
Static Analysis of Object References in RMI-based Java Software

Mariana Sharp
Ohio State University

Atanas Rountev
Ohio State University

Abstract

Distributed applications provide numerous advantages
related to software performance, reliability, interoperabil-
ity, and extensibility. This paper focuses on distributed Java
programs built with the help of the Remote Method Invoca-
tion (RMI) mechanism. We consider points-to analysis for
such applications. Points-to analysis determines the objects
pointed to by a reference variable or a reference object field.
Such information plays a fundamental role as a prerequisite
for many other static analyses. We present the first theoret-
ical definition of points-to analysis for RMI-based Java ap-
plications, and an algorithm for implementing a flow- and
context-insensitive points-to analysis for such applications.
We also discuss the use of points-to information for comput-
ing call graph information, for understanding data depen-
dencies due to remote memory locations, and for identifying
opportunities for improving the performance of object seri-
alization at remote calls. The work described in this paper
solves one key problem for static analysis of RMI programs,
and provides a starting point for future work on improving
the understanding, testing, verification, and performance of
RMI-based software.

1 Introduction

Java Remote Method Invocation (RMI) is an object
model for developing distributed applications in Java [10].
Using RMI, objects in one Java virtual machine (JVM) can
invoke methods on objects in other JVMs. RMI provides
powerful features such as object references that cross JVM
boundaries, remote invocations that can use entire object
graphs as parameters, and distributed garbage collection.
RMI can either be used as a stand-alone middleware plat-
form, or as the foundation for more advanced architectures.
For example, both Enterprise JavaBeans and Jini are based
on RMI and also provide additional middleware services.

Distributed applications play an important role in vari-
ous commercial, scientific, and engineering domains. The
development of such applications poses numerous problems
related to software correctness, performance, and main-

tainability. For RMI applications in particular, some ap-
proaches have been investigated for program understand-
ing, performance optimizations, and software testing (e.g.,
[14, 13, 6, 9, 3, 19, 15]). However, at present there is no
work on establishing systematic foundations for static anal-
ysis of RMI applications. The goal of this paper is to take a
significant step towards defining such foundations.

The target of our work is points-to analysis. Such anal-
ysis determines the objects to which locals, formals, and
fields may point. This information has a wide range of uses
in other static analyses; in turn, the results of these analyses
are used in a variety of program understanding applications,
testing approaches, software verification techniques, and
performance optimizations. There has been a large body
of work on points-to analysis; most of this work is summa-
rized in [7, 17]. However, these existing analyses cannot
be applied directly to RMI-based distributed Java applica-
tions. Thus, the builders of such applications cannot take
advantage of a large number of well-known static analyses
(points-to analyses as well as other popular analyses that
require points-to information).

Theoretical Model. Our first goal is to establish the
foundations for points-to analysis of RMI-based Java appli-
cations. We define formally a particular style of points-to
analysis: flow- and context-insensitive subset-based analy-
sis (i.e., Andersen-style analysis [1]). Our approach could
easily be extended to flow- and context-sensitive points-to
analyses, and to analyses that are not subset-based. Such
extensions are well understood for non-distributed Java pro-
grams (e.g., [5, 12]) and there are no conceptual difficulties
in defining such extensions for our analysis.

The importance of these foundations is twofold. First,
they provide a basis for defining a wide range of points-
to analyses for RMI applications, based on the large num-
ber of such analyses for non-distributed programs. Second,
they enable work on RMI-based extensions of other pop-
ular static analyses (e.g., dependence analyses, side-effect
analyses, program slicing, change impact analyses, etc.).

Analysis Algorithm. Our second goal is to define an al-
gorithm for implementing the points-to analysis. The algo-
rithm is a generalization of an approach by Lhoták and Hen-
dren [8] for non-distributed Java programs. We introduce



new techniques that allow the analysis to represent the flow
of remote object references, the effects of remote invoca-
tions, and the remote propagation of object graphs through
serialization. Furthermore, we present an approach for ef-
ficient modeling of the code in the standard Java libraries;
our experiments indicate that this approach is essential for
reducing the running time of the analysis.

Static Analyses for Program Understanding. The third
goal of this work is to describe two analyses that use the
points-to analysis to enhance the understanding of RMI ap-
plications. First, we outline the use of points-to information
to identify write-read dependencies due to remote calls. In
particular, we consider inter-component dependencies, in
which components running in two different JVMs poten-
tially access the same memory location. Second, we discuss
the use of the points-to analysis to identify opportunities for
improving the analyzed program by reducing the cost of se-
rialization at remote calls [19].

Analysis Implementation. Our fourth goal is to imple-
ment and evaluate the points-to analysis. We present a pre-
liminary experimental study on a set of 11 RMI applica-
tions. Our initial results suggest that the analysis could be a
good candidate for a general-purpose points-to analysis of
RMI-based programs.

2 Overview of Java RMI

The input to the points-to analysis contains the code for
several components C1, C2, . . . , Ck. The set of components
will be denoted by C. For each component Ci ∈ C, the
analysis takes as input a set cls(Ci) = {X1, . . . , Xni} of
Java classes. (“Classes” will refer to both Java classes and
Java interfaces.) Each component is executed in a sepa-
rate JVM, typically on a different physical machine. Set
cls(Ci) is the complete set of classes that may be loaded
at run time in the JVM that executes component Ci. Note
that an implementation of the RMI mechanism requires ad-
ditional helper classes that are generated automatically from
classes in cls(Ci). For example, in the default implementa-
tion of RMI by Sun, the rmic compiler produces a variety
of stub classes that implement the details of remote invoca-
tions. Such classes are not part of the analysis input.

For any two components Ci and Cj , sets cls(Ci) and
cls(Cj) are not necessarily disjoint: it is possible for the
same class to be loaded in the two virtual machines that
execute Ci and Cj . One example are the classes from the
standard Java libraries. We assume that the same version of
the libraries is loaded in each JVM; thus, all library classes
are included implicitly in cls(Ci) for all Ci ∈ C.

Figures 1 and 2 show the example used in the rest of the
paper; this example is based on a similar example from [4].
For simplicity, we exclude error-handling code (e.g., code
related to exceptions thrown by remote invocations). The

—– Event —–
class Event implements Serializable {

public Date date() { return on; }
public String description() { return des; }
public Event(String a) {

des = a; on = new Date(); }
private Date on; private String des; }

—– Event Listener —–
interface Listener extends Remote {

public void occurred(Event b); }
—– Event Channel —–
interface Channel extends Remote {

public void add(Listener c);
public void announce(Event d); }

Figure 1. Running example, part 1.

example contains events, listeners for these events, channels
along which events are announced to the listeners, and event
sources that create the events and send them to the channels.
We consider the following configuration of components:

cls(C1) = {Event, Listener, Channel, MyChannel}
cls(C2) = {Event, Listener, Channel, MyListener}
cls(C3) = {Event, Listener, Channel, EventSource}

In C1, MyChannel.main creates an instance of remote
class MyChannel and registers it with a naming service.
(The naming service will be discussed shortly.) In C2,
MyListener.main uses the naming service to obtain a
reference to the remote channel object, and then registers
with the channel two remote listener objects. Similarly, in
C3, EventSource.main obtains a reference to the re-
mote channel object and then announces an event on the
channel. In MyChannel.announce, the channel object
dispatches the event to the registered remote listeners.

2.1 Remote Objects, References, and Calls

A remote class implements java.rmi.Remote. This
is a marker interface that does not contain any methods or
fields. A remote object is any instance of a remote class.
Class java.rmi.server.UnicastRemoteObject,
which implements Remote, provides default support for
point-to-point object references using TCP. The simplest
mechanism for creating remote classes is to subclass
UnicastRemoteObject. Other mechanisms are also
possible [10], but they are conceptually similar and are be-
yond the scope of this paper.

A remote reference represents a connection between two
different JVMs. Similarly to an ordinary (non-remote) ob-
ject reference, a remote reference is a pointer to an object.
The notion of a remote reference is an abstraction: in reality,
a component has a reference to a stub object in its own JVM.
Typically the existence of these stub objects is ignored, and



—– Event Channel Implementation: Component C1 —–
class MyChannel implements Channel

extends UnicastRemoteObject {
private Listener[] all; private int num;
public MyChannel() {

Listener[] arr = new Listener[10];
all = arr; num = 0; }

public void add(Listener c) { all[num++] = c; }
public void announce(Event d) {
for(int i=0; i<num; i++) all[i].occurred(d); }

public static void main(String[] args) {
String channel id = args[0];
Channel e = new MyChannel();
Naming.bind(channel id,e); } }

—– Event Listener Implementation: Component C2 —–
class MyListener implements Listener

extends UnicastRemoteObject {
public void occurred(Event b) {...}
public static void main(String[] args) {
String channel id = args[0];
Channel f = (Channel) Naming.lookup(channel id);
Listener g = new MyListener(); f.add(g);
g = new MyListener(); f.add(g); } }

—– Event Source Implementation: Component C3 —–
class EventSource {
public static void main(String[] args) {
String channel id = args[0];
Channel h = (Channel) Naming.lookup(channel id);
Event k = new Event("abc"); h.announce(k); } }

Figure 2. Running example, part 2.

instead RMI programming uses the abstraction of a refer-
ence pointing directly to the remote object. An invocation
through a remote reference is a remote invocation.

Remote references can be created in several ways. For
example, a remote invocation can take as an actual parame-
ter an ordinary reference to a locally-created remote object
o. As a result of the call, the remotely-invoked method takes
as formal parameter a remote reference to o. Another mech-
anism for obtaining remote references is the use of some
naming service. The calls to java.rmi.Naming in the
running example illustrate such use. A naming service is a
separate component whose purpose is to allow registration
and lookup of remote objects. Sun’s RMI implementation
provides a default naming service referred to as the RMI
registry. A call Naming.bind(name,x) inserts in the
registry a reference to the remote object o referred to by
x, under the given string name. In the running example,
the two invocations Naming.lookup(channel id)
are used to initialize local variables f and h with remote
references to the remote object of class MyChannel.

While the RMI registry provides a simple naming ser-
vice, in general there could be other mechanisms for estab-
lishing initial “bootstrapping” remote references between
two components [10]. Here by “bootstrapping” we mean
references that are created with the help of some external

mechanism (e.g., a naming service) in order to establish ini-
tial connections between components. To model such initial
references, we assume that the analysis input contains infor-
mation about the variables through which such references
are created. For each pair of components (Ci, Cj) ∈ C ×C,
the analysis input contains a set Ii→j of pairs of local vari-
ables. Each pair (v1, v2) represents a use of the exter-
nal mechanism which results in creating remote references
from v2 in Cj to all remote objects pointed-to by v1 in Ci.
For our example, I1→2 = {(e, f)} and I1→3 = {(e, h)}.
Sets Ii→j depend on the specific mechanism used by the
application. It may be possible to construct these sets au-
tomatically in some simpler cases (e.g., when using the de-
fault RMI registry). However, since in general the external
mechanism for creating initial remote references could be
application-specific, programmer input may be required to
obtain the information in Ii→j .

2.2 Call-by-Copy through Serialization

When actuals of a remote call are references to non-
remote objects oi, the parameter passing mechanism for
these actuals is call-by-deep-copy. Objects oi together with
all other objects reachable from them are subject to serial-
ization. This process encodes the object graph starting from
oi and recreates it in the target JVM. For example, consider
the call to announce in EventSource.main. In this
call the actual is a (non-remote) reference to an instance o
of class Event. The class is serializable because it imple-
ments the marker interface java.io.Serializable.
Fields on and des of o refer to serializable objects. Infor-
mation about o and the two associated instances of Date
and String is sent across the network. The “mirror im-
age” of this object graph is created in C1, and formal d
in MyChannel.announce points to the copy of o. This
process does not invoke the constructor of Event in C1

on the copy of o. The two calls to occurred trigger this
process again, and in the JVM for C2 the object graph is
recreated twice. Our analysis assumes that objects are se-
rialized using the default serialization mechanism [11], and
the application does not use custom serialization methods
(e.g., methods such as writeObject); this assumption is
checked by our implementation.

3 Points-to Analysis

This section defines the theoretical foundations for
points-to analysis of RMI-based Java applications. The
proposed analysis is subset-based, flow- and context-
insensitive, but it should be straightforward to introduce
flow sensitivity and various forms of context sensitivity.



Figure 3. Partial points-to graph.

3.1 Variables, Objects, and Points-to Graphs

The analysis can be defined in terms of several sets. Let
Cls be the union of all sets of classes cls(Ci) for all compo-
nents Ci. We will denote by L the set of all local variables,
formal parameters, and implicit parameters this in Cls .
Similarly, let F and SF be the sets of all instance fields and
static fields in Cls , respectively. Finally, let S be the set of
all allocation expressions of the form new X(..) in Cls .

The analysis is defined in terms of a set V of variable
names for reference variables, and a set O of object names
for run-time objects. Figure 3 shows some of these names
for the running example. The set V of variable names is
a subset of (L ∪ SF ) × C. A pair (v, Ci) ∈ V represents
a local variable, a formal parameter, or a static field v in
some class from cls(Ci) such that v exists in the JVM exe-
cuting Ci. The variable names will be denoted by vi, where
the superscript corresponds to the component. For the same
v ∈ L ∪ SF there may be multiple vi ∈ V , each one corre-
sponding to a different Ci.

There are two categories of object names o ∈ O. First,
o = (s, Ci) ∈ S×C corresponds to run-time objects that are
created by object allocation site s when this site is executed
in the JVM for component Ci. Each such object is in the
address space of that same JVM. Typically we will use si

to denote such an object name; as with variable names, the
superscript indicates the corresponding component. Each si

is labeled as remote or non-remote, depending on whether
it is an instance of a remote class.

Remote calls can create copies of serializable objects.
We use object names o = (s, Ci, Cj) ∈ S × C × C to rep-
resent such “copy objects”. The names will typically be de-
noted by si,j . Such a name corresponds to a run-time object
which exists in the JVM for component Cj and was created
as a (transitive) copy of a “normal” object which was cre-

ated in the JVM for Ci by allocation site s. For example, let
sDate be the allocation site new Date() in the construc-
tor of Event in the running example. Name s3

Date denotes
the instance of Date which is created in C3. Due to the
remote call to announce from C3 to C1, a copy of that
Date object is created in C1; the name representing this
copy object will be s3,1

Date . The remote calls to occurred
from C1 to C2 create in C2 two run-time copies of the copy
object from C1. Both objects are transitive copies of the
original object from C3, and are represented by object name
s3,2
Date . Due to the properties of RMI, names si,j can corre-

spond only to non-remote objects.
The analysis builds a points-to graph in which the edges

represent points-to relationships. An edge (vi, o) ∈ V ×
O shows that a variable represented by vi may point to an
object represented by o. An edge (o1, f, o2) ∈ O × F × O
shows that some object represented by o1 may store in its
f field a reference to an object represented by o2. An edge
(vi, o) could be either a remote edge, denoted by (vi, o)R,
or a local edge, denoted by (vi, o)L. The same subscripts
will also be applied to edges (o1, f, o2).

For (vi, o)L both the variable and the target object must
belong to the same JVM. Thus, such edges are either of the
form (vi, si)L or (vi, sk,i)L. Note that si could be a re-
mote object (i.e., an instance of a class which implements
Remote), but the reference to it is still an ordinary local
reference. Edge (vi, sj)R represents a points-to relation-
ship through a remote reference, and sj is always a remote
object.1 Since copy objects created due to serialization can-
not be remote, it is not possible to have an edge (vi, sk,j)R.
For (o1, f, o2)L the two objects belong to the same JVM;
either one (or both) could be a copy object sk,i instead of
an ordinary object si. For (o1, f, o2)R object o2 is always a
remote object. Figure 3 shows several of the points-to edges
for the running example. Edges labeled with [] represent
points-to relationships for array elements.

3.2 Effects of Program Statements

For brevity, we discuss only the following statements
(our implementation handles all other kinds of statements):

• Direct assignment: v1 = v2

• Instance field write: v1.f = v2

• Instance field read: v1 = v2.f

• Object creation: v = new X

• Instance invocation: w = v0.m(v1,. . .,vk)

1It is possible to have i = j and the reference to be remote at the same
time. For example, if Ci creates a remote object, registers it with a naming
service, and then immediately looks it up, the component will obtain a
remote reference to the object. Calls through this reference will be remote
calls that are handled by the RMI infrastructure.



In the above statements, vi ∈ L ∪ SF denotes a local vari-
able, a formal parameter (including this), or a static field.

The analysis constructs a points-to graph G for the entire
application, as well as component-specific sets of reachable
methods Reachi for all Ci ∈ C. In the beginning, G is
empty and each Reachi contains the main method of the
corresponding Ci.2 For each statement that appears in some
method from Reachi for some i, the analysis adds to G
nodes and edges that represent the effects of the statement,
and updates all affected sets Reachj .

The rules for handling different statements are repre-
sented as function definitions of the form f(G) = G′,
where G and G′ are points-to graphs. The first rule con-
siders the references that are created with the help of an
external mechanism such as a naming service:

for each (vi, wj) ∈ Ii→j such that vi is a local in some
m′ ∈ Reach i and wj is a local in some m′′ ∈ Reachj :
f(G) = G ∪ { (wj , o)R | (vi, o)x ∈ G ∧ o is remote }

Points-to edge (vi, o)x could be either local or remote: the
object exported by component Ci is either created locally,
in which case the edge is (vi, o)L, or is obtained from some
other component, in which case the edge is (vi, o)R.

Suppose the statement under consideration occurs in
some method from Reachi in component Ci.

for v1 = v2 : f(G) = G ∪ { (vi
1, o)x | (vi

2, o)x ∈ G }

The kind x of the new edge is the same as the kind of the
old one (x ∈ {L, R}). The sources of the point-to edges are
the component-specific copies vi

1 and vi
2 of v1 and v2.

for v1 = v2.fld : f(G) = G ∪
{ (vi

1, o2)x | (vi
2, o1)L ∈ G ∧ (o1,fld , o2)x ∈ G }

for v1.fld = v2 : f(G) = G ∪
{ (o1,fld , o2)x | (vi

1, o1)L ∈ G ∧ (vi
2, o2)x ∈ G }

In reading and writing of object fields, only local points-to
edges are considered because fields of remote objects are
not accessible through remote references.

for v = new X : f(G) = G ∪ { (vi, si)L }

Here s ∈ S is the allocation site corresponding to the new
expression. Even if the newly-created object is remote (i.e.,
an instance of a class that implements Remote), the refer-
ence to it is an ordinary local reference.

for w = v0.m(v1, . . . , vk) : f(G) = G ∪
{ resolveLocal (G, m, o, vi

1, . . . , v
i
k, wi) | (vi

0, o)L ∈ G }∪
{ resolveRemote(G, m, sj , vi

1, . . . , v
i
k, wi) | (vi

0, s
j)R ∈ G }

2Actually, the initialization of Reachi should also include all library
methods that are executed at JVM startup. Furthermore, during the analy-
sis Reachi should be updated with static initializers, finalizers, and run
methods of threads. Our implementation handles these issues.

For calls made through local references we have

resolveLocal (G, m, o, vi
1, . . . , v

i
k, wi)

m′(p0, p1, . . . , pk, ret) = dispatch(o, m)
add m′ to Reach i

return { (pi
0, o)L }∪

{ (pi
t, o

′)x | (vi
t, o

′)x ∈ G ∧ 1 ≤ t ≤ k } ∪
{ (wi, o′)x | (ret i, o′)x ∈ G }

The run-time target method m′ is determined based on the
type of o and on the compile-time target m, using helper
function dispatch which encodes the rules for run-time vir-
tual dispatch. The implicit formal this in m′ is repre-
sented by p0, and the explicit formals are p1, . . . , pk. We
use ret to denote a special artificial local in m′ which is
assigned all return values of the method.

For remote invocations from component Ci to a remote
object sj in component Cj , we have:

resolveRemote(G, m, sj , vi
1, . . . , v

i
k, wi)

m′(p0, p1, . . . , pk, ret) = dispatch(sj , m)
add m′ to Reachj

return { (pj
0, s

j)L } ∪
{ (pj

t , o
′)R | (vi

t, o
′)x∈G ∧ 1 ≤ t ≤ k ∧ o′ is remote} ∪

{ (wi, o′)R | (retj , o′)x ∈ G ∧ o′ is remote }∪
resolveSerialization(G, vi

1, . . . , v
i
k, pj

1, . . . , p
j
k)∪

resolveSerialization(G, retj , wi)

The invoked remote method m′ in component Cj is deter-
mined based on the same rules for virtual dispatch that are
used for ordinary non-remote calls [10]. The invocation cre-
ates a local points-to edge from this in m′ to the remote
object sj . For actual parameters vi

t that point to remote ob-
jects o′, remote references to o′ are created for the corre-
sponding formals pj

t of m′. Note that edge (vi
t, o

′) could be
either local or remote. If the return value of m′ is a (local or
remote) reference to a remote object o′, the left-hand-side
variable wi at the call site starts pointing remotely to o′.

Functions resolveLocal and resolveRemote can be eas-
ily augmented to construct the call (multi)graph of the ap-
plication. The nodes in the call graph are pairs (m, i), where
method m belongs to Reachi. The edges correspond to call
statements: if statement st in method m in component Ci

invokes method n in component Cj (i = j or i �= j), the
call graph contains an edge from (m, i) to (n, j), labeled
with st . Our implementation builds the call graph on the
fly, during the analysis.

3.3 Modeling of Non-Remote Parameters

Function resolveSerialization models parameter pass-
ing for non-remote actuals. Recall that for each object name
si which represents non-remote serializable run-time ob-
jects created by allocation site s in component Ci, the anal-
ysis defines a set of object names si,j for copy objects, one



for each component Cj . For convenience, for each compo-
nent Cj we define the following map µj :

• µj(si) = si,j when si is a non-remote serializable ob-
ject created in some Ci

• µj(sk,i) = sk,j when sk,i is an object created in some
Ci as a deserialized copy of ordinary object sk

• µj(si) = si, when si is a remote object in some Ci

Given an object name o which represents run-time objects
in some component Ci, object name µj(o) represents the
corresponding run-time objects in Cj .

The effects of a remote call v0.m(v1, . . . , vk) on non-
remote parameters are as follows. The object graph reach-
able from v1, . . . , vk is traversed according to the rules de-
scribed below. All traversed non-remote serializable objects
are serialized and recreated in the target component. This
process can be described by defining a subgraph Copied :

• If (vi
t, o)L ∈ G and o is a non-remote serializable ob-

ject, then (vi
t, o)L ∈ Copied

• If o ∈ Copied ∧ (o,fld , o′)L ∈ G, where fld is a non-
transient field and o and o′ are non-remote serializable
objects, then (o,fld , o′)L ∈ Copied

• If o ∈ Copied ∧ (o,fld , o′)x ∈ G, where fld is a non-
transient field, o is a non-remote serializable object,
and o′ is a remote object, then (o,fld , o′)x ∈ Copied

• Copied is the smallest set with these properties

If a field is declared as transient, its value is not subjected
to further serialization. If a non-transient field points to a
remote object (either locally or remotely; x ∈ {L, R}), the
traversal stops and the remote object is not serialized. How-
ever, if the field points to a non-remote object, serialization
is attempted; if the pointed-to object is not serializable, an
exception is thrown. The definition of Copied leads to

resolveSerialization(G, vi
1, . . . , v

i
k, pj

1, . . . , p
j
k) =

{(pj
t , µj(o))L | (vi

t, o)L∈Copied ∧ o is n.r.s.} ∪
{(µj(o),fld , µj(o

′))L|(o,fld , o′)L∈Copied ∧ o, o′ are n.r.s.}∪
{(µj(o),fld , µj(o

′))R|(o, fld , o′)x∈Copied ∧ o is n.r.s. ∧
o′ is remote}

Here “n.r.s.” stands for “non-remote but serializable”. The
serialization mechanism initializes a copy object (i.e., a de-
serialized object) not by invoking a constructor of its class,
but rather by invoking the no-arguments constructor of the
“lowest” non-serializable superclass. It is easy to add this
invocation to the rules from above, and for simplicity we
omit this detail from the presentation.

4 Analysis Algorithm

This section describes an algorithm for implementing the
points-to analysis. Our approach is based on techniques

proposed by Lhoták and Hendren [8] for analysis of non-
distributed Java applications. For brevity, we discuss the al-
gorithm at a high level, focusing primarily on the new tech-
niques we have introduced in order to handle RMI features.

Pointer Assignment Graph. The analysis uses a data
structure referred to as a pointer assignment graph (PAG).
For a name vi ∈ V , there is a PAG node node(vi) cor-
responding to this name. There are also PAG nodes of
the form node(vi.fld) for each instance field fld accessed
through vi. Similarly, for each object name o ∈ O, there
are PAG nodes node(o) and node(o.fld).

PAG edges represent flow of values. For example, if a
statement v1 = v2 belongs to some method from Reachi,
the PAG contains an edge node(vi

2) −→ node(vi
1). When-

ever the analysis adds a method to Reachi, the statements in
the body of that method are processed and the correspond-
ing PAG edges are created.

Points-to Sets. PAG edges are used to propagate infor-
mation about points-to relationships involving the nodes.
For each PAG node node(vi) we define two points-to sets
PtL(vi) and PtR(vi) representing the local and remote
points-to relationships for vi. For example, if the PAG con-
tains a non-remote edge node(vi

2) −→ node(vi
1), every el-

ement of PtL(vi
2) is propagated to PtL(vi

1), and every ele-
ment of PtR(vi

2) is propagated to PtR(vi
1).

A remote edge node(vi) remote−→ node(wj) shows that
there is a flow of values from a variable v in component Ci

to a variable w in component Cj . Such edges are created
for the pairs in Ii→j (i.e., for variables used for an external
mechanism such as a naming service). Another reason such
edges may be created is to represent the flow of values from
actuals to formals at remote calls. For a remote PAG edge,
the algorithm considers all objects o ∈ PtL(vi) ∪PtR(vi).
If o is a remote object, it is added to PtR(wj). Propagation
can also occur when o is a non-remote serializable object,
as described below.

Consider a call w = v0.m(v1, . . . , vk) in some method
in Reachi. Suppose that sj ∈ PtR(vi

0): that is, vi
0 points

to some remote object from component Cj . To model the
effects of the remote call for receiver object sj , the analysis
determines the target method m′ and adds it to Reachj . Let
the formals of m′ be p0, p1, . . . , pk (where p0 is this), and
let the return variable of m′ be ret . The algorithm

• adds object sj to PtL(pj
0)

• adds edges node(vi
t)

remote−→ node(pj
t ) to the PAG

• adds edge node(ret j) remote−→ node(wi) to the PAG

The new edges represent the flow of remote references due
to parameter passing and return values at remote calls. Sub-
sequently, the analysis may propagate remote objects along
these edges. For example, consider the calls f.add(g)
in MyListener.main in the running example. Since the



remote points-to set of f2 contains s1
MyChannel , a remote

PAG edge is added from actual g2 to formal c1. The propa-
gation of the points-to set of the actual along this edge adds
object names s2

MyListener1 and s2
MyListener2 to PtR(c1), in-

dicating that c in C1 may contain remote references to the
two remote instances of MyListener created by C2.

The remote PAG edges created at remote calls also
model the effects of object serialization for non-remote ac-
tual parameters. To illustrate this process, consider the call
to announce in EventSource.main. The remote PAG
edge from actual h3 to formal d1 is used to propagate the
non-remote serializable s3

Event to C1. As a result, a copy
object s3,1

Event is created in C1 and is added to the local
points-to set of d1. The original object s3

Event has fields
on and des that point to two serializable objects: s3

Date

and s3
”abc”. The analysis creates remote PAG edges from

s3
Event .des to s3,1

Event .des and from s3
Event .on to s3,1

Event .on .
Based on these edges, copy objects s3,1

Date and s3,1
”abc” are

created and added to the appropriate points-to sets in C1.
The call to occurred from C1 to C2 creates additional
remote PAG edges; as a result, copy objects s3,2

Event , s3,2
Date ,

and s3,2
”abc” are created and propagated to C2. In the gen-

eral case, this iterative process is equivalent to function
resolveRemote from Section 3.2.

Handling of the Standard Java Libraries. The stan-
dard Java libraries are implicitly added to the set of classes
cls(Ci) for each component. Based on the analysis defini-
tion presented earlier, library variables and objects will have
multiple copies. For example, if a library method m has
a local variable v, the points-to analysis will use multiple
copies of v—that is, a separate name vi for each component
Ci. Object names are treated similarly.

Our initial experiments with this approach showed that
the majority of analysis time is spent on processing the rele-
vant code from the libraries. Even when the size of the non-
library code is small, the necessary conservative treatment
of various features from the libraries (e.g., JVM startup, ini-
tialization of static fields, dynamic class loading and reflec-
tion, finalizers, etc.) requires the analysis to consider a large
number of library methods as reachable. The replication
of library variables and objects results in significant run-
ning time for the analysis. For example, for a program that
was a slightly more elaborate version of the running exam-
ple, the analysis ran out of memory. For examples contain-
ing two components, the analysis running time was around
three hours, which was clearly impractical.

To reduce running time, we designed and implemented
an alternative technique for handling the standard libraries.
The basic idea is to create only one replica of a library en-
tity. For a variable v, the we use a single name vlib instead
of multiple names vi. For an object allocation site s, there
is a single object name slib . The analysis also maintains a
set of reachable methods Reach lib , and library methods are

added to this set rather than to the component sets Reachi.
After the completion of the analysis, the local points-to

sets for non-library variables and objects are processed to
replace names slib . For example, if PtL(vi) contains slib ,
this object name can stand only for objects created in com-
ponent Ci; thus, slib can be replaced by si. Note that such
a replacement cannot be performed for PtR(vi), because in
this case slib represents objects in any component, and not
necessarily objects in Ci.

The full-replication approach from Section 3 and the
zero-replication approach from above are the two endpoints
of the design spectrum for handling of the standard libraries.
Since the degree of replication has a direct effect on both
analysis cost and analysis precision, future investigations
should be performed in order to understand thoroughly this
entire spectrum of cost-precision tradeoffs.

5 Analyses for Program Understanding

Points-to information is a frequently required “enabler”
for a wide range of other techniques. This section discusses
briefly three specific uses of the points-to analysis for the
purposes of program understanding of RMI-based applica-
tions. Of course, many other uses are possible (e.g., for
program slicing, change impact analysis, etc.).

Call Graph. As discussed Section 3.2, the analysis
performs on-the-fly call graph construction. The resulting
graph can serve as the starting point for many other static
analyses. The call graph can also be used to answer ques-
tions such as “Given a call statement st in component Ci,
which methods in other components may be invoked by st ,
directly or transitively?”. This and similar questions can
enhance the understanding of the inter-method and inter-
component flow of control, especially when combined with
browsing tools that express the answers visually by display-
ing graphically the relevant parts of the call graph.

Data Dependencies. Consider a component Ci and some
object si created in this component. A statement st i

1 in Ci

could potentially read or write some field of si (either di-
rectly or transitively through its callees). Now consider a
call site stj

2 in some other component Cj , and suppose stj
2

invokes some remote method from Ci. Due to the remote
call, the execution of stj

2 could (transitively) read or write
some field of object si. Thus, it is possible to have a read-
write or write-read dependence between st i

1 and stj
2. The

pair (st i
1, st

j
2) represents a potential inter-component data

dependence between Ci and the caller component Cj . Fur-
thermore, consider another call site stk

3 in a third component
Ck, and suppose stk

3 invokes some remote method from Ci.
It is possible to have a dependence between stj

2 and stk
3 due

to some field of si. In this case the inter-component depen-
dence is between Cj and Ck, but the memory responsible
for the dependence is in the JVM for Ci.



We have defined and implemented an algorithm which,
for a given component Ci, computes all pairs (st i

1, st
j
2) and

(stj
2, st

k
3) that correspond to potential data dependencies, as

defined above. For brevity, we will illustrate the algorithm
through the running example, rather than presenting a for-
mal definition. Consider component C1 from Figure 1. The
call h.announce(k) in main in C3 creates a copy ob-
ject s3,1

Event in C1 (based on s3
Event in C3) and initializes its

fields on and des with copy objects s3,1
Date and s3,1

”abc”. Con-
sider now all[i].occurred(d) in announce in C1.
Since the local points-to set of actual d1 contains s3,1

Event ,
we can determine that due to the serialization, the values of
fields s3,1

Event .on and s3,1
Event .des are read. Thus, there is a

write-read dependence between the call to announce in
C3 and the call to occurred in C1, due to memory loca-
tions s3,1

Event .on and s3,1
Event .des . As another example, con-

sider f.add(g) in main in C2 and h.announce(k)
in main in C3. The calls to add results in a modifica-
tion of s1

MyChannel .num, due to num++. Since announce
reads the value of s1

MyChannel .num, there is a dependence
between f.add(g) in C2 and h.announce(k) in C3.

The computation of such dependencies requires (1) ex-
amining local points-to set at reads and writes of expres-
sions v.fld , (2) considering the reads and writes of static
fields, (3) taking into account the reads and writes per-
formed during object serialization and deserialization, and
(4) performing iterative backward propagation of this infor-
mation on the call graph, from callees to callers.

Customized Serialization. One of the performance bot-
tlenecks for RMI is the serialization and deserialization of
non-remote actuals [14, 9]. Several optimizations can be
used to reduce this cost. For example, if the types of the
serialized objects are unique and known in advance, spe-
cialized serialization code can be created rather than using
the more expensive default serialization mechanism. As
another example, if the object graph that will be serial-
ized is always acyclic, a cheaper version of the serializa-
tion algorithm can be used, as opposed to the general ver-
sion which must detect cycles. Such techniques have been
shown to be quite effective in reducing the cost of serial-
ization in RMI applications [19]. By analyzing the struc-
ture of the points-to graph produced by our analysis, it is
straightforward to expose these optimization opportunities
to a programmer. This information enables the introduc-
tion of customized serialization, either manually (through
methods writeObject and readObject [11]), or au-
tomatically with the help of an optimization tool.

Other Potential Uses. Testing of distributed Java ap-
plications can be based on adequacy criteria that consider
the coverage of start-to-end scenarios [2]; the correspond-
ing execution paths can be automatically constructed (and
monitored at run time) based on the call graph. As another
example, the call graph and the data dependencies may be

useful for static analyses that attempt to identify potential
deadlocks and race conditions in RMI-based Java software.

6 Experimental Study

We implemented the points-to analysis algorithm using
the Soot framework [18], version 2.1, and the Spark compo-
nent of Soot which implements the points-to analysis tech-
niques from [8]. The analysis was executed on a 2.8GHz
Pentium4 PC with 1GB of memory. The experiments were
performed on the set of RMI-based Java applications listed
in Table 1. The applications were obtained from publicly
available projects and books, and represent a variety of do-
mains. For example, auction implements an auctioning
system: clients connect to a server and place bids for items.
As another example, jodl uses a JOb Dispatching Library
to dispatch and execute tasks on different network nodes.

Column (2) shows the number of components Ci in each
application, and column (3) contains the sum of the sizes
of cls(Ci), excluding library classes. Column (4) describes
the number of reachable methods processed by the analysis.
Column “User” shows the sum of the sizes of Reachi, and
column “All” adds to this number the size of Reach lib .

Column (5) shows the running time of the points-to anal-
ysis. The number of methods in column “All” is an in-
dication of the amount of work that the analysis needs to
perform, since the body of each reachable method must
be processed in order to create PAG edges and to “popu-
late” points-to sets. Clearly, the majority of analysis time
is spent on processing the relevant code from the standard
libraries. As discussed in Section 4, we introduced special
handling of library variables and objects in order to reduce
analysis cost. As a rough estimate of running time, the cost
of the analysis is under 0.05 seconds per analyzed method.
The overall analysis time can be reduced further if the li-
braries are pre-analyzed once and the computed information
is reused every time an application is analyzed. Similar ap-
proaches have already been developed for points-to analysis
for C (e.g., [16]), but it remains to be seen whether they can
be successfully adapted to Java.

To gain more insight into the points-to analysis solution,
we gathered a variety of measurements. Consider an expres-
sion v.m(. . .) in some non-library method m′ ∈ Reachi.
Column (6) shows the total number of such call sites for all
components; if a call site occurs in multiple components, it
is counted multiple times. Column (7) contains the number
of remote call sites—that is, sites for which PtR(vi) was
not empty. Most programs have multiple remote call sites,
which indicates that there may be several different kinds of
remote interactions between application components.

For each site from (7), we computed the number of dis-
tinct remote methods that were potentially invoked by the
site. More precisely, consider v.m(. . .) in some method



(1) (2) (3) (4) Methods (5) (6) (7) (8) (9) RmtRef (10) (11) (12)
App #Ci Cls User All Time Calls Rmt RmtTrg Param Ret Serial OptType OptCycle

filesrv 2 7 14 7179 5m17s 8 5 1.0 0 0 0 0 0
stocks 2 8 21 7261 5m18s 12 2 1.0 1 0 2 2 2
rmttask 2 9 12 7174 5m14s 9 2 1.0 0 0 1 1 1
channel 3 11 18 7180 5m17s 11 4 1.0 2 0 4 4 4
bank 2 14 21 7186 5m20s 15 9 1.0 0 1 2 2 2
auction 2 17 62 7291 5m26s 75 5 1.0 2 0 4 4 4
jodl 2 29 125 7357 8m38s 158 13 1.0 0 0 2 2 2
jenut 2 33 68 7311 5m35s 99 36 1.0 11 9 20 20 20
translator 2 38 85 7269 5m52s 69 1 2.0 0 0 1 1 1
database 2 67 62 7370 5m59s 33 8 1.0 0 4 2 2 2
ssl 2 67 62 7375 6m01s 33 8 1.0 0 4 2 2 2

Table 1. Experimental Results.

m′ ∈ Reachi. For each sj ∈ PtR(vi), let m′′ be the
target method for receiver sj . For each remote call site
we computed the number of distinct targets m′′ based on
PtR(vi). Column (8) shows the average number of remote
target methods over the call sites from (7). For all applica-
tions except one, the analysis resolved each remote call site
to a unique target method. Since 1.0 is a lower bound for
this metric, these results show that the call graphs contain
precise information about the targets of remote calls.

For each remote call site, we also examined the points-to
solution and determined whether there is any flow of re-
mote references due to parameter passing. Such flow may
occur when there exists an actual parameter v for which
PtL(vi) or PtR(vi) contains a remote object. Column (9),
subcolumn “Param” shows the number of remote call sites
at which remote references may be created in the callee
due to actual parameters in the caller. Remote references
also may flow as return values in the case when PtL(ret j)
or PtR(ret j) contains a remote object; here ret j denotes
the artificial variable that contains the return values of the
called remote method. Column (9), subcolumn “Ret” con-
tains the number of remote call sites at which remote ref-
erences may be created in the caller due to the return value
from the callee. The measurements indicate that it is not un-
usual for RMI applications to create additional remote refer-
ences at remote calls, either in the callee (through parameter
passing) or in the caller (through return values). Thus, any
points-to analysis needs to include techniques for handling
such flow of remote references. Any subsequent analysis
(e.g., change impact analysis) must also take into account
this flow, based on the output of the points-to analysis.

We also considered PtL(vi) for an actual parameter v
at a remote call site to determine whether serialization for
non-remote parameters may occur at the site. Column (10)
shows the number of sites from (7) for which serialization
may occur due to actuals that point to non-remote serializ-
able objects. These results indicate that RMI applications
take advantage of the ability to use serializable objects (and
more generally, serializable object graphs) as parameters of

remote calls. A points-to analysis cannot expect that the
non-remote actual parameters at remote call sites are al-
ways of primitive types, and therefore the analysis must
model in a general manner the possible effects of serializa-
tion. Our analysis handles this issue by introducing remote
PAG edges connecting the original object at the caller with
its deserialized copy at the callee (Section 4).

The last two columns consider the remote call sites at
which serialization may occur (i.e., the sites from column
10). As described in Section 5, points-to information can be
used to provide a programmer with information about call
sites at which the types of the serialized objects are unique
and known in advance, or the object graph that will be se-
rialized is always acyclic. Customized serialization at such
call sites can improve the performance of the application.
For each site from (10) we determined whether the type-
based optimization was possible; the number of optimizable
sites is shown in column (11). Similarly, for each site from
(10) we determined the shape of the serialized object graph;
column (12) shows the number of sites with acyclic graphs.
For our subject applications, both optimizations were pos-
sible at all remote calls at which serialization is performed.

In the future we plan to design the appropriate techniques
for pre-analysis of the standard libraries, as well as to obtain
additional precision results on more RMI applications. Our
long-term goal is to make the analysis a useful, precise, and
practical enabler of other static analyses in software tools.

7 Related Work

There is a large body of work on Andersen-style points-
to analysis for non-distributed programs, both for C and
for Java. The closest related work is the analysis proposed
in [8], which serves as the starting point for the PAG-based
algorithm in our approach. We introduce various modifica-
tions of the techniques from [8]. For example, new kinds of
PAG edges and propagation rules associated with them are
required for analysis of RMI-based programs. The handling
of calls is generalized to simulate the semantics of remote



invocations, including the effects of serialization of object
graphs. We also introduce a technique for efficient handling
of the standard Java libraries.

There has been very little work on generalizing points-
to analyses to RMI-based Java software. The closest re-
lated work is [19], where a compile-time points-to analysis
is used to optimize the serialization at remote calls in several
ways, including the two optimization techniques described
earlier. The analysis is described with very little detail,
but it appears to be a flow-sensitive and context-insensitive
variation of Andersen-style analysis. There is no theoreti-
cal definition of the analysis semantics, and no details are
given about the algorithms and data structures used to im-
plement this semantics. For example, it is unclear whether
the approach uses two different points-to sets (remote and
local) per variable, whether component-specific copies vi of
a variable v are used, whether the set of reachable methods
is constructed during the analysis or is assumed to be part
of the analysis input, and whether the underlying standard
libraries are being analyzed. Our work provides a precise
theoretical definition as well as specific algorithms and data
structures. The experimental results in [19] focus on the
effects of the optimizations on performance, while we are
primarily interested in uses of the points-to information in
tools for software understanding, testing, and verification.

8 Future Work

We consider the work presented in this paper to be a first
step in a long-term research agenda for establishing a body
of work on static analysis for RMI-based applications. First,
obvious targets for future work are various flow- or context-
sensitive points-to analyses. Such analyses could be defined
as extensions of the approach from Section 3, and their scal-
ability should be investigated carefully. Second, it is nec-
essary to define the RMI-specific generalizations of other
categories of analyses such as side-effect analysis, def-use
analysis, and escape analysis. Next, these analyses should
be evaluated experimentally in the context of program un-
derstanding tools (e.g., for change impact analysis) and test
coverage tools (e.g., for round-trip-scenario coverage [2]).
Finally, it is essential to generalize and evaluate these static
analyses for more powerful RMI-based middleware plat-
forms such as Enterprise JavaBeans.

Acknowledgments. We would like to thank the ICSM
reviewers for their helpful comments and suggestions.

References

[1] L. O. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIKU, Univer-
sity of Copenhagen, 1994.

[2] R. Binder. Testing Object-Oriented Systems: Models, Pat-
terns, and Tools. Addison-Wesley, 1999.

[3] S. Ghosh, N. Bawa, S. Goel, and Y. R. Reddy. Validat-
ing run-time interactions in distributed Java applications. In
IEEE International Conference on Engineering of Complex
Computer Systems, pages 7–16, 2002.

[4] W. Grosso. Java RMI. O’Reilly, 2002.
[5] D. Grove and C. Chambers. A framework for call graph con-

struction algorithms. ACM Transactions on Programming
Languages and Systems, 23(6):685–746, Nov. 2001.

[6] B. Haumacher and M. Philippsen. Exploiting object local-
ity in JavaParty, a distributed computing environment for
workstation clusters. In Workshop on Compilers for Parallel
Computers, pages 83–94, June 2001.

[7] M. Hind. Pointer analysis: Haven’t we solved this problem
yet? In ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 54–61,
2001.

[8] O. Lhoták and L. Hendren. Scaling Java points-to analy-
sis using Spark. In International Conference on Compiler
Construction, LNCS 2622, pages 153–169, 2003.

[9] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kiel-
mann, C. Jacobs, and R. Hofman. Efficient Java RMI for
parallel programming. ACM Transactions on Programming
Languages and Systems, 23(6):747–775, Nov. 2001.

[10] Sun Microsystems. RMI Specification. 2002.
[11] Sun Microsystems. Serialization Specification. 2003.
[12] A. Milanova, A. Rountev, and B. G. Ryder. Parameter-

ized object sensitivity for points-to analysis for Java. ACM
Transactions on Software Engineering and Methodology,
14(1):1–41, Jan. 2005.

[13] M. Philippsen and B. Haumacher. Locality optimization in
JavaParty by means of static type analysis. Concurrency:
Practice and Experience, 12(8):613–628, July 2000.

[14] M. Philippsen, B. Haumacher, and C. Nester. More efficient
serialization and RMI for Java. Concurrency: Practice and
Experience, 12(7):495–518, May 2000.

[15] B. Quig, J. Rosenberg, and M. Kölling. Supporting inter-
active invocation of remote services. In International Con-
ference on Principles and Practice of Programming in Java,
pages 195–200, 2003.

[16] A. Rountev and B. G. Ryder. Points-to and side-effect anal-
yses for programs built with precompiled libraries. In In-
ternational Conference on Compiler Construction, LNCS
2027, pages 20–36, 2001.

[17] B. G. Ryder. Dimensions of precision in reference analysis
of object-oriented programming languages. In International
Conference on Compiler Construction, LNCS 2622, pages
126–137, 2003.

[18] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode using
the Soot framework: Is it feasible? In International Confer-
ence on Compiler Construction, LNCS 1781, pages 18–34,
2000.

[19] R. Veldema and M. Philippsen. Compiler optimized remote
method invocation. In IEEE International Conference on
Cluster Computing, pages 127–137, 2003.


