firebase tools to obtain
histograms of this data. Another motivation for considering
this problem is that the underlying solution techniques play a
key role in other analyses: e.g., heavy hitters [17], estimates
of distributions [20], and clustering [21]. Future work could
apply these more sophisticated techniques to privacy-preserving
analysis of dynamic content in mobile app analytics.
Example. The process described above is illustrated in Fig-
ure 2. Here V = {1, . . . , 9}. The figure shows the set Ci
of content item ids retrieved by each user; for example,
C2 = {1, 2, 4, 5, 7, 9}. Each user’s actions on these items
results in a set of events Ei ⊆ Ci, each of which is associated
with a unique content item id; for example, for u2 we have
E2 = {2, 4, 9}, shown in gray in the figure. These are shared
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with Firebase and used to compute population-wide frequencies.
Without differential privacy, sets Ei are simply reported

to the analytics server and then used to compute the fre-
quencies f(c) directly. With differential privacy, we introduce
randomization: for each c ∈ Ci (i.e., every element c of the
local dictionary of ui), the goal is to provide probabilistic
indistinguishability between two conclusions: (1) c ∈ Ei and
(2) c /∈ Ei. In other words, for every local content item c, a
privacy adversary should not be able to tell whether the item
participated in an event or not. This will be achieved with a
local randomizer R such that R(Ei) is reported to the analytics
server, as opposed to the raw data Ei. Using the set of all
reported R(Ei), the analytics server produces estimates f̂(c)
of the real frequencies f(c).

B. Threat Model

The design and implementation of the differentially-private
scheme are fixed before the data collection starts and are
publicly known to app users and privacy adversaries. This
includes knowledge of R and the parameter ε used by it; as
typical in differential privacy, the same ε is used for all users. A
key assumption is that the app code faithfully implements the
design: it performs the randomization as expected, sends the
randomized data to the expected analytics server, and does not
leak the raw private data in any other way. This can be achieved,
for example, by providing open-source implementations or by
code certification performed by government agencies or privacy
experts. The content server and the analytics server are not
trusted. In particular, the content server can track the set of
items Ci delivered to a particular user ui, or even provide some
specific content chosen as part of a privacy attack. Thus, the
approach assumes that for each user ui, the set Ci of retrieved
items is publicly known to any malicious party. The privacy
guarantee is with respect to the subset of events Ei ⊆ Ci that
occurred locally on the user’s device. Ei remains private under
this model, as defined precisely below. The data shared with
the analytics server is R(Ei). From this data the potentially-
malicious analytics server, even if colluding with the content
server and even if using additional unknown data sources
about this user, cannot construct a high-confidence guess as to
whether any particular c ∈ Ci is an element of Ei or not.

C. Design of a Differentially-Private Scheme

To achieve the desired privacy, we use the following random-
izer design. The private local data of user ui is represented as a
a bitvector of length |Ci|. Each bit corresponds to some c ∈ Ci.
If c ∈ Ei, the bit is 1; otherwise, the bit is 0. This vector is the
input to the local randomizer. For each bit, independently from
all other bits, the randomizer preserves the bit with probability
p = eε/(1 + eε) and inverts it with probability 1 − p. This
approach provably provides ε-indistinguishability between any
two vectors that differ in a single bit.
Example. The randomization process is illustrated in Figure 3.
For each user, sets Ci and Ei are the same as shown earlier
in Figure 2. In the randomizer input and output, bits in gray
have value 1 and the rest have value 0. Consider, for example,
user u2. We have C2 = {1, 2, 4, 5, 7, 9}, E2 = {2, 4, 9}, and
R(E2) = {1, 4, 5, 7, 9}. In this particular case, given a bitvector
with 1 bits for items 2, 4, and 9, the randomization inverted
the bit for item 2. Furthermore, the 0 bits for items 5 and 7
were inverted to 1. The data that leaves the user’s device and
is shared with the analytics server is the bitvector for R(E2).

The privacy protection provided by such randomization can
be interpreted as follows. Suppose the private local data is
set Ei ⊆ Ci. As discussed earlier, we assume that a privacy
adversary knows the local dictionary Ci and the randomizer
output R(Ei), e.g., because the adversary can monitor the
traffic to/from the user’s device, or because she controls the
content server and the analytics server. Furthermore, as done in
all differentially-private schemes, we assume that the adversary
fully knows how the randomizer is designed, including the
value of ε. This knowledge could be obtained, for example,
through reverse engineering of app code.

Based on this knowledge, what conclusions can the adversary
draw about any c ∈ Ci? The indistinguishability property
applies in two ways. First, suppose that c ∈ Ei. From
the point of view of the adversary, the probability that the
randomizer input was Ei is close to the probability that the
randomizer input was Ei\{c}; more precisely, the ratio of these
probabilities is bounded by eε. As a second case, now suppose
that c /∈ Ei. In this case the adversary cannot distinguish the
case where the randomizer input was Ei from the case where
the randomizer input was Ei ∪ {c}. Overall, probabilistically
the following two conclusions are indistinguishable from each
other: “an event happened on content item c” and “an event did
not happen on content item c”. For example, for any particular
news article, it is not possible to tell with high certainty whether
or not the app user marked this article as favorite. Similarly, for
any particular recipe, it is not possible to have high confidence
whether the user did or did not view the recipe details.

All bitvectors for R(Ei), for all users i, are collected by
the server. For any c, the number of all occurrences of c
in the reported sets R(Ei) is a biased estimator of the real
frequency f(c) = |{i : c ∈ Ei}|. To obtain an unbiased
estimator, additional calibration needs to be performed as shown
by the “Frequency Estimation” step in Figure 3. Specifically, for
each c, let nc be the number of sets Ci containing c, and let mc



be the number of sets R(Ei) containing c. The expected value
of mc is f(c)p+(nc− f(c))(1− p) where p is the probability
to preserve (i.e., not invert) a bit in the randomizer’s operation.
Here f(c) times the randomizers observed a 1 bit for c and
preserved it with probability p, and nc − f(c) times observed
a 0 bit and inverted it to a 1 with probability 1 − p. Thus,
we can estimate f(c) by f̂(c) = ((1 + eε)mc − nc) /(eε − 1).
The accuracy of this estimate depends on the number nc of
users whose local dictionary contains c, as well as on the
value of ε. It is important to characterize the accuracy as a
function of concrete values of these two parameters, as part
of pre-deployment tuning of the approach. Later we provide
further details on how to perform this characterization.

D. Limitations

While this approach achieves differential privacy for the
targeted problem, it is important to understand its limitations.
As described earlier, it is assumed that the app code implements
the design correctly and does not leak the private data by other
means. If an app developer ensures this, she can legitimately
claim to have privacy-by-design data collection, which is a
significant improvement over the state of practice in mobile
app analytics. This not only makes the software more appealing
to users, but it may align with government requirements
for privacy protection. Providers of mobile app analytics
infrastructures (e.g., Google and Facebook) could also benefit:
if they collect only randomized data, this provides protection
for them against data breaches or unlawful employee actions.

A second limitation is that we focus on an important but
narrow problem: obtaining frequency estimates for events. This
is a core functionality for infrastructures such as Firebase,
but many other interesting analyses could also be considered:
for example, user behavior flow analysis, correlation analysis,
clustering, etc. Such techniques require more sophisticated
differential privacy techniques. While our work may provide
some building blocks for such techniques, ultimately the
question of how to perform differentially-private mobile app
analytics is still open and requires significant follow-up efforts.

Our approach assumes that the local dictionary Ci is publicly
known, as the content server can track the data being retrieved
by a particular user. However, this information itself could
be sensitive—for example, it could be based on user settings,
profiles, or past behaviors. In future work it would be useful to
introduce privacy protections for the local dictionary as well,
for any adversaries that do not collude with the content server.

We only develop a simplified exemplar implementation of
this design for Firebase (described in the next section). The
implementation does not handle the full complexity of Firebase
(e.g., multiple event types) and lacks automated analysis for
identification of code locations for retrieval and logging of
dynamic content. Such static analysis and subsequent automated
code refactoring are important targets for follow-up work. In
addition, adapting this approach to other popular app analytics
frameworks such as Facebook Analytics is an open problem.

Algorithm 1: Randomization of observed events

1 Function init():
2 C ← ∅
3 E ← ∅
4 R← ∅
5 num_events← 0
6 Function retrieve(c):
7 C ← C ∪ {c}
8 Function event(c):
9 if c ∈ E then

10 return
11 end
12 E ← E ∪ {c}
13 with probability p, R← R ∪ {c}
14 num_events← num_events+ 1
15 if num_events = k then
16 for c ∈ C \ E do
17 with probability (1− p), R← R ∪ {c}
18 end
19 report C and R
20 end

V. IMPLEMENTATION FOR FIREBASE APPS

To realize the conceptual design above, we have implemented
a proof-of-concept instantiation for Android apps that use
Firebase. The implementation considers three kinds of run-time
state changes, and reacts to them via our code instrumentation.
In essence, we have developed an incremental randomizer
through a run-time layer that wraps the Firebase APIs and is
called by instrumentation inserted in the app code.

A. Overview

The instrumentation invokes three helper functions defined
and implemented by us. These functions are described in
Algorithm 1. The details of the actual instrumentation and
how it is inserted will be described in the next subsection.

The first state change is when the Firebase infrastructure is
initialized. Function init provides a high-level abstraction of
the initialization of our implementation. We internally maintain
three sets: C is for the local dictionary for this user, E is for
the set of events for the user, and R is for the output of the
randomizer. Note that we do not maintain bitvectors, but the
operations on these sets are equivalent to the processing of
bitvectors described earlier. At the end of data collection, C
and R are reported to the Firebase server, as described shortly.

After the initialization, two kinds of run-time state changes
can be observed, in interleaved fashion. First, there could be a
state change of the form “c is added to C”. This would happen
when a new content item is retrieved from the content server.
In our earlier example, when the app of user u2 retrieves item 4
from the content server, this item is added to local set C2. This
functionality is implemented by retrieve in Algorithm 1.

The other state change is of the form “an event is observed
on some c ∈ C”. Function event in Algorithm 1 handles



this state change. The function takes as input the content
item on which the event occurred. As we consider E as a
set rather than a multi-set, each such item c is recorded once
by adding it to E and, with probability p, adding it to the
randomizer output set R. Recall that in our conceptual design
p is the probability of preserving (rather than inverting) a bit
in the bitvector representing E. We also increment a count
of the number of events that have been observed so far. In
our exemplar implementation, when this count reaches a pre-
defined threshold k, the data collection completes and the data
is sent to the analytics server. This threshold is publicly known,
the same for all users, and decided before data collection starts.

Before C and R are sent to the server, all 0 bits in
the conceptual bitvector have to be considered and possibly
inverted. Equivalently, each c ∈ C \ E should be included in
R with probability 1− p. The resulting sets C and R can then
be sent to Firebase item-by-item using the standard logEvent

API.1 As a matter of practical implementation, two new event
types can be used, one for C and one for R, and the items in
these sets can be recorded by Firebase under these artificial
event types. The post-processing by the app developer, as shown
in Figure 3, can use the information recorded by Firebase to
reconstruct all sets Ci and Ri for all users i, and then compute
the estimates f̂(c) as described at the end of Section IV-C.

B. Code Instrumentation

From the point of view of software evolution and main-
tenance, it is desirable to avoid the introduction of code
specific to our differentially-private data gathering. We aim
to easily incorporate our machinery into an existing app via
code instrumentation inserted by a code rewriting tool. The
code locations where the instrumentation should be inserted
are defined by a lightweight specification mechanism. For each
of the three abstract state changes described in Algorithm 1,
the specification describes the corresponding program points
where instrumentation should be inserted.

For example, for the call to logEvent in Figure 1, the
app developer specifies the program location of this call. Our
code rewriting tool replaces this call with a call to method
event(c) defined in our run-time library, which serves as a
wrapper to Firebase. Similarly, whenever a content item id is
introduced for the first time in the app code, as illustrated by
the call to getLong in Figure 1, a call to our implementation
of retrieve(c) from Algorithm 1 is added by the code
rewriting. In the current implementation and experiments, since
we do not have access to the source code of the subject apps,
the specification and instrumentation are at the level of the
intermediate representation of the popular Soot tool for code
transformation [22]. This approach keeps all privacy-related
logic and code separate from the app code base and allows
easy introduction/evolution of our solution into an existing app.

1Alternatively, C could be determined by the content server and then sent
by it to the analytics server. However, this complicates the functionality of
the content server and the overall synchronization of data collection. Sending
C from the user to the analytics server is a more practical solution.

C. Pre-Deployment Characterization of Accuracy

Before the app developer releases the differentially-private
data gathering as part of her Firebase app, it is important
to characterize the potential loss of accuracy. We have built
infrastructure to assist with this task, and have used it in
our own experiments. The process starts with a test case
written by the developer to trigger the relevant content retrieval
and Firebase logging. This test case is used to simulate user
actions. To ensure diversity of behaviors, the test case should
include randomization of GUI actions. For example, our test
for the cookbook app scrolls a random distance through the
list of recipe photos. This scrolling triggers retrieval of data
from the recipe server, dependent on the amount of scrolling
and the current server state. Then, a random item from the
visible portion of the list is clicked, which triggers logEvent.
Repeating these steps during one execution of the test case
produces the set of retrieved items Ci and the set of events Ei.
In our experience, writing such test cases is straightforward,
even for someone (like us) who is not familiar with the app.
An app developer can easily create such a test case as a starting
point of the characterization process; in fact, it is likely that
similar test cases already exist to support correctness testing.

The i-th individual execution of the test case produces data
for the i-th simulated app user, for i ∈ {1, . . . , n}. In our
infrastructure, we record the observed sets Ci and Ei in a
database, to allow repeated characterization with different
parameter values over the same data. From this database, an
automated script generates accuracy data in the following two
dimensions. First, we generate data for several values of ε. The
effects of this parameter must be studied carefully, to ensure
the desired accuracy-vs-privacy trade-offs. Second, we consider
additional synthetic user data. Each run of the test case could
take non-trivial time and thus gathering data for a large number
n of simulated users is not feasible. Given all Ci and Ei from
test case execution, we create additional user data as follows.
Two different users ui and uj are picked at random. A new user
uk is simulated by drawing (|Ei|+ |Ej |)/2 random samples
from Ei∪Ej to construct Ek. Further, Ck is constructed as the
union of Ci and Cj . This process is repeated until the desired
number of additional users is reached. In our experiments, we
used n = 100 test case executions to create the initial set of
100 simulated users, and then applied this approach to allow
experiments with n equal to 1000, 10000, and 100000.

The script measures and reports accuracy by comparing the
ground-truth frequencies f(c) with their estimates f̂(c). Various
metrics could be used for this comparison. In our experiments
we consider one such choice: a normalized version of the
L1 distance (i.e., Manhattan distance) between the frequency
vectors:

∑
c |f(c)−f̂(c)|/

∑
c f(c). Other choices are certainly

possible and easy to implement.
Given this characterization, the app developer could answer

various questions. For example, for some expected number of
app users and some targeted accuracy, what value of ε should
be used? This value can be automatically inferred from the
simulated data and embedded in the app with no effort from the



developer. As another example, how does the accuracy change
if the real number of users differs from the expected number?
As yet another example, what are the effects on accuracy if
data is collected over an extended period of time and thus
local dictionaries do not overlap much across users? (This last
question is discussed further in Section VI-D.) By considering
these and similar questions, developers can fine-tune the data
collection before releasing/updating the app.

VI. EXPERIMENTAL EVALUATION

The privacy-preserving analysis for Firebase Analytics
event reporting was done by analyzing and rewriting 9
apps. All experiments were performed on a machine with
Xeon E5 2.2GHz processor and 64GB RAM. The apps
were instrumented with Soot [22] and were run on Android
device emulators. To implement the test cases, we used a
Python wrapper [23] for the Android testing framework UI
Automator [24]. Our implementation, subjects, and data are
available at http://web.cse.ohio-state.edu/presto/software.

A. Study Subjects

We identified a number of popular apps from the Google Play
app store that that contain Firebase Analytics API calls. Based
on our understanding of app functionality, obtained from testing
in an emulator and from examination of decompiled code, we
selected 9 representative apps that retrieve their contents at
run time from some remote server. We registered these apps
to our own Firebase backend project. We also replaced the
values of google_api_key and google_app_id (stored in
the app assets as string values) with corresponding values from
this backend project as a quick test to ensure the correct event
reporting from the apps to the Firebase analytics server.

Table I describes characteristics of the apps and of our
run-time apps executions. The table shows the number of
classes and methods in the app code in columns “#Classes” and
“#Methods”. Next, it shows measurements from executing the
apps with n = 100 simulated users, as described in Section V-C.
Recall that each such user ui has a local dictionary Ci. The
total number of unique items retrieved from the content server
over these users (i.e., the size of the union of sets Ci) is shown
in column “#All items”. Column “Avg #items” contains the
average number of items in the dictionaries Ci. As can be seen,
significant amount of content was retrieved both per user and
across all users. The cost of randomization for this content
was negligible, around one millisecond or less per user.

B. Simulating User Behavior

As described in Section V-C, our infrastructure to charac-
terize the privacy-vs-accuracy trade-offs uses randomized test
cases to gather sets Ci and Ei for i ∈ {1, . . . , n}. Each test
case is executed in a separate Android emulator and follows a
common pattern. It first opens the app and performs GUI actions
to the point when a certain ListView or RecyclerView

widget is shown. This widget’s children widgets correspond
to the content items fetched from the content server. The test
case then selects a child widget at random, which triggers

TABLE I
STUDY SUBJECTS

App #Classes #Methods All items Avg #items
apartmentguide 1166 6878 1375 391.28
reststops 887 4768 1858 319.16
rent 1167 6881 902 218.29
shipmate 4873 25904 712 319.57
cookbook 620 3026 358 89.91
channels 189 973 294 122.88
infowars 2145 12483 226 50.00
loop 2802 18953 186 92.01
opensnow 3498 21455 168 127.04

event logging, and then goes back to the list. The test case
also scrolls through the list which causes the fetching of more
content. For all apps except infowars, this testing method
created an interleaved sequence of (1) fetching new content to
dynamically grow the dictionary, and (2) reporting events on
elements of the current dictionary. App infowars is slightly
different by design: instead of retrieving the data on-the-fly, it
loads the 50 newest articles every time the app is opened, so
the entire dictionary is built at the beginning of the test case.

An execution of a test case was terminated when k = 100
events of interest were observed (as shown in Algorithm 1). The
infowars app was an exception: it was run to log a random
number of at most 50 events, due to its design. The test case
executions were spread out over several days to diversify the
dynamically built dictionaries. Consecutive test executions for
the same app resulted in dictionaries with more elements in
common, while test executions on different days produced
dictionaries with less similarity.

C. Accuracy of Frequency Estimates

Given sets Ci and Ei for 1 ≤ i ≤ n, the construction of all
R(Ei) and the computation of frequency estimates f̂(c) was
performed in 30 independent trials, in order to characterize the
variability of results due to randomizer behavior, with all other
parameters being the same. Over these 30 measurements, we
report the mean value as well as the 95% confidence interval
(as suggested elsewhere [25]). In addition to n = 100, we also
used n = 1000, n = 10000, and n = 100000 as described
in Section V-C. In related work that uses similar kind of
randomization, typical values for ε are ln(3), ln(9), and ln(49)
[4], [5], [13], [18]. We collected data for all three values, but
due to space constraints do not show details for ln(49).

We use relative error to measure the accuracy of estimated
frequencies. This is a normalized version of the L1 distance
between the vector of ground-truth frequencies f(c) and the
vector of the estimated frequencies f̂(c), where C = ∪iCi:∑

c∈C |f(c)− f̂(c)|∑
c∈C f(c)

Values close to 0 indicate that the two frequency vectors are
similar to each other. In Figure 4, the x-axes show the names
of the apps and y-axes show the mean relative error calculated
over 30 runs. The 95% confidence intervals are small and are
barely visible on top of the mean value bars.

http://web.cse.ohio-state.edu/presto/software
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Fig. 4. Accuracy of frequency estimates. Shown are the mean values of the
relative error from 30 runs, together with the 95% confidence interval.

Summary of results. From these results, the following con-
clusions can be drawn. With sufficient number of users, the
overall accuracy over all parameter settings and all apps is
quite high. As expected, the worst accuracy is observed for the
smallest value of ε, but even then with 10000 users the error
is around 5% or less. With ε = ln(9) and this same number of
users, the error is around 2.5% or less, and with ε = ln(49)
the error becomes around 1% (details not shown).

Larger numbers of users can result in significant increase of
accuracy. This reflects the fundamental property of differential
privacy, in which larger data sets allow the noises from
individual randomized contributions to “average out”, leading
to more accurate estimates. Having large numbers of app users
is achievable in practice. For example, almost all of the top
most popular apps in each Google Play category have at least
10000 installs. In fact, 5 out of the 9 apps included in our
study have a number of installs above one million, and even the
least-popular app in our data set has more than 50000 installs.

D. Effects of Content Similarity on Accuracy

The accuracy of estimates for an item c depends on the
number of users ui for which c ∈ Ci. With more such users, the
random noise for c can cancel out better. Thus, to characterize
accuracy, just considering the total number of users n is
not enough—it is also important to consider the degree of
similarity among local dictionaries Ci. Everything else being
equal, higher similarity would result in higher accuracy of
estimates. Such effects could be due to the speed of content
change in the content server: slow-changing content would

result in higher similarity of local dictionaries. Similarly, the
similarity is affected by the duration of data gathering, as
longer duration provides more opportunities for app users to
observe different content at different points of time.

To characterize these effects, we augmented our infrastruc-
ture from Section V-C to create and evaluate two subsets of
the set of all n = 100 users. Both subsets are of size n/2, but
one of them exhibits higher similarity among local dictionaries
compared to the other one. To construct these subsets, we
first computed the Jaccard similarity between all pairs of local
dictionaries. Recall that the Jaccard similarity of sets A and B
is defined as J(A,B) = |A∩B|/|A∪B|. The overall similarity
of a collection S of local dictionaries Ci can be characterized
by the average pairwise similarity, which is the average value
of J(C,C ′) for all pairs C,C ′ ∈ S such that C 6= C ′.

To create the subset SH of high-similarity local dictionaries,
we started with the two users ui and uj such that J(Ci, Cj)
is largest among all pairs of users. The next user uk to be
added was chosen such that the average pairwise similarity
of SH ∪ {Ck} is maximized. This process was repeated until
we had n/2 local dictionaries in SH . The subset SL of low-
similarity local dictionaries was created in a similar fashion:
starting with SL = {Ci, Cj} such that J(Ci, Cj) is smallest
among all pairs, we added Ck to SL such that SL ∪ {Ck}
had minimum average pairwise similarity at each step. To
ensure that the two subsets were sufficiently different, we
compared their average pairwise similarities. Averaged across
the 9 studied apps, the similarity of SH was 67% larger than the
similarity of SL. We also measured how many local dictionaries,
on average, contain an item c occurring in a subset. Averaged
across the apps, this metric was 53% higher for SH relative
to SL. Thus, SL was significantly more diverse than SH .

The question is, given the higher diversity of SL compared
to SH , how much accuracy loss will result from this diversity?
This question is important, for example, in deciding how
to gather data across real app users (e.g., for fast-varying
vs slow-varying content), and how to interpret the collected
data from users if the diversity of their local dictionaries is
different from what was expected in pre-deployment tuning.
Our characterization infrastructure allows the exploration of
such questions. Figure 5 shows the accuracy measured on the
two subsets SH and SL. The conclusion is that higher diversity
of content across users does lead to lower accuracy, but this
effect is not substantial. Despite the large difference between
SH and SL, overall the error of the estimates does not differ
significantly. This result indicates that the accuracy is resilient
to the negative effects of local dictionary diversity.

VII. RELATED WORK

Differential privacy. A few examples of prior work on
differential privacy were already discussed briefly [4]–[6],
[13], [17], [18]. In particular, Zhang et al. [4] target the
now-deprecated Google Analytics for mobile apps and use
randomization to perturb each event to achieve differential
privacy for event frequency reporting. Follow-up work [5]
extracts and applies consistency constraints on frequencies
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Fig. 5. Accuracy for high-similarity and low-similarity subsets of users

to improve accuracy. In both projects, the underlying data is
based on the static structural properties of the program code.
As discussed earlier, the problem considered in our work is
different from both the single-item-per-user setting in earlier
projects [13], [17], [18] and from the mobile app frequency
analysis for fixed and static app data [4]–[6]. Our efforts are
focused on dynamic content which is more privacy-sensitive,
do not assume a pre-defined dictionary, and require handling of
on-the-fly updates to local dictionaries interleaved with events
on the current dictionary elements. In addition, no prior work
defines a systematic way to integrate the privacy-related code
with the original app code.

Although theoretical approaches have been developed for
differential privacy in other problems—for example, most fre-
quent items [17], [26], estimates of unknown distributions [20],
and clustering such as k-means [21]—these techniques have not
been applied to software analysis in general, and mobile app
analytics in particular. Industry and government projects have
started to apply the theory of differential privacy in practice
[13]–[16], [27]. The success of these real-world efforts provides
strong motivation to investigate the application of differential
privacy in mobile app analytics. Our work is a step in this
direction, focusing on an important category of sensitive data
that has not been investigated before.
Privacy for mobile apps. Privacy leakage in mobile apps has
also been studied extensively. Liu et al. [28] focus specifically
on analytics libraries and propose the Alde tool for static and
dynamic analysis of the data collection. Chen et al. [29] take

advantage of the vulnerabilities in two analytics libraries to
manipulate user profiles to control ad delivery. Seneviratne et
al. [30] study tracking libraries in popular paid apps and find
that more than half of these apps contain at least one tracker.
LinkDroid [31] tackles unregulated aggregation of app-usage
behaviors. Han et al. [32] employ dynamic information flow
tracking to monitor sending of sensitive information. Analysis
of privacy policy violations in Android apps has been studied
in several projects [33]–[35]. These studies aim to prevent
leaks of personal information. Our work, on the other hand, is
focused on a trade-off where sensitive data could be collected
legitimately over a population of users, but the data of each
individual is perturbed with differential privacy guarantees.
Privacy in software engineering. Privacy is an important
concern in software engineering practice. For example, there is
increasing emphasis on privacy-by-design [36] and our work
can be thought of as a particular instance of this approach. In
software engineering research there is a significant body of
work that considers privacy-related aspects of software testing,
debugging, and defect prediction [37]–[46]. We are not aware of
work in this area that employs differential privacy and benefits
from its principled and quantifiable protection of users’ data.
Further, we focus on data collection by mobile app analytics
frameworks, especially the most popular Firebase framework,
and consider the dynamic data content an app user interacts
with, rather than data specific to testing or debugging tasks.

VIII. CONCLUSIONS AND FUTURE WORK

The widespread use of mobile app analytics, together with
the sensitive nature of the data being collected, provide strong
motivation for designing privacy-preserving versions of such
analytics. We consider an important but overlooked instance of
this problem, where dynamic content is presented to the app
user and the resulting interactions are recorded by the analytics
infrastructure. Our novel differentially-private solution provides
both strong privacy guarantees and high accuracy. Through the
use of automated code rewriting, the approach allows practical
integration in existing mobile apps and easy maintenance as the
app evolves. Our studies illustrate how pre-deployment tuning
of the approach can be performed, and how problem parameters
affect the accuracy of the produced frequency estimates.

A natural direction for future work is to consider privacy-
preserving versions of other aspects of data collection in
mobile app analytics, including more complex structured
and/or correlated data and more sophisticated data analyses.
Such research developments could ultimately be integrated in
mobile app analytics frameworks, resulting in increased privacy
protections for millions of app users. In addition, complete
automation of the app re-engineering effort via automated code
analysis and transformation is still an open problem which
presents interesting technical challenges for future research.
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