
Precise Identification of Side-effect-free Methods in Java

Atanas Rountev
Department of Computer Science and Engineering

Ohio State University
rountev@cis.ohio-state.edu

Abstract

Knowing which methods do not have side effects is nec-
essary in a variety of software tools for program under-
standing, restructuring, optimization, and verification. We
present a general approach for identifying side-effect-free
methods in Java software. Our technique is parameterized
by class analysis and is designed to work on incomplete
programs. We present empirical results from two instan-
tiations of the approach, based on Rapid Type Analysis and
on points-to analysis. In our experiments with several com-
ponents, on average 22% of the investigated methods were
identified as free of side effects. We also present a precision
evaluation which shows that the approach achieves almost
perfect precision—i.e., it almost never misses methods that
in reality have no side effects. These results indicate that
very precise identification of side-effect-free methods is pos-
sible with simple and inexpensive analysis techniques, and
therefore can be easily incorporated in software tools.

1 Introduction

Side effects of a method are state changes that can be ob-
served by code that invokes the method. The presence or ab-
sence of side effects is an important property that has a va-
riety of uses in software tools. Since side effects have neg-
ative effect on program comprehension [7], valuable pro-
grammer time can be saved by using a program understand-
ing tool that automatically identifies and labels side-effect-
free methods. Such a tool can simplify the use of a method,
by eliminating the need to investigate manually the actions
performed in the method body and in all of the method’s
transitive callees.

The absence of side effects is a desirable property that
is often defined at design time. For example, UML de-
fines an attribute isQuery for operations. This attribute
specifies whether the operation “leaves the state of the sys-
tem unchanged (isQuery = true) or side effects may occur
(isQuery = false); the default value is false” [19]. In real-

ity, design and code often diverge. For example, in modern
iterative and incremental development it is often necessary
to reverse-engineer the design from existing code. A typical
scenario is to perform design recovery through reverse en-
gineering of the last iteration’s code in the beginning of the
current iteration [12]; the results serve as the starting point
for subsequent design work. In this case, identification of
side-effect-free methods in the code can ensure consistency
with the isQuery properties from the design.

In optimizing compilers and program transformation
tools, the absence of side effects allows a number of
semantics-preserving transformations. Similarly, the cor-
rectness of some refactorings [8] depends on ensuring that
methods do not have side effects. Investigating the differ-
ences between the sets of side-effect-free methods before
and after code modifications can also provide a simple form
of change impact analysis.

Information about side-effect-free methods is also use-
ful in other situations. For example, in query-based debug-
ging for object-oriented programs (e.g., [14]), it is neces-
sary to know that a query expression does not have side
effects. Similarly, expressions in assertions (e.g., in JML
[13]) should be free of side effects. In some approaches
for software security (e.g., SecureUML [17]), permissions
can be restricted to allow only invocations of side-effect-
free methods. In all these cases, it is necessary to be able to
determine precisely which methods do not have side effects.

Side-effect analysis determines which memory locations
may be modified by the execution of a program statement.
Unfortunately, existing work on side-effect analysis cannot
be used directly to identify side-effect-free methods. First,
most of this work is for procedural languages, while our
goal is to analyze Java code, which requires handling of
virtual calls. Second, side-effect analyses are typically de-
signed to analyze complete programs. However, in the con-
text of software tools, it is essential to be able to perform
separate analysis of software components. For example, it
is typical to have to analyze a component without having
access to the clients of that component. Whole-program
side-effect analysis cannot solve this problem.

Another problem with existing work on side-effect anal-
ysis is that it does not provide information about the degree
of imprecision in the analysis results—that is, how often
does the analysis make “false claims”? This is a critical
issue for the use of program analysis in software tools, be-
cause imprecision may lead to waste of human time and
effort, and possibly render the analysis useless.

The goal of this work is to develop analysis techniques
for identifying side-effect-free methods in incomplete Java
programs, and to evaluate the imprecision of these tech-
niques. We describe a static analysis which identifies meth-
ods that are free of side effects with respect to the clients of
the analyzed component. The approach is parameterized by
class analysis, which determines the classes of all objects
to which a reference variable or a reference field may point.
We use class analysis to identify the calling relationships
between methods and to characterize the heap objects in the
modified state. Our approach shows how a large body of
work on class analysis can be used to discover side-effect-
free methods in incomplete programs.

We have implemented two instances of this approach,
one based on Rapid Type Analysis (RTA) [2] and the
other based on context-sensitive points-to analysis [18].
Since these two techniques belong to opposite ends of the
cost/precision spectrum, this investigation provides insights
that are applicable to a large portion of the design space
for the problem. For our subject components, the approach
based on [18] achieves perfect precision—that is, it dis-
covers all side-effect-free methods. Furthermore, the RTA-
based approach achieves almost perfect precision. In both
cases, a large number of methods (22% on average) are
identified as having no side effects. These results indicate
that (1) side-effect-free methods occur often, and (2) such
methods can be identified very precisely with inexpensive
analysis techniques.

This work has the following contributions:

• We propose a parameterized analysis for identifying
side-effect-free methods in incomplete Java programs.

• We present experimental results that evaluate a large
segment of the analysis design space.

2 Problem Definition

Our goal is to design a static analysis that answers the
following question: given a set of Java classes (i.e., a com-
ponent to be analyzed), which methods in these classes may
produce side effects when invoked from unknown client
code written on top of the component? The analysis out-
put is a set of component methods that are guaranteed to be
free of side effects when invoked from arbitrary client code.

These analysis results are useful for various users of
the component and can be included in the component

documentation—for example, Javadoc comments can be
added automatically to the source code of the component.
This information can be used by programmers that are writ-
ing or modifying code built on top of the component, and by
software tools that analyze such client code. Having this in-
formation is especially important for reusable components
(e.g., class libraries) that are developed independently of fu-
ture clients of the component functionality. Furthermore,
the developer of the component can use these results to en-
sure that the design goals (e.g., isQuery attributes) are in
fact satisfied by the actual implementation.

The input to the analysis contains a set Cls of interact-
ing Java classes. We will use “classes” to refer to both Java
classes and interfaces, since the distinction is irrelevant for
this work. A subset of Cls is designated as the set of ac-
cessible classes; these are classes that may be accessed by
unknown client code from outside of Cls . We assume that
such client code can only access fields and methods from
Cls that are declared in some accessible class.

2.1 Side-effect-free Methods

To define the notion of a side-effect-free method, con-
sider the run-time execution of some client code that is built
on top of Cls . Suppose a call site s in the client code invokes
a method m defined in Cls . We will refer to such methods
as boundary methods. An invocation of a boundary method
m is free of side effects if the observable state immediately
after the completion of the invocation is exactly the same
as the observable state immediately before the invocation.
The observable state at an execution point consists of (1)
all static fields, and (2) all heap objects that are transitively
reachable from static fields or from locals/formals of meth-
ods that are currently on the run-time call stack.

If the invocation of m at s changes the value of some
static field, this could potentially affect the client code that
is executed after s. Similarly, if the invocation modifies the
object structure that is reachable from static fields and from
currently-active locals and formals, this may affect the sub-
sequent execution. The change in the object structure could
be due to modifications of non-reference fields (e.g., inte-
ger fields, boolean fields, etc.). The change could also be
due to reference fields: for example, a new object may be
created and a reference to it may be assigned to a field of
an existing object. Note that side-effect analyses typically
consider all changes to the heap object structure to be side
effects. On the other hand, our definition takes into account
only changes that are observable by the caller, which fol-
lows the notion of pure methods used elsewhere (e.g., [13]).
A boundary method m from Cls is side-effect-free if all pos-
sible client invocations of m during all possible run-time ex-
ecutions of arbitrary clients of Cls are free of side effects,
subject to the constraints described in Section 2.2.

package iter;
public abstract class BreakIter {

public static BreakIter getWordInstance()
{ return new SimpleBoundary(...); }

public abstract void setText(CharIter ci);
public abstract void setText(String s);
public abstract CharIter getText();
public abstract int first();
public abstract int firstPeek();
public abstract int firstPeek(String s);
public abstract int next();
public abstract int nextPeek(); }

final class SimpleBoundary extends BreakIter {
private CharIter text;
private int pos;
public void setText(CharIter ci)

{ text=ci; pos=text.getBeginIndex(); }
public void setText(String s1)

{ setText(new StringCharIter(s1)); }
public CharIter getText() { return text; }
public int first()

{ pos=text.getBeginIndex(); return pos; }
public int firstPeek()

{ return text.getBeginIndex(); }
public int firstPeek(String s2) {

StringCharIter tmp=new StringCharIter(s2);
return tmp.getBeginIndex(); }

public int next()
{ pos=nextPosition(pos); return pos; }

public int nextPeek()
{ return nextPosition(pos); }

private int nextPosition(int offset)
{ ... text.nextChar() ... } }

public interface CharIter {
public int getBeginIndex();
public char nextChar(); ... }

public class StringCharIter implements CharIter {
private String txt;
private int begin=0,curr=0;
public StringCharIter(String s3) { txt=s3; }
public int getBeginIndex() { return begin; }
public char nextChar() {... curr++; ...} ...}

Figure 1. Sample package iter.

Example. Consider the package in Figure 1. This ex-
ample is based on classes from the standard Java library
package java.text, with some modifications introduced
to illustrate aspects of our approach. BreakIter allows
iteration over different boundaries in text—e.g., bound-
aries of words, boundaries of sentences, etc. Internally
the iteration is implemented by SimpleBoundary. The
text is accessed through CharIter, which defines a pro-
tocol for iteration over characters. StringCharIter
implements this protocol for string objects. Here Cls

contains the classes from Figure 1 plus String. Class
SimpleBoundary has package visibility and cannot be
accessed directly by client code; the remaining classes are
designated as accessible classes.

Boundary methods getText and getBeginIndex
are trivially free of side effects. MethodfirstPeek() in-

vokes only getBeginIndex and is also side-effect-free.
Method firstPeek(String) is free of side effects be-
cause it creates a temporary object which does not “escape”
to the caller of the method, and therefore the caller’s ob-
servable state does not change. All other boundary methods
potentially have side effects.

2.2 Constraints

When considering the effects of a method invocation, it
is useful to define certain constraints that allow more pre-
cise discrimination of sources of side effects. In our defini-
tion of side effects, we employ two such constraints. First,
we only consider executions in which the invocation of a
boundary method m from Cls does not leave Cls—i.e.,
all of m’s transitive callees are also in Cls . Without this
constraint, we would have to assume that unknown called
methods always have side effects (e.g., they modify static
fields). In particular, if we consider the possibility that un-
known subclasses override methods from Cls , all instance
calls inside Cls could potentially be “redirected” to un-
known external code, and therefore may have side effects.
Thus, the vast majority of methods from Cls would have
to be reported as having side effects. For example, the call
to getBeginIndex in firstPeek() could potentially
have side effects if client code creates and uses some un-
known class that implements interface CharIter, instead
of using StringCharIter.

Since the analysis scope is restricted to the given set Cls ,
this set should include all relevant classes whose code is
available. For example, in the experiments presented in Sec-
tion 6, we included in Cls all classes that were (transitively)
referenced by other classes in Cls . With this approach, the
user of the analysis is given information that is valid for
the currently known set of classes, but may be invalidated
in the future by the addition of new subclasses of classes
from Cls . An alternative approach is to change the analysis
to make worst-case assumptions at calls that may leave Cls

and enter some unknown overriding methods. However, we
believe that rather than taking this overly conservative ap-
proach, it is more useful to restrict the scope of the analy-
sis to the “known world”. Thus, the analysis will produce
results that are valid for the particular set of classes that
are currently available to the analysis user. Of course, the
user must be aware that the definition of “side-effect-free”
may not be valid in the context of some larger set of classes
which contains new subclasses of classes from Cls , and that
the analysis will have to be rerun when such subclasses be-
come available.

The second constraint is related to the order of method
invocations. We only consider executions in which the in-
vocation of a boundary method m ∈ Cls , and the subse-
quent invocations of m’s callees, are executed in single-

threaded fashion, without interleaving invocations due to
other threads. (This approach is traditionally employed by
all side-effect analyses.) Otherwise, there is the possibility
that an arbitrary method with side effects is executed at any
point of time during the execution of any method m, and
therefore m cannot be considered to be side-effect-free.

3 Class Analysis

Class analysis determines the classes of all objects to
which a reference variable or a reference field may point.
This information has a variety of uses in software tools and
optimizing compilers. In this paper, class analysis will be
used to approximate the calling relationships between meth-
ods, as well as the set of objects that constitute the observ-
able state with respect to client code. Our goal is to define
a general theoretical framework for analyses that identify
side-effect-free methods, based on the design space for class
analysis algorithms.

3.1 Categories of Class Analysis

There is a large body of work on class analyses with dif-
ferent cost/precision trade-offs. One dimension of precision
is flow sensitivity. Flow-insensitive analyses do not take
into account the flow of control within a method, and are
less expensive and less precise than flow-sensitive analyses.
Another dimension is context sensitivity: context-sensitive
analyses employ some abstraction of the calling context of
a method in order to achieve higher precision.

An important analysis aspect is the naming scheme used
to distinguish among instances of the same class. In tra-
ditional class analyses, no such distinction is made. Other
class analyses (also referred to as points-to analyses) create
a separate name for each allocation site. In this case, two
instances of the same class are modeled differently if and
only if they are created by different new expressions in the
code. To allow uniform treatment of these two approaches,
we assume that the analysis uses a set O of object names
to represent heap objects. In traditional class analysis, there
is a single object name per instantiated class or instantiated
array type. In points-to analysis, there is a separate object
name for each new expression.

3.2 Output of Class Analysis

The output of class analysis is usually thought of as a
set of relationships of the form “local/formal v may refer
to instances of C” and “field f may refer to instances of
C”. In this work, we assume that the output has a dif-
ferent form that represents exactly the same kinds of rela-
tionships, but is more convenient for the subsequent analy-
ses. We consider the output to be a set of points-to pairs

and a set of call edges. Points-to pairs represent “may-
refer-to” relationships. Call edges represent possible call-
ing relationships between methods. This definition allows
general and uniform treatment for a wide range of flow-
insensitive analyses with different degrees of context sen-
sitivity [1, 2, 11, 6, 20, 25, 28, 27, 10, 16, 22, 18, 15].

We will use E to denote the set of call edges. Each call
edge is a pair (s, m) where s is a call site and m is a method
that is potentially invoked at s. If s is a polymorphic call
site, there are multiple call edges (s, mi). Most class anal-
yses construct E on the fly during the analysis; if this is not
the case, it can be constructed after the analysis completes.

Let V be the set of all locals, formals, and static fields
that have reference types (class/interface/array types [9]).
Set O denotes the set of object names used by the analy-
sis, as described above. Set C contains a set of contexts.
For context-sensitive analysis, the elements of C represent
abstractions of calling context. We assume that C contains
a special element ε that denotes the “empty” context. For
context-insensitive analyses, we can define C = {ε}. For
each call edge e = (s, m), the analysis computes a set of
possible contexts Ce ⊆ C that may be introduced by s at
the entry of the called method m. Examples of common
context abstractions are the top k call sites on the call stack
[10], or some o ∈ O representing the receiver object [18].

The analysis solution represents three categories of
“may-refer-to” relationships:

• Consider some v ∈ V and o ∈ O. Let c ∈ Ce be a
context that is introduced at the entry of some method
m by a call edge e = (s, m). If the analysis solution
contains a points-to pair (vc, o), this means that at run
time, if m is invoked from s with calling context c,
during that invocation v may refer to some object that
is represented by o.

• Suppose that f is a reference instance field in objects
represented by some o ∈ O. For example, if o rep-
resents objects of class C, f can be any reference in-
stance field declared in C or inherited from C’s super-
classes. The pair (o.f, o2) shows that at run time the
f field of some object represented by o may refer to
some object represented by o2.

• If o represents array objects, (o[], o2) shows that some
element of some array represented by o may refer at
run time to an object represented by o2.

4 Fragment Class Analysis

Class analysis is usually designed as whole-program
analysis: it takes as input a complete program and pro-
duces information about relationships in that entire pro-
gram. However, the problem we are considering requires
analysis of partial programs. The input is only the set of

void main() {
BreakIter break iter;
CharIter char iter;
StringCharIter string char iter;
String string = "string literal";
break iter = BreakIter.getWordInstance();
break iter.setText(char iter);
break iter.setText(string);
char iter = break iter.getText();
break iter.first();
break iter.firstPeek();
break iter.firstPeek(string);
break iter.next();
break iter.nextPeek();
char iter.getBeginIndex();
char iter.nextChar();
string char iter = new StringCharIter(string);
char iter = string char iter;

}

Figure 2. Placeholder main method for iter.

classes Cls , and the analysis has to take into account pos-
sible effects of client code that may be built later on top of
Cls . To address this issue, we use an adaptation of earlier
work on fragment class analysis [23]. Such analysis works
on a program fragment rather than on a complete program;
for our work, the fragment is the given set of classes Cls .

The approach produces an artificial main method that
“simulates” the possible flow of object references between
Cls and the client code that may be written on top of Cls .
Intuitively, main serves as a placeholder of possible client
code. The fragment analysis attaches this method to Cls

and invokes the engine of some whole-program class anal-
ysis. This technique is applicable to many flow-insensitive
whole-program class analyses [1, 2, 11, 6, 20, 25, 28, 27,
10, 16, 22, 18, 15]. A wide spectrum of fragment analyses
can be defined in this manner: from very simple and inex-
pensive analyses based on Rapid Type Analysis (RTA) [2],
to relatively complicated context-sensitive analyses.

The placeholder main method for the classes from Fig-
ure 1 is shown in Figure 2. The method contains variables
that correspond to different types from Cls that may be ac-
cessed by client code. The statements represent different
possible interactions involving Cls . The order of statements
is irrelevant because the subsequent whole-program class
analysis is flow-insensitive. Method main invokes all pub-
lic methods from the classes in Cls which have been desig-
nated as accessible classes. The variables in these calls are
based on the types in method signatures. The last statement
takes into account the possibility of assignment conversions
[9] between CharIter and StringCharIter.

4.1 Fragment Analysis Solution

We will not discuss all details of the approach for cre-
ating the placeholder main method; additional informa-

tion is available in [23]. However, it is important to de-
fine precisely the properties of the information produced by
the fragment analysis, because this information will be used
subsequently to identify side-effect-free methods.

Call Graph. Consider some arbitrary client program built
on top of Cls , and some execution of this program that sat-
isfies the constraints described in Section 2. For each re-
lationship of the form “during the execution, call site s in
method n invokes method m”, the fragment analysis solu-
tion contains a call edge that represents this relationship. If
both n and m are methods in Cls , the solution contains the
call edge (s, m). If n is not in Cls , the call graph contains
at least one call edge (s, m), where s is some call site inside
the placeholder main method. Essentially, the call graph
computed by the fragment analysis can be thought of as a
projection of all possible calling relationships within Cls

and between Cls and client code.

Object Reachability. Consider again some client pro-
gram built on top of Cls , and an execution of this program
that satisfies the constraints from Section 2. Suppose v ∈ V

is declared in Cls , and at some point during the execution
v is the start of a chain of object references that leads to
some heap object. In the fragment analysis solution, there
will be a chain of points-to pairs that starts at vc and leads
to some object name o that represents the run-time object.
Here c ∈ C is some context that represents the run-time call
stack at the execution point. A similar property holds if v is
declared outside of Cls . In this case, in the fragment anal-
ysis solution, the starting point of the chain is the variable
from main that has the same type as v.

4.2 Rapid Type Analysis

We will illustrate these properties for two fragment anal-
yses. The first one is based on Rapid Type Analysis (RTA)
[2]. RTA is a simple whole-program analysis that computes
a set of methods reachable from main, and a set of classes
instantiated in reachable methods. It does not distinguish
among allocation sites (i.e., there is one object name per
instantiated type), and is context-insensitive, with C = {ε}.

Suppose that the main method from Figure 2 is
added to the classes from Figure 1 and the result is an-
alyzed by RTA as if it were a complete program. Since
getWordInstance is called from main, it is added
to the set of reachable methods. Inside this method,
SimpleBoundary is instantiated. Thus, the calls through
break iter may invoke the corresponding methods
in SimpleBoundary. Analysis of main shows that
StringCharIter may also be instantiated. In the final
solution, all methods in Figure 1 are determined to be reach-
able, and the instantiated classes are SimpleBoundary
and StringCharIter.

(break iter,SimpleBoundary)
(char iter,StringCharIter)
(string char iter,StringCharIter)
(ci,StringCharIter)
(tmp,StringCharIter)
(string,String) (s1,String) (s2,String) (s3,String)
(SimpleBoundary.text,StringCharIter)
(StringCharIter.txt,String)

Figure 3. Points-to pairs computed by RTA.

The computed points-to pairs, shown in Figure 3,
are based on object names for each instantiated class.
For brevity, we do not show all pairs involving im-
plicit parameters this. The solution provides conser-
vative information about object reachability. For exam-
ple, the two pairs (break iter,SimpleBoundary) and
(SimpleBoundary.text,StringCharIter) imply
that some reference variable, which is declared in client
code with type BreakIter, may be the start of a
chain of object references that leads to an instance of
StringCharIter.

4.3 Context-sensitive Points-to Analysis

As an example of an analysis at the other end of the
cost/precision spectrum, we will also consider a fragment
class analysis based on a context-sensitive whole-program
points-to analysis for Java [18]. The analysis is a context-
sensitive version of flow- and context-insensitive Andersen-
style points-to analysis for Java [25, 16, 22, 15]. Unlike
RTA, the analysis creates a separate object name for each
new expression, and uses a set of contexts to approximate
the state of the run-time call stack. The set of contexts C

is exactly the same as the set of object names O. A context
o ∈ O represents an invocation of an instance method when
the receiver object of the invocation is o. The analysis prop-
agates “may-refer-to” relationships by analyzing individual
program statements. For example, if the analysis encoun-
ters “p = q” under context c, it infers that pc may refer to
any object that qc may refer to. Theoretically, this approach
is substantially more precise that RTA.

Consider the example from Figures 1 and 2. In this case
there are five object names. The first three, which will be
denoted by SimpleBoundary1, StringCharIter1,
and String1, correspond to the allocation sites in
the main method. Name StringCharIter2 corre-
sponds to the allocation in setText(String), and
StringCharIter3 corresponds to the allocation in
firstPeek(String). The points-to pairs are shown
in Figure 4; for simplicity, we do not show all pairs in-
volving this. For variables in main, the calling con-
text is the empty context ε. For locals/formals inside
SimpleBoundary the context is SimpleBoundary1,
which represents the receiver for methods in this class. For

(break iterε,SimpleBoundary1)
(char iterε,StringCharIter1)
(char iterε,StringCharIter2)
(string char iterε,StringCharIter1)
(stringε,String1)
(ciSimpleBoundary1 ,StringCharIter1)
(ciSimpleBoundary1 ,StringCharIter2)
(s1SimpleBoundary1 ,String1)
(s2SimpleBoundary1 ,String1)
(tmpSimpleBoundary1 ,StringCharIter3)
implicit formal this in the constructor of StringCharIter:

(thisStringCharIter1 ,StringCharIter1)
(thisStringCharIter2 ,StringCharIter2)
(thisStringCharIter3 ,StringCharIter3)

(s3StringCharIter1 ,String1)
(s3StringCharIter2 ,String1)
(s3StringCharIter3 ,String1)
implicit formal this in nextChar:

(thisStringCharIter1 ,StringCharIter1)
(thisStringCharIter2 ,StringCharIter2)

(SimpleBoundary1.text,StringCharIter1)
(SimpleBoundary1.text,StringCharIter2)
(StringCharIter1.txt,String1)
(StringCharIter2.txt,String1)
(StringCharIter3.txt,String1)

Figure 4. Points-to pairs computed by the
points-to analysis.

methods in StringCharIter, there are three contexts
corresponding to the three names for instances of the class.

The results from Figure 4 can be used to infer
more precise object reachability relationships than possi-
ble with RTA. For example, no reference chains lead to
StringCharIter3 from variables declared in main.
Therefore, variables from client code cannot be the start
of reference chains that lead to objects that are created in
firstPeek(String). This information allows the ap-
proach to identify method firstPeek(String) as be-
ing side-effect-free, which is not possible using the RTA-
based solution.

5 Side-effect-free Methods

Whole-program side-effect analysis can be used only to
compute information about the behavior of a given com-
plete program. In order to analyze partial programs, we de-
fine a form of fragment side-effect analysis that is based on
the output of a fragment class analysis. Furthermore, unlike
traditional side-effect analysis, our approach takes into ac-
count only changes that are observable by the callers of a
method. For this, the analysis identifies the objects that ap-
proximate the observable state with respect to client code.
Next, it determines which methods may modify fields in
such objects. Finally, it performs backward propagation on
the call graph to identify methods that have indirect side
effects because they invoke methods with side effects.

Contexts for RTA Contexts for Points-to Analysis
Immediate side effects Transitive side effects Immediate side effects Transitive side effects

getWordInstance ε ε ε ε

setText(CharIter) ε ε SimpleBoundary1 SimpleBoundary1
setText(String) ε ε SimpleBoundary1 SimpleBoundary1
getText — — — —
first ε ε SimpleBoundary1 SimpleBoundary1
firstPeek — — — —
firstPeek(String) ε ε — —
next ε ε SimpleBoundary1 SimpleBoundary1
nextPeek — ε — SimpleBoundary1
nextPosition — ε — SimpleBoundary1
StringCharIter ε ε StringCharIter{1,2} StringCharIter{1,2}
getBeginIndex — — — —
nextChar ε ε StringCharIter{1,2} StringCharIter{1,2}

Table 1. Contexts under which the methods have immediate and transitive side effects.

5.1 Observable State

The invocations of a side-effect-free method m do not
affect the state observable by m’s callers. The observable
state at a program point consists of all static variables, as
well as all heap objects that are transitively reachable from
(1) static variables and (2) locals/formals of methods that
are currently on the run-time call stack. We first identify
the object names which represent objects that are part of the
observable state for callers of boundary methods. This is
done by traversing the points-to pairs produced by the frag-
ment class analysis. The starting point of the traversal are all
variables declared in placeholder method main. Any ob-
ject name that is transitively reachable from these variables
is included in the observable state; we will refer to such
object names as observable object names. Consider the so-
lutions in Figures 3 and 4. For the first solution, the ob-
servable state contains object names SimpleBoundary,
StringCharIter, and String. For the second one,
it contains SimpleBoundary1, StringCharIter1,
StringCharIter2, and String1.

The observable state contains two kinds of objects: ob-
jects that already exist before a call, and objects that are
created during the call and “escape” to the caller. Existing
work on escape analysis [5, 3, 4, 29] can be used to identify
escaping objects. However, we chose to identify escaping
objects using fragment class analysis. This is a general ap-
proach, it is easy to implement, and allows cost/precision
trade-offs through the underlying class analysis. Our exper-
iments indicate that even simple and inexpensive analyses
(e.g., based on RTA) can achieve very high precision, and
therefore the use of the more expensive escape analyses may
be unnecessary for the problem considered in this paper.

5.2 Immediate Side Effects

The second step of the analysis identifies method invoca-
tions that have “immediate” side effects. Such invocations

either modify the value of a static variable, or modify ob-
servable objects. Let e = (s, m) be a call edge and c ∈ Ce

be a calling context for m. The pair (m, c) represents an
invocation of m under context c. This invocation has imme-
diate side effects if:
• m assigns a value to a static field
• m contains an object allocation site that corresponds

to an observable object name
• m assigns a value to x.f, where xc refers to an ob-

servable object name and f is an instance field
• m assigns a value to x[i], where xc refers to an ob-

servable object name that represents an array object

Table 1 show the contexts c for which a pair (m, c)
has immediate side effects. Consider the RTA-based so-
lution; in this case, the analysis uses a single context ε.
getWordInstance creates objects that are represented
by the observable object name SimpleBoundary, and
therefore the method has immediate side effects. Method
setText(CharIter) contains two assignments to
fields: “this.text=...” and “this.pos=...”. The
implicit formal this refers to the observable object name
SimpleBoundary, and therefore the method has imme-
diate side effects. Two other methods in the class modify an
instance field of an observable object (first and next),
and two methods contain allocation sites which correspond
to observable object names (setText(String) and
firstPeek(String)). In class StringCharIter,
the constructor and method nextChar also have imme-
diate side effects. (Alternatively, the constructor could be
considered to be free of side effects because it modifies only
fields of the newly-created object [13]).

Consider the solution computed using the context-
sensitive analysis. getWordInstance has immediate
side effects because it creates objects that are represented by
the observable object name SimpleBoundary1. Since
this is a static method (i.e., it does not have a re-
ceiver object), the analysis uses invocation context ε.

(1) Component (2) Functionality (3) #Classes (4) #Boundary #Side-effect-free methods
Methods (5) RTA (6) ContextSens (7) Perfect

gzip GZIP IO streams 199 12 0 (0%) 0 (0%) 0 (0%)
zip ZIP IO streams 194 33 9 (27%) 10 (30%) 10 (30%)
checked IO streams with checksums 189 9 2 (22%) 2 (22%) 2 (22%)
collator text collation 203 26 10 (39%) 10 (39%) 10 (39%)
date date formatting 205 23 4 (17%) 4 (17%) 4 (17%)
number number formatting 198 26 6 (23%) 6 (23%) 6 (23%)
boundary iteration over boundaries in text 199 35 8 (23%) 8 (23%) 8 (23%)

Table 2. Java components and side-effect-free methods.

Methods setText(CharIter), first, and next
modify instance fields of the observable object name
SimpleBoundary1. Method setText(String) cre-
ates objects that are represented by the observable name
StringCharIter2. In firstPeek(String), the al-
location corresponds to StringCharIter3 which is not
part of the observable state. Therefore, the method does not
have immediate side effects.

Two methods from StringCharIter have immedi-
ate side effects for calling contexts StringCharIter1
and StringCharIter2. Name StringCharIter3 is
also a valid context for the constructor; however, under this
context there are no modifications of observable objects.

5.3 Transitive Side Effects

The final step of the analysis considers indirect side ef-
fects that are due to called methods. Consider an invocation
represented by a pair (m, c) of a method and a calling con-
text. The invocation has transitive side effects if at least one
of the following holds:
• (m, c) has immediate side effects
• m contains a call site s such that when m is invoked

under c, site s invokes a method m′ with context c′ and
the invocation (m′, c′) has transitive side effects.

Table 1 shows the pairs (m, c) with transitive side ef-
fects. getText and getBeginIndex do not have such
side effects. firstPeek only invokes getBeginIndex
and does not have transitive side effects. nextPosition
and nextPeek have transitive side effects because they
invoke nextChar. In the context-sensitive solution, the
constructor invocation in firstPeek(String) creates
calling context StringCharIter3; under this context,
the constructor does not have immediate side effects, and
the caller does not have transitive side effects.

Once the analysis computes all pairs (m, c) that have
transitive side effects, it considers the call sites inside the
main method. If such a call site invokes some boundary
method m from Cls under some context c, and if (m, c)
has transitive side effects, the method is reported as poten-
tially having side effects that may be observed by client

code. All remaining method are guaranteed to be free of
side effects when invoked by client code. The RTA-based
approach identifies the side-effect-free methods getText,
firstPeek, and getBeginIndex. Using the context-
sensitive analysis, method firstPeek(String) can
also be identified as having no side effects.

6 Experimental Study

The goal of this study is to address two questions. First,
how often do different analyses discover side-effect-free
boundary methods? Second, how significant is the impreci-
sion of the analyses—that is, how often do they miss meth-
ods that in fact are free of side effects? The answers to these
questions provide essential insights for analysis designers
and tool builders.

For the first question, we performed experiments with
two class analyses at the opposite ends of the cost/precision
spectrum: RTA and the context-sensitive points-to analysis
described in Section 4. For the experiments we used sev-
eral Java components from the standard library packages
java.text and java.util.zip. The components are
described briefly in the first two columns of Table 2. Each
component contains a set of classes that provide certain
functionality; as discussed in Section 2.2, set Cls contains
these classes plus all other classes that are directly or tran-
sitively referenced by them. Column (3) shows the size of
Cls . We then considered all boundary methods for the par-
ticular component functionality; the number of such meth-
ods is given in column (4).

6.1 Number of Side-effect-free Methods

In order to determine which boundary methods were
side-effect-free, we applied the approach presented earlier,
using as basis RTA and the points-to analysis. Columns (5)
and (6) show how many of the methods from column (4)
were identified as being free of side effects.

On average, the analyses reported 22% side-effect-free
methods. These results indicate that a large number of
methods are free of side effects, and that the analyses

can compute useful information for various software tools.
Somewhat surprisingly, the two versions of the analysis
achieve essentially the same precision. The only difference
is in zip, where the theoretically more precise analysis
identifies an additional method. Since the difference be-
tween the two analyses covers a large portion of the analysis
design space, these results indicate that very precise identi-
fication of side-effect-free methods is possible with simple
and inexpensive analysis techniques at the low end of the
cost/precision spectrum. These observations are promising
because they suggest that such functionality can be easily
incorporated in any software tool.

6.2 Analysis Imprecision

The issue of analysis imprecision is of critical impor-
tance for software tools. If an analysis is imprecise, it may
report that methods have side effects even if in reality they
do not. Such information is of little use (or even confusing)
for tool users. For example, if a user attempts to ensure the
consistency between the code and the isQuery properties
in a UML-based design, imprecision would mean that the
code of a method (and all its transitive callees) will have
to be inspected manually to identify the source of the dis-
crepancy. Because of the negative effects of such impreci-
sion, it must be evaluated carefully and precisely. Unfor-
tunately, the traditional approach for precision evaluation
used in static analysis research does not provide sufficient
information to evaluate this imprecision [21]. Usually, pre-
cision evaluations compare the results of two or more static
analyses against each other. However, this by itself does not
indicate how far away the analyses are from the “perfect”
solution which does not contain any imprecision.

In our experiments, we carefully examined all bound-
ary methods that were reported as having side effects, and
we attempted to prove that it was possible to write client
code which observed such side effects. More precisely, we
attempted to prove that there exists a run-time execution
of some client code during which a method invocation has
side effects according to the definition from Section 2. Es-
sentially, these were proofs by existence. The results are
shown in column (7) in Table 2. In all cases, we were able
to prove that the methods reported by the points-to anal-
ysis as having side effects were not side-effect-free in re-
ality. Therefore, this analysis achieves perfect precision.
The RTA-based analysis achieves almost perfect precision,
missing only one method that is actually side-effect-free.

6.3 Conclusions

The results presented above are promising because they
indicate the presence of a large number of side-effect-free
methods. Thus, the analysis can provide useful information

for a variety of software tools. Furthermore, there is strong
indication that highly precise information can be obtained
with techniques that are inexpensive and simple to imple-
ment. Of course, these results need to be reconfirmed for
more components. At this point we can draw two conclu-
sions. First, any future investigations should focus, at least
initially, on analyses at the low end of the cost/precision
spectrum. Second, the precision of the analysis results
should be evaluated not by comparing them with other anal-
yses, but directly with the “perfect” solution.

7 Related Work

There is a large body of work on interprocedural side-
effect analysis. For languages with general-purpose point-
ers (e.g., C), such analysis must be preceded by a pointer
analysis that disambiguates memory accesses. Ryder et al.
[24] present a general framework for side-effect analysis
for C programs, parameterized by pointer analysis. If the
pointer analysis is context-sensitive, the propagation of side
effects is also done in context-sensitive fashion. Our ap-
proach is based on a similar idea: given a context-sensitive
class analysis, we take into account different calling con-
texts when considering whether a method has immediate or
transitive side effects. However, our approach is designed
to work on partial programs, and to consider the observable
state with respect to client code; the schema from [24] is for
whole-program analysis. Furthermore, we directly evaluate
the degree of imprecision in the analysis solution.

Razafimahefa [20] presents algorithms for side-effect
analysis for Java that are based on context-insensitive class
analyses. Milanova et al. [18] propose a side-effect analy-
sis for Java based on the particular form of context-sensitive
class analysis described in Section 4. In both cases, the
side-effect analysis is designed as a whole-program analy-
sis. Our approach is more general because it allows anal-
ysis of partial programs, and is parameterized by a wide
range of class analyses (both context-sensitive and context-
insensitive). We also present an evaluation of the analysis
imprecision, which is essential information for designers of
software tools.

Recent work by Sălcianu and Rinard [26] presents a
static analysis which identifies pure methods in Java code.
The analysis also produces additional information—for ex-
ample, regular expressions describing the heap objects that
are modified by a method with side effects. Their technique
is based on the pointer and escape analysis from [29]. Our
work takes a different approach: instead of using a spe-
cialized pointer/escape analysis, we use the points-to rela-
tionships and calling relationships computed by a fragment
class analysis to identify the observable objects that may be
modified. This allows the use of a variety of existing class
analyses [1, 2, 11, 6, 20, 25, 28, 27, 10, 16, 22, 18, 15].

8 Conclusions and Future Work

This work defines an approach for performing analysis
of side-effect-free methods in Java components. Our study
indicates that a large number of methods can be identified
as having no side effects, and typically all side-effect-free
methods can be successfully identified. Clearly, it would
be premature to draw far-reaching conclusions from these
experiments. However, as a first step in investigating this
problem, the results are promising. Furthermore, they pro-
vide a clear direction for future investigations. Through ad-
ditional experiments by us and by other researchers, it may
become possible to conclude that precise identification of
side-effect-free methods can be done easily and efficiently.
We plan to perform such investigations in the future.

References

[1] O. Agesen. The cartesian product algorithm. In European
Conference on Object-oriented Programming, LNCS 952,
pages 2–26, 1995.

[2] D. Bacon and P. Sweeney. Fast static analysis of C++ virtual
function calls. In Conf. Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 324–341, 1996.

[3] B. Blanchet. Escape analysis for object-oriented lan-
guages. In Conf. Object-Oriented Programming Systems,
Languages, and Applications, pages 20–34, 1999.

[4] J. Bogda and U. Hölzle. Removing unnecessary synchro-
nization in Java. In Conf. Object-Oriented Programming
Systems, Languages, and Applications, pages 35–46, 1999.

[5] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Mid-
kiff. Escape analysis for Java. In Conf. Object-Oriented
Programming Systems, Languages, and Applications, pages
1–19, 1999.

[6] G. DeFouw, D. Grove, and C. Chambers. Fast interprocedu-
ral class analysis. In Symposium on Principles of Program-
ming Languages, pages 222–236, 1998.

[7] J. J. Dolado, M. Harman, and M. C. Otero. An empirical in-
vestigation of the influence of a type of side effects on pro-
gram comprehension. IEEE Trans. Software Engineering,
29(7):665–670, July 2003.

[8] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Specification. Addison-Wesley, 2 edition, 2000.

[10] D. Grove and C. Chambers. A framework for call graph con-
struction algorithms. ACM Trans. Programming Languages
and Systems, 23(6):685–746, Nov. 2001.

[11] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph
construction in object-oriented languages. In Conf. Object-
Oriented Programming Systems, Languages, and Applica-
tions, pages 108–124, 1997.

[12] C. Larman. Applying UML and Patterns. Prentice Hall, 2nd
edition, 2002.

[13] G. Leavens, A. Baker, and C. Ruby. JML: A notation for
detailed design. In Behavioral Specifications of Businesses

and Systems, pages 175–188. Kluwer Academic Publishers,
1999.

[14] R. Lencevicius, U. Hölzle, and A. Singh. Query-based
debugging of object-oriented programs. In Conf. Object-
Oriented Programming Systems, Languages, and Applica-
tions, pages 304–317, 1997.

[15] O. Lhoták and L. Hendren. Scaling Java points-to analy-
sis using Spark. In International Conference on Compiler
Construction, LNCS 2622, pages 153–169, 2003.

[16] D. Liang, M. Pennings, and M. J. Harrold. Extending and
evaluating flow-insensitive and context-insensitive points-to
analyses for Java. In Workshop on Program Analysis for
Software Tools and Engineering, pages 73–79, 2001.

[17] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A
UML-based modeling language for model-driven security.
In International Conference on the Unified Modeling Lan-
guage, LNCS 2460, pages 426–441, 2002.

[18] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
Java. In International Symposium on Software Testing and
Analysis, pages 1–11, 2002.

[19] OMG. UML 2.0 Infrastructure Specification. Object Man-
agement Group, www.omg.org, Aug. 2003.

[20] C. Razafimahefa. A study of side-effect analyses for Java.
Master’s thesis, McGill University, Dec. 1999.

[21] A. Rountev, S. Kagan, and M. Gibas. Evaluating the impre-
cision of static analysis. In Workshop on Program Analysis
for Software Tools and Engineering, June 2004.

[22] A. Rountev, A. Milanova, and B. G. Ryder. Points-to anal-
ysis for Java using annotated constraints. In Conf. Object-
Oriented Programming Systems, Languages, and Applica-
tions, pages 43–55, Oct. 2001.

[23] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class
analysis for testing of polymorphism in Java software. IEEE
Trans. Software Engineering, 30(6):372–387, June 2004.

[24] B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and R. Altucher.
A schema for interprocedural modification side-effect anal-
ysis with pointer aliasing. ACM Trans. Programming Lan-
guages and Systems, 23(2):105–186, Mar. 2001.

[25] M. Streckenbach and G. Snelting. Points-to for Java: A gen-
eral framework and an empirical comparison. Technical re-
port, U. Passau, Sept. 2000.

[26] A. Sălcianu and M. Rinard. A combined pointer and purity
analysis for Java programs. Technical Report MIT-CSAIL-
TR-949, MIT, May 2004.

[27] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallee-
Rai, P. Lam, E. Gagnon, and C. Godin. Practical virtual
method call resolution for Java. In Conf. Object-Oriented
Programming Systems, Languages, and Applications, pages
264–280, 2000.

[28] F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. In Conf. Object-Oriented Program-
ming Systems, Languages, and Applications, pages 281–
293, 2000.

[29] J. Whaley and M. Rinard. Compositional pointer and es-
cape analysis for Java programs. In Conf. Object-Oriented
Programming Systems, Languages, and Applications, pages
187–206, 1999.

