Distinguished Paper

Precise Memory Leak Detection for Java Software Using
Container Profiling’

Guoqing Xu

ABSTRACT

A memory leak in a Java program occurs when object ref-
erences that are no longer needed are unnecessarily main-
tained. Such leaks are difficult to understand because static
analyses typically cannot precisely identify these redundant
references, and existing dynamic analyses for leak detection
track and report fine-grained information about individual
objects, producing results that are usually hard to interpret
and lack precision.

We introduce a novel container-based heap-tracking tech-
nique, based on the observation that many memory leaks
in Java programs occur due to containers that keep refer-
ences to unused data entries. The novelty of the described
work is two-fold: (1) instead of tracking arbitrary objects
and finding leaks by analyzing references to unused objects,
the technique tracks only containers and directly identifies
the source of the leak, and (2) the approach computes a con-
fidence value for each container based on a combination of
its memory consumption and its elements’ staleness (time
since last retrieval), while previous approaches do not con-
sider such combined metrics. Our experimental results show
that the reports generated by the proposed technique can be
very precise: for two bugs reported by Sun and for a known
bug in SPECjbb, the top containers in the reports include
the containers that leak memory.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation— Reliability; D.2.5 [Software Engineering]: Test-
ing and Debugging—Debugging aids

General Terms

Reliability, Performance, Measurement, Experimentation

Keywords

Memory leaks, container profiling, leaking confidence

*This material is based upon work supported by the National
Science Foundation under grant CCF-0546040.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE 08, May 10-18, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

Atanas Rountev
Department of Computer Science and Engineering
Ohio State University
{xug,rountev}@cse.ohio-state.edu

151

1. INTRODUCTION

While garbage-collected languages can reduce memory-
related bugs such as dangling pointers, programs written in
these languages can still suffer from memory leaks caused
by keeping references to useless objects. Leaks degrade run-
time performance and significant leaks even cause the pro-
gram to run out of memory and crash. In addition, memory
leak bugs are notoriously difficult to find. Static analyses
can be used to attempt the detection of such leaks. However,
this detection is limited by the lack of scalable and precise
reference/heap modeling, as well as by reflection, multiple
threads, scalability for large programs, etc. Thus, in prac-
tice, identification of memory leaks is more often attempted
with dynamic analyses. Existing dynamic approaches for
heap diagnosis have serious limitations. Commercial tools
such as JProfiler [13] and JProbe [12] were developed to
help understand types, instances, and memory usage. How-
ever, this information is insufficient for programmers to lo-
cate a bug. For example, in most cases, the fact that type
java.util.HashMap$Entry has the highest number of in-
stances tells the programmer nothing about the hash maps
that hold these entries. Research tools for memory leak de-
tection typically focus on heap differencing [3, 4, 14] and
fine-grained object tracking [1, 8, 7, 20].

Of existing dynamic techniques, LeakBot [17], Cork [14],
and Sleigh [1] represent the state of the art. Both Leak-
Bot and Cork use heap growth as a heuristic, which could
result in false positives (growing types are not necessarily
true leaks). Sleigh, on the other hand, uses staleness (time
since last use) to find leaks. This approach could lead to
imprecision as well. As an example, a frame in a Java Swing
program cannot be treated as a leak, although it may never
be used after it is created. In addition, larger objects that
are less stale may have greater contribution towards the
leak. For example, more attention should be paid to a big
container that is not used for a while than to a never-used
string. Furthermore, these existing tools follow a traditional
from-symptom-to-cause approach that starts from tracking
all objects and finds those that could potentially be useless
(symptom). It then tries to find the leaking data struc-
ture (cause) by analyzing direct and transitive references to
these useless objects. However, the complex run-time refer-
ence relationships among objects in modern Java software
significantly increases the difficulty of locating the source of
the leak, which could lead to imprecise leak reports. It be-
comes even harder to find the cause of a leak if there are
multiple data structures that are contributing to the prob-
lem. For example, as reported in [14], it took the authors a

B-Tree | |Transaction—container

HashMap

ArrayList HashSet

[oni] - Toni] [fobi] Toni] [oni] . Toni]

Figure 1: Container hierarchy in Java.

significant amount of time to find the sources of leaks after
they examined the reports generated by Cork.

Our proposal. We propose a novel technique for Java
that detects memory leaks using container profiling. Ar-
guably, misuse of (user-defined or Java built-in) containers
is a major source of memory leak bugs in real-world Java
applications. For example, many of the memory leak bugs
reported in the Sun bug repository [23] were caused, directly
or indirectly, by inappropriate use of containers. The key
idea behind the proposed technique is to track operations
on containers rather than on arbitrary objects, and to report
containers that are most likely to leak. The major difference
between our technique and the from-symptom-to-cause di-
agnosis approach is that we start by suspecting that all con-
tainers are leaking, and then use the “symptoms” to rule out
most of them. Hence, we avoid the process of symptom-
to-cause searching that can lead to imprecision and reduced
programmer productivity.

Figure 1 shows the container hierarchy typically used in a
Java program: user-defined containers in the top layer use
containers provided by the Java collection framework (the
middle layer), which eventually store data in arrays (the
bottom layer). The focus of our technique are containers in
the first and second layers, because in most cases these con-
tainers are directly manipulated by programmers and hence
more likely to be sources of leaks. Arrays are not tracked;
completementary approaches such as [21] can potentially be
used to detect leaks directly caused by arrays.

Our technique requires ahead-of-time modeling of contain-
ers: users need to build a simple “glue layer” that maps
methods of each container type to primitive operations (e.g.,
ADD, GET, and REMOVE). An automated tool instru-
ments the application code and uses the user annotations to
connect invocations of container methods with our run-time
profiling libraries. To write this glue code, users have to be
familiar with the container types used in the program. This
does not increase the burden on the programmers: when
using existing leak detection tools [17, 1, 14], programmers
have to inspect the code to gain similar knowledge so that
they can interpret the tool reports. Using our approach re-
quires learning such knowledge in advance. Of course, the
tool embeds pre-defined models for containers from the Java
collection framework, and therefore programmers need to
model only user-defined containers. Running the tool even
without modeling of user-defined containers can still provide
useful insights for finding leaks: in our reports, top-level
Java library containers (i.e., the second layer in Figure 1)
can direct one’s attention to their direct or transitive own-
ers, which are likely to be user-defined containers (i.e., the
first layer in Figure 1) that are the actual causes of bugs.

152

We compute a heuristic leaking confidence value for each
container, based on a combination of its memory consump-
tion and the staleness of its data elements; this could yield
more accurate results compared to existing approaches [17,
1, 14]. For each container, we also rank call sites in the
source code, based on the average staleness of the elements
retrieved or added at these sites. This container ranking
and the related call site ranking can assist a programmer to
quickly identify the source of the memory leak. The concep-
tual model used to compute these values and our implemen-
tation of the technique for Java are presented in Section 2
and Section 3, respectively. Our tool achieved high pre-
cision in reporting causes for two memory leak bugs from
the Sun bug database [23] and a known memory leak bug
in SPECjbb [22] — in fact, the top containers in the re-
ports included the ones that leaked memory. In addition,
an evaluation of the run-time performance showed accept-
able overhead for practical use.

Contributions. The main contributions of this work are:

e A dynamic analysis that computes a confidence value
for each container, providing a basis for identification
and ranking of likely-leaking containers

e A memory leak detection technique for Java based on
this confidence analysis

e A tool that implements the proposed technique

e An experimental study of leak identification and run-
time performance, showing that our technique can pre-
cisely detect memory leak bugs with practical overhead

2. LEAK CONFIDENCE ANALYSIS

This section presents a confidence analysis that computes
leaking confidence values for tracked containers. The goal
of the analysis is to quantify the contribution of a container
to memory leaks.

A container is an abstract data type (ADT) with a set
of data elements and three basic operations ADD, GET,
and REMOVE. We use ¢" to denote a container o with
n elements. The simplified effects of the operations are as
follows (o denotes a container element):
ADD(c",0) : void = oppe — a;‘;%, 0¢&0pre; 0E€EQT
GET(0™) :0 = 0pre = Oposts 0 € Opre
REMOVE(c", 0) :void = op,c — UZCTS%, 0 € Opre, 0¢ U;LO;%

We treat all (Java library and user-defined) containers as
implementations of the container ADT. Tracking operations
on a container requires user-supplied annotations to bridge
the gap between methods defined in the Java implementa-
tions and the three basic ADT operations. We have already
defined such annotations for the container types from the
standard Java libraries.

During the execution of a program, let the program’s
memory consumption at a timestamp 7; be m;. In cases
when 7; is a moment immediately after garbage collection
(we will refer to such moments as gc-events), it will be
denoted by 7/° and its memory consumption will be de-
noted by mf°. A program written in a garbage-collected
language has a memory leak symptom within a time region
[7s, Te] if (1) for every gc-event 77¢ in the region, ms <
mJ® < me, and (2) in this region, there exists a subsequence
ss = (7%, 73, ..., 75°) of ge-events, with n > 2, such that
¢ <1/t and mI® <m, for j =1,...,n—1. The period
[7s, Te] Will be referred to as a leaking region.

n+1
post

This definition helps to identify the appropriate time re-
gion to analyze, because most programs do not leak from
the start of execution. End moment 7. can be specified by
tool users as an analysis parameter, and can be different for
different kinds of analyses. For post-mortem off-line diagno-
sis, 7. is either the ending time of the program, or the time
when an OutOfMemory error occurred. For on-line diagno-
sis done while the program is running, 7. could be any time
at which the user desires to stop data collection and to start
analysis of the collected data. We use gc-events as “check-
points” because at these times the program’s heap memory
consumption does not include unreachable objects.

The definition of a memory leak symptom does not require
the amount of consumed memory at each gc-event to be
larger than it was at the previous one, because in many cases
some gc-events reclaim large amounts of memory, while in
general the memory footprint still keeps increasing. The
ratio between the number of elements n in the subsequence
ss and the size of the entire sequence of gc-events within
the leaking region can be defined by tool users as another
analysis parameter, in order to control the length of the
leaking region. Given a particular value for this user-defined
ratio, there could be multiple values of 75 corresponding to
this ratio. Our approach chooses the smallest such value as
Ts, which defines the longest region and allows more precise
analysis. (Additional details are described in Section 3.)

A container o is memory-leak-free if either (1) at time e,
it is in state o° (i.e., empty), or (2) it is garbage collected
within the leaking region. That is, ¢" does not leak memory
if at time 7., its accumulated number of ADD operations is
equal to its accumulated number of REMOVE operations,
assuming we treat the deallocation of o™ as being equivalent
ton REMOVE operations. Containers that are not memory-
leak-free contribute to the memory leak symptom and are
subject to further evaluations. However, this does not nec-
essarily mean that all of them leak memory. For example, if
an OutOfMemory error occurs before some REMOVE oper-
ations of a container, this container is not memory-leak-free
according to the above definition, although in reality it may
very well be leak-free.

For each container that is not memory-leak-free by this
definition, we compute a confidence value that indicates how
large is its contribution to the memory leak symptom. Our
technique considers both the memory consumption and the
staleness when computing the confidence for a container.

Memory contribution. One factor that characterizes a
container’s contribution to the leak is the amount of memory
the container consumes during its lifetime. We quantify this
factor by defining a memory time graph which captures a
container’s memory footprint.

The relative memory consumption of a container o at time
T is the ratio between the sum of the memory consumption
of all objects reachable from o in its object graph, and the
total amount of memory consumed by the program at 7. The
memory time graph for o is a curve where the x-axis repre-
sents the relative time of program execution (i.e., 7;/7. for
timestamp 7;) and the y-axis represents the relative memory
consumption of o (i.e., mem(c);/total; corresponding to x-
point 7;/7). The starting point of the x-axis is 70/7 where
70 = max(7s, allocation time of o) and the ending point is
71/Te where 71 = min(7., deallocation time of o).

A sample graph is shown in Figure 2. The x-axis starts at
0.4 relative time (0.4 x 7. absolute time), which represents

153

0.9
0.8
0.7
0.6
0.5
0.4 F
0.3 F
0.2 F
0.1 F

0.7 0.8 0.9 1

Figure 2: A sample memory time graph.

either the starting time of the leak region 75 or o’s allocation
time, whichever occurs later. The graph indicates that o is
not freed within the leak region, because the x-axis ends at
1, which represents the ending time 7. of the leak region.

Using the memory time graph, a container’s memory con-
tribution (MC) is defined to be the area covered by the mem-
ory consumption curve in the graph. In Figure 2 this area is
shown in dark. Because the graph starts from 7, (or later),
the MC considers only a container’s memory consumption
within the leaking region. For a container, both its mem-
ory consumption and its lifetime contribute to its MC. Since
MC should reflect the influence of both the container itself
and all objects (directly or transitively) referenced by it,
the memory consumption of the container is defined as the
amount of memory consumed by its entire object graph.

Because relative values (i.e., between 0 and 1) are used to
measure the memory consumption and the execution time,
the MC of a container is also a value between 0 and 1. Con-
tainers that have larger MC contribute more to the memory
leak symptom. Note that in practice it is likely to be too
expensive to compute the exact MC value for a container,
because the container’s memory consumption changes fre-
quently as the program executes. Section 3 presents a sam-
pling approach that can be used to approximate this value.

Staleness contribution. The second factor that char-
acterizes a container’s contribution is the staleness of its
elements. The staleness of an object is defined in [1] as the
time since the object’s last use. We provide a new definition
of staleness in terms of a container and its elements.

The staleness of an element o in a container o is 7 — 71
where REMOVE(0, 0) occured at 72, an operation GET(c):0
or ADD(o, 0) occured at 71, and there does not exist another
GET operation that returns o in the region [r1, 72]. If 71
< Ts, 71 1s redefined to be 75. If 72 < 75, the staleness is
undefined. In other words, the staleness of o is the distance
between the time when o is removed from ¢ and the most
recent time when o is retrieved from o. If o is never retrieved
from o, 71 should correspond to the ADD operation that
adds o to o. If 0 is never removed from o, 72 is either the
deallocation time of o, or the ending time of the leaking
region T.. The intuition behind this definition is that if
the program no longer needs to retrieve an element from
a container, the element becomes useless to that container.
Hence, the staleness of the element measures the period of
time when the element becomes useless but is still being
kept by the container. In addition, tracking occurs only
within the leaking region — if an element’s removal time 72
is earlier than the starting time of the leaking region, we do
not compute the staleness for the element.

The staleness contribution (SC) of a container o is the
ratio of (3°7_, staleness(0:)/n) and (7e —7s), where the sum

[ID | Type [LC [MC TS5C]
11324773 | util. HashMap 0.449 0.824 0.495
18429817 | util.LinkedList 0.165 0.820 0.194
8984226 util.LinkedList 0.050 0.809 0.062
2263554 util. WeakHashMap 0.028 0.820 0.034
15378471 | util.LinkedList 0.018 0.029 0.256
5192610 swing.JLayeredPane | 0.011 0.824 0.013
30675736 | swing.JPanel 0.011 0.824 0.013
19526581 | swing.JRootPane 0.011 0.824 0.013
17933228 | util.Hashtable 0.000023 | 0.0007 | 0.026

Table 1: Partial report of LC, MC, and SC values.

is over all elements o1,...,0, that have been added to o
and whose staleness is well-defined. Thus, SC is the average
staleness of elements that have ever been added to o, relative
to the length of the leaking region. In addition, the removal
time of these elements must be within the leaking region.
Because the staleness of each individual element is < the
length of the leaking region, SC is a value between 0 and
1. Containers that have larger SC values contribute more to
the memory leak symptom.

Putting it all together: leaking confidence. Based on
the memory contribution and the staleness contribution, we
define a container’s leaking confidence (LC) to be computed
as SC x MC'75€. Clearly, LC is a value between 0 and 1;
also, increasing either SC or MC while keeping the other fac-
tor unchanged increases LC. We define LC as an exponential
function of SC to show that staleness is more important than
memory consumption in determining a memory leak. This
definition of LC has several desirable properties:

e MC=0 and SCg[0, 1] = LC=0. If the memory contri-
bution of a container is small enough (i.e., close to 0),
the confidence of this container is close to 0, no matter
how stale its elements are. This property helps filter
out containers that hold small objects, such as strings.

e SC=0 and MCeg[0, 1] = LC=0. If every element in
a container gets removed immediately after it is no
longer used (i.e., the time between the GET and RE-
MOVE operations is close to 0), the confidence of this
container is 0, no matter how large the container is.

e SC=1 and MCeg[0, 1] = LC=1. If all elements of a
container never get removed after they are added (i.e.,
every element crosses the entire leaking region), the
confidence of the container is 1, no matter how large
the container is.

e MC=1 and SC€|0, 1] = LC=SC. If the memory con-
tribution of a container is extremely high (close to 1),
the confidence of this container is decided by its stal-
eness contribution.

Our study shows that this definition of confidence effec-
tively separates containers that are the sources of leaks from
those that do not leak. A sample report that includes LC,
MC, and SC values for several containers is shown in Table 1.
This table is a part of the report generated by our tool when
analyzing Sun’s bug #6209673. The first container in the
table is the one that actually leaks memory. Note that the
LC value of this container is much larger than the LC val-
ues for the remaining containers. Using this report, it is
straightforward to find and fix this bug.

154

class HashMap {
Object put(Object key, Object value) {...}
Object get(Object key) {...}
Object remove(Object key) {...}
R

(a) Container class HashMap

class Java_util_HashMap {
static void put_after(int csID, Map receiver, Object key,
Object value, Object result) {
/* if key does not exist in the map */
if (result == null) {
/* use user-defined hash code as ID */
Recorder.v() .useUserDefHashCode () ;
/* record operation ADD(receiver,key) */
Recorder.v() .record(csID, receiver, key,
receiver.size()-1, Recorder.EFFECT_ADD);
}}
static void get_after(int csID, Map receiver, Object key,
Object result) {
/* if an entry is found */
if (result != null) {
Recorder.v() .useUserDefHashCode () ;
/* record operation GET(receiver):key */
Recorder.v() .record(csID, receiver, key, receiver.size(),
Recorder .EFFECT_GET) ;
}}
static void remove_after(int csID, Map receiver, Object key,
Object result) {
if (result != null) {
Recorder.v() .useUserDefHashCode () ;
/* record operation REMOVE(receiver,key) */
Recorder.v() .record(csID, receiver, key,
receiver.size()+1, Recorder.EFFECT_REMOVE);
3
(b) Glue class for HashMap

Figure 3: Modeling of container java.util.HashMap.

3. MEMORY LEAK DETECTION FOR JAVA

Based on the leak confidence analysis, this section presents
a memory leak detection technique for Java.

Container modeling. We have built the glue code for all
types in the Java collections framework. For each container
type there is a corresponding “glue” class. For each method
in the container type that is related to ADD, GET, and
REMOVE operations, there is a static method in the glue
class whose name is the name of the container method plus
the suffix “_before” or “_after”. The suffix indicates whether
calls to the glue method should be inserted before or after
call sites invoking the original method. The parameter list of
the glue method includes a call site ID, the receiver object,
and the formal parameters of the container method. For the
suffix “_after”, the return value of the container method is
also added. Figure 3 shows the modeling of container class
java.util.HashMap. It is important to note that most of
this glue code can be generated automatically using prede-
fined code templates.

The glue methods call our profiling library to pass the fol-
lowing data: the call site ID (csID), the container object,
the element object, the number of elements in the container
before the operation is performed, and the operation type.
The call site ID is generated by our tool during instrumen-
tation. The container object, the element object, and the
operation type are used to compute the SC for the container.
Recording the number of elements in a container is needed
for the algorithm in Figure 5, as discussed later. We use an
integer ID to track each object (i.e., container and element).
The first time a container object is observed by the profil-
ing library, we tag this object with the ID using JVMTI.
The ID for a container object (e.g., the object referred to by

[Name | Description | Purpose

GCrp GC timestamps To identify the leaking region

GCyuy Total live memory after GCs To identify the leaking region

CONjs | Memory taken up by containers To compute MC for containers

CON7p Timestamps when measuring CON To compute MC for containers

CON, | Allocation times of containers To compute MC and SC for containers
CONp | Deallocation times of containers To compute MC and SC for containers
OPR Operations (csID, container, element, #elements, type) | To compute SC for containers

Table 2: Data collected by the profiler.

receiver in Figure 3) is its identity hash code determined
by its internal address in the JVM. For an element object,
the identity hash code is used as element ID if the container
does not have hash-based functions; otherwise, the element
ID is the user-defined hash code. For example, in Figure 3,
calls to useUserDefHashCode inform our library that the ID
for key should be its user-defined hashcode. For HashMap,
we only track key as a container element, because key is rep-
resentative of a map entry. Methods that retrieve the entire
set of elements, such as toArray and iterator, are treated
as a set of GET operations performed on all container ele-
ments. Of course, this approximate treatment of iterators
may affect the precision of the computed SC values.

Instrumentation. The Soot analysis framework [24] is
used to perform code instrumentation. For each call site in
an application class at which the receiver is a container, calls
to the corresponding glue method are inserted before and/or
after the site. For a container object, code is also inserted
after its allocation site in order to track its allocation time.

Naively instrumenting a Java program can cause tracking
of many containers, which may introduce significant run-
time overhead. Because thread-local and method-local con-
tainers' are less likely to be sources of leaks, we employ
an escape analysis to identify a set S of thread-local and
method-local objects. We do not instrument a call site if
the points-to sets of its receiver variable is a subset of S.

Profiling. Table 2 lists the types of data that need to
be obtained by our profiler. In order to identify the leaking
region, we need to collect GC finishing times (GCr) and live
memory at these times (GCas), using JVMTI.

For MC values of containers, it is necessary to collect the
amounts of memory for the entire object graphs of containers
(CONys) and the corresponding collection times (CONr).
We measure the memory usage of a container by traversing
the object graph starting from the container, using reflec-
tion. Since it is impractical to compute the exact value
of MC, sampling is used to approximate the memory time
graph. Frequent sampling results in precise approximation,
but increases run-time overhead.

We launch periodic object graph traversals (for a set of
tracked containers) every time after a certain number of gc-
events is seen. The number of gc-events between two traver-
sals (i.e., the sampling rate) can be given as a parameter to
determine precision and overhead. Our study indicates that
choosing 50 as the number of gc-events between traversals
can keep the overhead low while achieving high precision.

Object graph traversal is performed by a separate thread.
Once a container operation occurs (i.e., record in Figure 3
is invoked), record adds the ID of the container to a global
queue, if that ID is not already there. When the given num-

LContainers that are not reachable from multiple threads, and
whose lifetime is limited within their allocating methods.

155

container type

java.util. HashMap

containerlD 2345765

CSID*10+OPR_TYPE

elementID,
#elements, timestamp

122365, 125, 1145

Figure 4: Compressed recording of OPR events.

ber of gc-events complete, the JVMTI agent activates this
thread, which in turn suspends all other threads, reads IDs
from the queue, retrieves the corresponding objects, and
performs graph traversals. The allocation time of a con-
tainer (CON4) can be collected by the instrumentation at
the allocation site, and the JVMTI agent can provide the
deallocation time of a tagged container (CONp).

To compute SC values for containers, we have to record
every operation that a tracked container performs (OPR).
Because OPR events can result in large amounts of data, we
use a data compression strategy to reduce space overhead.
The OPR data is stored in a tree structure. Data at a higher
level of the tree is likely to be more frequently repeated. For
example, type java.util.HashMap, which is at the highest
level of the tree, appears in the event sequence for many
container IDs. Similarly, for a single container ID, many
call sites and operations need to be recorded. The tree rep-
resentation is illustrated in Figure 4. The type of container
is a parent of the container ID. A child of the container ID
is a combination of the call site ID and the operation type
(encoded as a single integer csID*10+opr_type). The leaf
nodes contain tuples of element ID, number of elements in
the container before this operation, and a timestamp.

Keeping too much profiling data in memory degrades pro-
gram performance. We periodically dump the data to disk
to reduce its influence on the run-time execution. The fre-
quency of dumping is the same as that of object graph
traversal: the JVMTI agent creates a dumping thread that
is activated at the same time the graph traversal thread is
activated. Both of these threads must complete before the
execution of the application threads is resumed.

Data analysis. Our implementation performs an offline
analysis after the program finishes or runs out of memory.
Thus, the end of the leaking region 7. is the ending time
of the program. The implementation can easily be adapted
to run the analysis online (in another process) and generate
the report while the original program is still running.

The first step of the analysis is to scan GCr and GCys
information to determine the leaking region. The current

. FIND_SC(Double 7., Double 75, Map size_map, Map oper_map)
/* operation list for each container */
List oper_list
/* The result map contains each container ID and its SC */
Map result = 0
for each container ID c¢ in oper_map do

Map temp = () /* a temporary helper map */

oper_list = oper_map.get(c)

Integer total = 0 /* total number of elements */

10: Double sum = 0 /* 3" staleness */

11: /* Number of elements in c at time 7, */

12: Integer ne = size_map.get(c)

13: for each operation opr in oper_list do

14: if opr.type == “ADD” then

15: temp.add(opr.elementID, opr.timestamp)
16: end if

17: if opr.type == “GET” then

18: update temp with (opr.elementID, opr.timestamp)
19: end if

20: if opr.type == “REMOVE” then

21: if temp.contains(opr.elementID) then
22: Integer lastget = temp.get(opr.elementID)
23: sum += opr.timestamp — lastget

24: total +=1

25: temp.remove(opr.elementID)

26: else

27: /* The element is added before 7, */
28: sum += opr.timestamp — 75

29: total +=1

30: ne —=

31: end if

32: end if

33: end for

34: if temp.size > 0 then

35: /* These elements are never removed */
36: for each elementID in temp do

37: Integer lastget = temp.get(elementID)
38: sum += T, — lastget

39: total +=1

40: end for

41: end if

42: if ne > 0 then

43: /* Elements are added before 75 and never removed */
44: sum += (Te — Ts) X ne;

45: total += ne

46: end if

47: ¢.SC = (sum/total)/(Te — Ts)

48: result.add(c, c.SC)

49: end for

return result

Figure 5: Computing SC for containers.

implementation employs 0.5 as the ratio used to define this
region, which means that at least half of the gc-events form
a subsequence with increasing memory consumption (recall
the leak region definition from Section 2). After the small-
est 75 that satisfies this constraint is found, each container’s
OPR data is uncompressed into individual operations and
they are sorted by timestamp. The container ID and its
operation list are stored in map oper_map. For each con-
tainer, the analysis also determines the first operation that
is performed after 7,; the container ID and the number of
container elements at this first operation are stored in map
size_map. Operations that occured before 75 are discarded.

For each container, CON,; and CONp data is used to
approximate the memory time graph and the MC value.
The approximation assumes that the memory used by the
container does not change between two samples. Thus, MC
is 37"/ (CON7,i11 — CONr,;) x CONyy,; where i represents
the i-th sample.

Figure 5 shows the computation of SC for containers. The
algorithm scans a container’s operation list, and for each el-
ement ID, finds its last GET operation, its REMOVE op-
eration, and the distance between them. (Recall that the

156

deallocation of the container is treated as a set of REMOVE
operations on all elements.) For an element that is added
before 7, (lines 27-30), staleness is the distance between the
REMOVE operation and 7s. For an element that is never re-
moved (lines 34-39), staleness is the distance between 7. and
the last GET operation. For elements that are added before
7s and never removed (lines 42-45), staleness is Te — Ts.
Leaking call sites. For each element in a container, the
analysis finds the call site ID corresponding to its last GET
or ADD operation. Then, it computes the average staleness
of elements whose last GET or ADD operations correspond
to that same call site ID. The call site IDs are then sorted
in decreasing order of this average value. Thus, the tool re-
ports not only the potentially leaking containers (sorted by
the LC value), but also, for each container, the potentially
leaking call sites (with their source code location) sorted in
descending order by their average staleness. Our experience
indicates that this information can be very helpful to a pro-
grammer trying to identify the source of a memory leak bug.

4. EMPIRICAL EVALUATION

To evaluate the proposed technique for container-based
memory leak detection for Java, we performed a variety of
experimental studies focusing on leak identification and ex-
ecution overhead. Section 4.1 illustrates the ability of the
technique to help a programmer find and fix real-world bugs.
Section 4.2 presents a study of the incurred overhead.

4.1 Detection of Real-World Memory Leaks

The experiments were performed on a 2.4GHz dual-core
PC with 2GB RAM. Three different sampling/dumping rates
were used: 1/15gc, 1/50gc, and 1/85gc (i.e., once every 15,
50, or 85 gc-events). The experimental subjects were two
memory leak bugs reported in the Sun bug database [23], as
well as a known leak in SPECjbb [22].

Java AWT/Swing bugs. About half of the memory
leak bugs in the JDK come from AWT and Swing. This
is the reason we chose two AWT/Swing related leak bugs
#6209673 and #6559589 for evaluation. The first bug has
already been fixed in Java 6, while the second one was still
open and unresolved.

Bug report #6209673 describes a bug that manifests it-
self when switching between a running Swing application
that shows a JFrame and another process that uses a differ-
ent display mode (e.g., a screen saver) — the Swing appli-
cation eventually runs out of memory. According to a de-
veloper’s experience [18], the bug was very difficult to track
down before it was fixed. We instrumented the entire awt
and swing packages, and the test case provided in the bug
report. We then ran the instrumented program and repro-
duced the bug. Figure 6 shows the tool reports with three
sampling rates. Each report contains the top three contain-
ers, for each container the top three potentially leaking call
sites (-—-cs), and the time used to analyze the data.

Sampling rates 1/15gc and 1/50gc produce the same con-
tainers, in the same order. The first container in the reports
is a HashMap in class javax.swing.RepaintManager. We in-
spected the code of RepaintManager and found that the con-
tainer was an instance field volatileMap. The call site in the
report (with average staleness 0.507) directed us to line 591
in the code of the class, which corresponds to a GET opera-
tion image = (VolatileImage)volatileMap.get(config).
The tool report indicates that the image obtained at this call

Container:11324773 type: java.util.HashMap

(LC: 0.449, SC: 0.495, MC: 0.825)
---cs: javax.swing.RepaintManager:591 (Average staleness: 0.507)
Container:18429817 type: java.util.LinkedList

(LC: 0.165, SC: 0.194, MC: 0.820)
---cs: java.awt.DefaultKeyboardFocusManager:738 (0.246)
Container:8984226 type: java.util.LinkedList

(LC: 0.051, SC: 0.062, MC: 0.809)
---cs: java.awt.DefaultKeyboardFocusManager:851 (0.063)
---cs: java.awt.DefaultKeyboardFocusManager:740 (0.025)
Data analyzed in 149203ms

(a) 1/15gc sampling rate

Container:29781703 type: java.util.HashMap

(LC: 0.443, SC: 0.480, MC: 0.855)
---cs: javax.swing.RepaintManager:591 (Average staleness: 0.480)
Container:2263554 type: class java.util.LinkedList

(LC: 0.145, SC:0.172, MC: 0.814)
---cs: java.awt.DefaultKeyboardFocusManager:738 (0.017)
Container:399262 type: class javax.swing.JPanel

(LC: 0.038, SC:0.044, MC: 0.860)
---cs: javax.swing.JComponent:796 (0.044)
Data analyzed in 21593ms

(b) 1/50gc sampling rate

Container:15255515 type: java.util.HashMap

(LC: 0.384, SC:0.426, MC: 0.835)
---cs: javax.swing.RepaintManager:591 (0.426)
Container:19275647 type: java.util.LinkedList

(LC: 0.064, 5C:0.199, MC: 0.244)
---cs: java.awt.SequencedEvent:176 (0.204)
---cs: java.awt.SequencedEvent:179 (0.010)
---cs: java.awt.SequencedEvent:128 (1.660E-4)
Container:28774302 type: javax.swing.JPanel

(LC: 0.036, 5C:0.042, MC: 0.839)
---cs: javax.swing.JComponent:796 (0.042)
Data analyzed in 10547ms

(c) 1/85gc sampling rate

Figure 6: Reports for JDK bug #6209673.

site may not be properly removed from the container. For a
programmer that is familiar with the code, this information
may be enough to identify the bug quickly.

Since the code was new to us, we had to learn more about
this class and the overall display handling strategy of Swing
to understand the bug. Because the bug was already re-
solved, we examined the bug evaluation, which confirmed
that volatileMap is the root of the leak. The cause of the
bug is caching by RepaintManager of all Volatilelmage ob-
jects, regardless of whether or not they are currently valid.
Upon a display mode switch, the old GraphicsConfigura-
tion objects under the previous display mode get invalidated
and will not be used again. However, the Volatilelmage for
an obsolete GraphicsConfiguration is never removed from
volatileMap, and hence all resources allocated by the im-
age continue taking up memory.

Note that the report with sampling rate 1/85gc “loses”
the LinkedList in DefaultKeyboardFocusManager, which ap-
pears as the second container in the other two reports. Al-
though this container is not the source of the bug, it demon-
strates that sampling at 1/85gc may not be frequent enough
to maintain high precision for LC computation. Also note
that analysis time decreases with the decrease in sampling
rate, because the tool processes less data.

Compared to our reports, existing approaches that keep
track of arbitrary objects (i.e., do not have our container-
centric view) would report allocation sites of some types
of objects that either (1) continuously grow in numbers or
(2) are not used for a while. For bug #6209673, for exam-
ple, there are growing numbers of objects of numerous types
that are reachable by Volatilelmage and GraphicsConfigu-
ration objects. Tools such as Cork [14] have to backward-

157

Container:5678233 type: java.util.Vector
(LC: 0.890, SC: 0.938, MC: 0.427)

---cs: java.awt.Window:1825 (0.938)

Container:3841106 type: java.beans.PropertyChangeSupport
(LC: 0.645, SC:0.779, MC: 0.427)

---cs: java.awt.Component:7007 (0.779)
Container:24333128 type: javax.swing.UIDefaults
(LC: 0.644, SC:0.875, MC: 0.087)

---cs: javax.swing.UIDefaults:334 (0.868)
---cs: javax.swing.UIDefaults:308 (0.660)
Data analyzed in 454ms

(a) 1/15gc sampling rate

Container:5678233 type: java.util.Vector
(LC: 0.890, SC:0.938, MC: 0.427)

---cs: java.awt.Window:1825 (0.938)

Container:30318493 type: java.beans.PropertyChangeSupport
(LC: 0.668, SC:0.828, MC: 0.288)

---cs: java.awt.Component:7007 (0.828)
Container:9814147 type: javax.swing.UIDefaults
(LC: 0.101, SC: 0.327, MC: 0.175)

---cs: javax.swing.UIDefaults:334 (0.984)
---cs: javax.swing.UIDefaults:308 (0.903)
Data analyzed in 282ms

(b) 1/50gc sampling rate

Container:5678233 type: java.util.Vector
(LC: 0.293, SC:0.425, MC: 0.525)
---cs: java.awt.Window:1825 (0.425)
Container:30502607 type: javax.swing.JLayeredPane
(LC: 0.117, SC:0.221, MC: 0.441)

---cs: javax.swing.JComponent:796 (0.162)
Container:2665317 type: javax.swing.UIDefaults
(LC: 0.096, SC:0.363, MC: 0.124)

---cs: javax.swing.UIDefaults:334 (0.359)
---cs: javax.swing.UIDefaults:308 (0.340)
Data analyzed in 297ms

(c) 1/85gc sampling rate

Figure 7: Reports for JDK bug #6559589.

traverse the object graph from the growing objects to find
the type of objects that do not grow in numbers. How-
ever, the useless objects are inter-referenced, and moreover,
traversing back from these growing objects can potentially
find multiple types whose instances remain unchanged. In
this case, the container that holds GraphicsConfigurations,
the JFrame window, the GraphicsDevice object, the map
that holds Volatilelmages, etc. can all be data structures
that are backward-reachable from the growing objects and
whose numbers of instances do not grow. Tools such as
Sleigh [1] report errors based solely on the staleness of ob-
jects. In this case, the JFrame object would be the most stale
object because it is never used after it is created. In addi-
tion, there are numerous types of objects that are more stale
than Volatilelmages, such as all components in the frame.
Hence, Sleigh could report all these objects as the sources
of the leak, including many false positives. Finally, both of
these existing approaches require non-standard JVM mod-
ifications and support, while our technique uses only code
instrumentation and the standard JVMTI interface.
Report #6559589 describes a bug in Java 6 build 1.6.0_01:
calling JScrollPane.updateUI() in a Swing program that
uses JScrollPane causes the number of listeners to grow.
Because it is common knowledge that PropertyChangelis-
teners are managed by java.bean.PropertyChangeSupport,
we modeled this class as a container and wrote a glue class
for it. The reports are shown in Figure 7. The first con-
tainer in all three reports is a vector in java.awt.Window,
corresponding to an instance field ownedWindowList; this
field is used to hold all children windows of the current win-
dow. Line 1825 of class Window contains an ADD opera-
tion addElement (weakWindow) for this field. The reporting

Before fixing the bug After fixing the bug

A

A

500000
000000
1500000
1000000
500000

2! 2500000
2 = 2000000

1500000

1000000

500000

Memory Used

Memory Used (bytes)

0 o Lo,
15 9 131721252933 3741 4549 53 147 101316 19
GC Runs [

Figure 8: Memory footprint before and after fixing
JDK bug #6559589.

of this call site by the tool indicates that when a Window
object is added to the vector, it may not be properly re-
moved later. We quickly concluded that this cannot be the
source of the bug, because windows in a Swing program usu-
ally hold references to each other until the program finishes.
This forced us to look at the second container in reports
(a) and (b), which is a PropertyChangeSupport object in
java.awt.Component. The reported call site at line 7007 of
Component is
changeSupport.addPropertyChangelListener (listener)

The container is an instance field changeSupport, which
stores all PropertyChangeListeners registered in this compo-
nent. The call site indicates that the bug may be caused by
some problem in JScrollPane that does not appropriately
remove listeners. Registering and unregistering of listeners
for JScrollPane is done in a set of ScrollPaneUI classes.
The test case uses a metal look and feel, which is repre-
sented by class MetalScrollPaneUI, a subclass of Basic-
ScrollPaneUI. We checked method uninstallListeners in
MetalScrollPaneUI, which is supposed to release listeners
from the component, and found that this method calls the
method with the same name in its super class, but does not
remove the scrollBarSwapListener object held by a private
field in the subclass. Further investigation revealed an even
more serious problem: method uninstallListeners in the
subclass was not executed at all, because its signature was
different from the signature of the method with the same
name in superclass BasicScrollPaneUI:

/* BasicScrollPaneUI */

void uninstalllListeners(JComponent c)

/* MetalScrollPaneUI */

void uninstalllisteners(JScrollPane scrollPane)
Hence, the causes of the bug are (1) uninstallListeners in
MetalScrollPaneUI fails to override the appropriate method
in superclass BasicScrollPaneUI, and (2) the listener de-
fined in subclass MetalScrollPaneUI is not removed by its
own uninstallListeners. We modified the code accord-
ingly, and the memory leak disappeared. The memory foot-
prints before and after fixing the bug are shown in Figure 8.
We have submitted our modification as a comment in the
bug database. Again, the report that used 1/85gc sampling
rate failed to include the PropertyChangeSupport object,
which is the source of the leak.

SPECjbb bug. Benchmark SPECjbb2000 simulates an
order processing system and is intended for evaluating server-
side Java performance [22]. The program contains a known
memory leak bug that manifests itself when running for a
long time without changing warehouses. The report gener-
ated by our tool for rate 1/50gc is shown in Figure 9. Due to
the imprecision of using sampling rate 1/85gc, the report for
it is not shown. We also do not show the report for sampling
rate 1/15gc, because the containers and their order are the
same as in the report for 1/50gc.

158

Container:4451472 type: java.util.Hashtable
(LC: 0.135, SC: 0.190, MC: 0.659)
---cs: spec.jbb.StockLevelTransaction:225 (0.
---cs: spec.jbb.StockLevelTransaction:211 (0.
Container:7776424 type: java.util.Hashtable
(LC: 0.110, SC:0.157, MC: 0.659)
---cs: spec.jbb.StockLevelTransaction:211 (0.
---cs: spec.jbb.StockLevelTransaction:225 (0.
Container:28739781 type: java.util.Hashtable
(LC: 0.102, SC:0.146, MC: 0.654)
---cs: spec.jbb.StockLevelTransaction:211 (0.
---cs: spec.jbb.StockLevelTransaction:225 (0.
Data analyzed in 4078ms
(a) before modeling of longBTree, using 1/50gc

214)
190)

157)
114)

146)
122)

Container:27419736 type: spec.jbb.infra.Collections.longBTree
(LC: 0.687, SC: 0.758, MC: 0.666)
---cs: spec.jbb.District:264 (0.826)
---cs: spec.jbb.StockLevelTransaction:225 (0.624)
---cs: spec.jbb.StockLevelTransaction:211 (0.519)
Container:21689791 type: spec.jbb.infra.Collections.longBTree
(LC: 0.685, SC: 0.757, MC: 0.662)
---cs: spec.jbb.District:264 (0.783)
---cs: spec.jbb.StockLevelTransaction:211 (0.370)
---cs: spec.jbb.District:406 (2.944E-4)
Container:27521273 type: spec.jbb.infra.Collections.longBTree
(LC: 0.667, SC: 0.727, MC: 0.727)
---cs: spec.jbb.Warehouse:456 (0.798)
---cs: spec.jbb.District:264 (0.784)
---cs: spec.jbb.StockLevelTransaction:211 (0.484)
Data analyzed in 7579ms
(b) after modeling of longBTree, using 1/50gc

Figure 9: Report for SPECjbb2000 bug.

antlr 4.1E-5 | chart 2.7E-6 | fop 1.3E-5
hsqldb 4.4E-7 | jython | 5.0E-8 | luindex | 9.1E-5
lusearch | 2.3E-2 | pmd 4.3E-6 | xalan 5.2E-5
jflex 1.8E-7

Table 3: Confidences for leak-free programs.

The program was first instrumented without modeling any
user-defined containers. The result is shown in Figure 9(a).
None of the containers in the report are likely to leak mem-
ory, because their confidences are very small. The first con-
tainer refers to a hashtable that holds stocks of an order line.
We did not find any problem with the use of this container.
However, we observed that the order lines are actually ob-
tained from an order table, which has a type of longBTree.
We found that longBTree is a container class that imple-
ments a BTree data structure and is used to hold orders. It
took several minutes to write a glue class for longBTree. The
program was then re-instrumented and re-executed. The re-
sulting report is shown in Figure 9(b). The top three con-
tainers in the report are now instances of longBTree.

Line 264 of spec.jbb.District is an ADD operation
orderTable.put (anOrder.getId(), anOrder)
which indicates that orderTable may leak memory. Meth-
ods removeOldestOrder, remove0ldOrders, and destroy con-
tain REMOVE operations for orderTable. We focused on
the first two methods, because destroy could not be called
when a district is still useful. Using a standard IDE, we
found the callers of these methods: removeOldestOrder is
called only once within DeliveryTransaction, and remove-
01d0rders is never called. Therefore, when a transaction
completes, it removes only the oldest order from the table,
which causes the heap growth. Inserting code to remove or-
ders from the table fixed the bug. We used less time (a few
hours) than the authors of [14] did (a day) to locate the bug

in this program, which we had never studied before.

| Program || (a) [®] (c) 1/15g¢ | (d) 1/50gc () |
[FIS [#5. [ITG) [RT.G) | #GCa [RTa(s) [#GCL [RTiG) || #GCTa [BT(5) [#GCr [BTG [%OH]

antlr 176 123 87 17.9 387 18.4 10 18.1 387 18.4 10 18.1 0.7%
chart 894 867 202 8.5 5368 38.0 185 35.4 4109 36.5 185 35.1 313.2%
fop 1378 | 1375 125 4.5 693 8.6 24 7.8 545 8.9 24 6.4 44.6%
hsqldb 684 674 116 4.3 54 4.7 8 4.4 54 4.7 8 4.4 1.6%
jython 443 416 135 7.3 1653 31.8 126 28.2 1440 31.4 126 28.5 298.3%
luindex || 442 | 409 | 65 19.5 1446 24.4 40 23.7 1390 23.9 40 23.7 21.2%
lusearch 442 388 81 2.9 418 9.1 21 3.9 326 8.2 23 3.2 11.7%
pmd 814 690 111 5.9 2938 26.9 716 18.4 2766 25.2 37 6.6 10.8%
xalan 755 752 114 1.4 655 7.7 30 4.0 605 6.2 18 3.7 165.9%
jex 522 | 438 | 92 45.1 4171 170.7 1493 130.3 2126 165.8 665 88.05 95.2%
bug 1 3109 | 2768 487 18630 600 7420 600 11457 600 1983 600
bug 2 3105 | 2770 502 38.1 512 53.0 243 42.3 413 52.2 37 42 10.5%
specjbb 74 73 142 — 18605 3600 15080 3600 16789 3600 10810 3600 —

Table 4: Overhead: (a) code instrumentation; (b) original running time; (¢) running with 1/15gc rate; (d)

running with 1/50gc rate; (e) run-time overhead.

Leak-free programs. The tool was also used to analyze
several programs that have been used widely and tested ex-
tensively for years, and do not have any known memory
leaks. Table 3 shows the confidence values computed for
these programs. The goal of this experiment was to de-
termine whether the proposed technique produced any false
positives for these (almost certainly) leak-free programs. The
low confidence values reported by the tool are the expected
and desirable outcome for this experiment.

4.2 Static and Dynamic Overhead

This section describes a study of the overhead introduced
by the technique. This study utilizes the three bugs de-
scribed earlier, as well as the 10 programs from Table 3.
The instrumented programs were analyzed with rates 1/15gc
and 1/50gc. The maximum JVM heap size for each run was
set to 512MB (JVM option Xmx512m). For each sampling
rate, we ran the programs once with the default initial heap
size and once with a large initial heap size (JVM option
Xms512m), in order to observe different numbers of gc-events.
The tool reports shown earlier were obtained with the de-
fault initial heap size; with the large initial size, the top
containers and call sites and their ordering were the same.

Table 4 describes the static and dynamic overhead of the
tool. Columns IS and IS. show the numbers of call sites in-
strumented without and with employing escape analysis, re-
spectively. Column IT (“instrumentation time”) represents
the static overhead of the tool — that is, the time (in sec-
onds) it takes to produce the escape-analysis-based instru-
mented version of the original code. Column RT, (“running
time”) contains the original running times of the programs.

The dynamic overhead of the approach is described in the
remainder of the table. Columns GC4 and GC; show the
numbers of gc-events with the default and with the large
initial heap size, respectively. Similarly, RT ¢ and RT; show
the program running times with these two choices of ini-
tial heap size. Column OH represents run-time overhead
introduced by our tool when executed with the most op-
timal configuration, which corresponds to RT; in columns
(d). For bug 1 and specjbb, we ran the test case for 10
minutes and an hour, respectively, because the execution of
these two programs does not terminate.

Applying escape analysis reduces the number of call sites
that need to be tracked (the reduction varies from 3 to 124
call sites), while still maintaining reasonable instrumenta-
tion time. Using the same sampling rate, running a pro-
gram with a large initial heap size takes less time, because

this configuration reduces the number of gc-events, which in
turn reduces the numbers of thread synchronizations, disk
accesses, and object graph traversals performed by the dy-
namic analysis. For the same reasons, decreasing the sam-
pling rate reduces the run-time overhead.

On average, the tool introduced 88.5% run-time overhead
for the subject programs (without employing escape analy-
sis, the overhead was very slightly higher). Such overhead is
acceptable for debugging, but it may be too high for produc-
tion runs. One possible approach for reducing the overhead
is to selectively instrument a program. Based on the man-
ifestation of the bug, developers may have preferences and
hints as to where to focus the effort of the tool. The con-
tinuous optimization of the tool is part of our future work.
For example, the optimization may focus on executing the
object graph traversal thread and the data dumping thread
in parallel with the application threads. In addition, the
retrieval of a container object from its tag though JVMTI
also contributes to the execution overhead. Hence, another
direction for future work is to re-implement the tool within
an existing open-source JVM, such as the Jikes RMV [11],
in order to avoid the overhead caused by JVMTI.

5. RELATED WORK

There is a large body of work devoted to the problem of
memory leak detection. The discussion below is restricted
to approaches that are most closely related to our technique.

Static analysis can find memory errors such as double
frees and missing frees for programs written in non-garbage-
collected languages. For example, [2] reduces the memory
leak analysis to a reachability problem on the program’s
guarded value flow graph. Saturn [25], taking another per-
spective, states memory leak detection as a boolean satisfi-
ability problem. Dor et al. [5] propose a shape analysis to
prove the absence of memory leaks in several list manipu-
lation functions. Hackett and Rugina [6] use a shape anal-
ysis that tracks single heap cells to identify memory leaks.
Orlovich and Rugina [19] propose an approach that starts
by assuming the presence of errors, and performs a dataflow
analysis to disprove their feasibility. Clouseau [9] is a leak
detection tool that uses pointer ownership to describe vari-
ables responsible for freeing heap cells, and formulates the
analysis as an ownership constraint system. Follow-up work
[10] proposes a type system to describe the object ownership
for containers, and uses type inference to detect constraint
violations. Although both this work and our technique fo-

159

cus on containers, the target of this previous effort are C
and C++ program whereas we are interested in a garbage-
collected language. The analysis from [10] does not help
detect unnecessary references in a Java program. More gen-
erally, all static approaches are limited by the lack of gen-
eral, scalable, and precise reference/heap modeling. Despite
a large body of work on such modeling, it remains an open
problem for large real-world systems, with many challenges
due to analysis scalability, modeling of multi-threaded be-
havior, dynamic class loading, reflection, etc.

Dynamic analysis [1, 8, 7, 14, 4, 3, 12, 13, 15] has typi-
cally been the weapon of choice for detecting memory leaks
in real-world software. However, as described in Section 1
and Section 4, existing techniques have a number of deficien-
cies. The work in [4, 3, 12, 13] enables visualization of heap
objects of different types, but does not provide the ability
to directly identify the cause of the memory leak. Existing
techniques use growing types [14, 17] (i.e., types whose num-
ber of instances continues to grow), object staleness [1], or
growing containers [15] to identify suspicious data structures
that may contribute to a memory leak. However, in general,
a memory leak caused by redundant references is due to
a complex interplay of memory growing and staleness and
possibly other factors. By considering a single metric which
combines both factors, our technique could potentially im-
prove the precision of leak identification. In addition, all
existing dynamic-analysis-based leak detection approaches
except [15] start by considering the leak symptoms (e.g.,
growing types or stale objects), and then attempt to trace
back to the root cause of the leak. As discussed in the de-
scription of the JDK bugs from Section 4, the complexity of
such bottom-up tracking makes it hard to generate precise
analysis reports, and ultimately puts a significant burden on
the programmer. In contrast, our approach is designed from
a container-centric point of view — it automatically tracks
the suspicious behavior in a top-down manner, by monitor-
ing (1) the object graph reachable from a container, and (2)
the container-level operations. This higher level of abstrac-
tion, compared to traditional low-level tracking of arbitrary
objects, simplifies the difficult task of identifying the sources
of memory leaks.

6. CONCLUSIONS

This paper presents a novel technique for detecting mem-
ory leaks in Java software. Unlike existing dynamic analyses
for leak detection, the proposed approach employs a higher-
level abstraction, focusing on container objects and their op-
erations, and uses both memory contribution and staleness
contribution to decide how significant is a container’s leaking
behavior. We present an implementation of this technique
and experimental studies demonstrating that the proposed
tool can produce precise bug reports at a practical cost.
These promising initial results indicate that the technique
and any future generalizations are worth further investiga-
tion. Future work will focus on optimizations to reduce the
run-time overhead. Another possible direction may be ways
to identify data structures that act as containers (e.g., using
the approach from [16]) instead of relying on the program-
mer, and to automate the mapping of container methods to
the ADT operations. Alternative definitions for LC could
also be investigated, and more precise handling of iterators
may be desirable. More context information about contain-
ers and call sites could make the reports more useful.

160

Acknowledgments. We would like to thank the ICSE re-
viewers for their valuable comments and suggestions.

7. REFERENCES

[1] M. D. Bond and K. S. McKinley. Bell: Bit-encoding online
memory leak detection. In ASPLOS, pages 61-72, 2006.

[2] S. Cherem, L. Princehouse, and R. Rugina. Practical

memory leak detection using guarded value-flow analysis.

In PLDI, pages 480-491, 2007.

W. DePauw, D. Lorenz, J. Vlissides, and M. Wegman.

Execution patterns in object-oriented visualization. In

USENIX COOTS, pages 219-234, 1998.

W. DePauw and G. Sevitsky. Visualizing reference patterns

for solving memory leaks in Java. Concurrency: Practice

and Ezxperience, 12(14):1431-1454, 2000.

N. Dor, M. Rodeh, and S. Sagiv. Checking cleanness in

linked lists. In SAS, pages 115-134, 2000.

B. Hackett and R. Rugina. Region-based shape analysis

with tracked locations. In POPL, pages 310-323, 2005.

R. Hastings and B. Joyce. Purify: A tool for detecting

memory leaks and access errors in C and C++ programs.

In Winter 1992 USENIX Conference, pages 125-138, 1992.

M. Hauswirth and T. M. Chilimbi. Low-overhead memory

leak detection using adaptive statistical profiling. In

ASPLOS, pages 156-164, 2004.

D. L. Heine and M. S. Lam. A practical flow-sensitive and

context-sensitive C and C++ memory leak detector. In

PLDI, pages 168-181, 2003.

D. L. Heine and M. S. Lam. Static detection of leaks in

polymorphic containers. In ICSE, pages 252261, 2006.

Jikes Research Virtual Machine. jikesrvm.org.

JProbe. www.quest.com/jprobe.

JProfiler. wuw.ej-technologies.com.

M. Jump and K. S. McKinley. Cork: Dynamic memory

leak detection for garbage-collected languages. In POPL,

pages 31-38, 2007.

LeakHunter. wuw.wilytech.com/solutions/products.

N. Mitchell. The runtime structure of object ownership. In

ECOOP, pages 74-98, 2006.

N. Mitchell and G. Sevitsky. Leakbot: An automated and

lightweight tool for diagnosing memory leaks in large Java

applications. In ECOOP, pages 351-377, 2003.

E. Nicholas. weblogs.java.net/blog/

enicholas/archive/2006/04/leaking_evil.html.

M. Orlovich and R. Rugina. Memory leak analysis by

contradiction. In SAS, pages 405-424, 2006.

F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting

ECC-memory for detecting memory leaks and memory

corruption during production runs. In HPCA, pages

291-302, 2005.

R. Shaham, E. K. Kolodner, and M. Sagiv. Automatic

removal of array memory leaks in Java. In CC, pages

50-66, 2000.

SPECjbb2000 Documentation. www.spec.org.

Sun Bug Database. bugs.sun.com/bugdatabase.

R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,

P. Pominville, and V. Sundaresan. Optimizing Java

bytecode using the Soot framework: Is it feasible? In CC,

pages 18-34, 2000.

Y. Xie and A. Aiken. Context- and path-sensitive memory

leak detection. In FSE, pages 115—-125, 2005.

[3]

[4]

[5]

[6]

7]

(8]

(9

(10]
11]
[12]

[13]
(14]

[15]
(16]

(17)

(18]
(19]

20]

(21]

[22]
23]
[24]

25]

