
An Efficient Distributed Shared Memory Toolbox for MATLAB∗

Rajkiran Panuganti1 Muthu Manikandan Baskaran1 Ashok Krishnamurthy2

Jarek Nieplocha3 Atanas Rountev1 P. Sadayappan1

1The Ohio State University 2Ohio Supercomputer Center
Columbus, OH 43210, USA Columbus, OH 43212, USA

{panugant,baskaran,rountev,saday}@cse.ohio-state.edu ashok@osc.edu

3Pacific Northwest National Laboratory
Richland, WA 99352, USA
jarek.nieplocha@pnl.gov

Abstract

MATLAB, the most popular high-level language for
scientific computing, has significant shortcomings when
used for large-scale computationally intensive appli-
cations that require very high performance and/or
significant amounts of memory. Many efforts such
as ParaM, pMATLAB, Star-P, and Mathworks’ Dis-
tributed Computing Toolbox (DCT) are currently un-
derway to enable the convenient development of such
applications directly in MATLAB. In this paper we de-
scribe GAMMA, an efficient distributed shared mem-
ory programming model for MATLAB built using the
Global Arrays library suite. GAMMA defines a set of
high-level abstractions for developing parallel MATLAB
programs, and provides convenient support to build
high-performance parallel libraries for high-level MAT-
LAB models such as ParaM, Star-P and DCT. We dis-
cuss the inherent challenges for an efficient implemen-
tation of GAMMA, due to the conceptual discrepancies
between the programming models being integrated. Ex-
perimental results on a Pentium cluster demonstrate
the effectiveness of GAMMA.

1 Introduction

The power of computers has made dramatic strides
over the last two decades. However, programming of
complex parallel applications still remains a daunting
task. Today this is recognized as one of the most signif-
icant challenges in the effective use of high-performance
computing, as highlighted by the DARPA High Pro-
ductivity Computing Systems (HPCS) program [9].

Applications developed using C and Fortran can

∗1-4244-0910-1/07/$20.00 2007 IEEE

achieve high performance, but their creation remains
a difficult task. Parallel programming is even harder,
as the programmer has to explicitly manage additional
concerns (e.g., different threads of execution) and to
orchestrate the interaction between concurrent compo-
nents.

There is an increasing recognition that high-level
languages, and in particular scripting languages such
as MATLAB and Python, can provide enormous pro-
ductivity advantages. An easy to use programming
model with array-based semantics, powerful built-in
visualization facilities, and an integrated development
environment make MATLAB a highly productive envi-
ronment for the scientific programmer. Another key as-
pect for the success of MATLAB has been the availabil-
ity of a variety of domain-specific “toolboxes” (library
components) for various fields. However, MATLAB
currently does not meet the computational demands
of many compute-intensive scientific applications. Ta-
ble 1 illustrates this problem by comparing the exe-
cution times of the sequential NAS benchmarks im-
plemented using MATLAB and using traditional lan-
guages (C/Fortran).

In the world of parallel programming, alternatives
to message passing have been proposed to improve pro-
grammer productivity. One example is global shared-
address space (GAS) models, which are generally easier
to program than message-passing models. A number
of efforts have targeted the development of scalable
shared-memory models for parallel computing [26].
One of the notable successes with GAS models is the
Global Arrays (GA) suite [17] developed at Pacific
Northwest National Laboratory.

The fundamental goal of the ParaM [19] project at
the Ohio Supercomputer Center (OSC) is the devel-
opment of an environment that will enable MATLAB
users to develop large-scale, high-performance applica-

Class A Class B
Application C/Fortran MATLAB C/Fortran MATLAB

FT 13.66 88.23 192.77 Out-Of-Memory
CG 3.67 10.29 652.07 1268
IS 2.35 49.48 10.3 199.12
EP 53.66 371.64 206.7 Out-Of-Memory

Table 1. Execution time (in seconds) of sequential NAS benchmarks.

tions. In this paper we describe a component of the
ParaM effort, GAMMA, a global-shared-address space
parallel programming system for MATLAB. A discus-
sion of various efforts to address the performance lim-
itations of sequential MATLAB is presented in Sec-
tion 2. An overview of our system and the features
of the programming model are described in Section 3,
together with the challenges arising from the discrep-
ancies in the programming models being integrated.
Section 4 presents results on various benchmarks to
demonstrate that GAMMA is an effective tool for
building high-performance parallel libraries, with high
programmer productivity. Finally, Section 5 concludes
our the discussion and discusses further enhancements
that are currently being pursued.

2 Related Work

The popularity of MATLAB has motivated various
research projects to address its performance limita-
tions. These projects vary widely in their approaches
and functionalities. Broadly, these efforts can be clas-
sified into the following categories [7].

2.1 Compilation Approach

One of the key performance overheads of MATLAB
is due to the interpreted environment. Many projects
such as Otter [20], RTExpress [22], FALCON [21],
CONLAB [10], MATCH [3], Menhir [6], and Telescop-
ing Languages [5] use a compilation-based approach
to address the performance limitations of sequential
MATLAB by eliminating the overhead of interpreta-
tion. MaJIC [1] provides an interactive MATLAB-like
frontend and compiles/optimizes code employing just-
in-time compilation. However, compilation approaches
require efficient implementations, in the target lan-
guage, of the numerous and ever increasing MATLAB
functions. Furthermore, whenever newer constructs
are added in MATLAB, the compilation approaches re-
quire fundamental changes in their implementation to
support the newer features. We, in our future work on
ParaM, intend to follow a compilation based approach
building upon GAMMA to address the performance
overheads of interpreted environment. The compila-

tion approach utilizes the parallel versions of the li-
brary functions built in GAMMA.

2.2 Embarrassingly Parallel Approach

Research projects such as PLab [14] and Parmat-
lab [16] provide support for embarrassingly parallel ap-
plications in MATLAB. Each process works only on its
local data and sends the result to the parent process.
However, this approach severely limits the type of ap-
plications that can be parallelized.

2.3 Message Passing Support

Projects such as MultiMATLAB [25], MPITB [2],
MatlabMPI [13], and Mathworks’ DCT 2.0 [23] add
message passing primitives to MATLAB. With this ap-
proach, users have maximum flexibility to build their
parallel applications using a basic set of communication
primitives. MatlabMPI uses a file-based communica-
tion mechanism, while MPITB builds upon LAM/MPI
communication library. However, development using
message passing model requires significant develop-
mental effort for efficiently implementing the parallel
libraries and applications and defeats the productivity
advantages of using MATLAB.

2.4 Global Address Space Models

Projects such as DLAB [18], Star-P [8], pMAT-
LAB [24] and Mathworks’ DCT 3.0 [23] provide a
global address space programming model. Star-P’s ap-
proach uses a client-server model where a MATLAB
session acts as a front end (client) and the computa-
tion is done using a backend parallel computation en-
gine (server). All of them provide a special MATLAB
class of distributed arrays and some overloaded (paral-
lelized) functions for these distributed arrays. Fraguela
et al [11] provide a new class called Hierarchically Tiled
Arrays (HTAs) in MATLAB. The objects of this class
are divided into tiles which are distributed over a mesh
of processors. HTAs make parallel programming easy
in MATLAB by providing overloaded operators of in-
dexed assignment and computation operators.

One of the primary reasons for MATLAB’s success
are the numerous and ever increasing domain-specific

USER

MAMPIScaLAPACK

Global Arrays

MATLAB Front End

MATLAB Computation Engine

Figure 1. Architecture of GAMMA

library functions. Providing parallel implementations
for all of these functions using message passing is very
labor-intensive. pMATLAB uses MatlabMPI for the
implementation of the overloaded functions. DCT also
uses message passing infrastructure to develop parallel
libraries for distributed arrays. While a Star-P user is
restricted by the library routines that are supported,
pMATLAB and Mathworks’ DCT provide a mixed pro-
gramming model wherein a user can also program using
message passing semantics wherever library routines
are not available. To address this issue, Star-P pro-
vides a software development kit (SDK) which requires
library writers to program in one of the traditional lan-
guages (C++) using MPI.

All of these approaches impose a significant de-
velopment burden on the library writers, as they
need to overload (parallelize) thousands of existing
library functions written in MATLAB. As a result,
the real-world applicability of these approaches re-
mains severely limited. The GAMMA system, de-
scribed in the next section, could be used to develop
high-performance distributed parallel implementations
of MATLAB library functions. Such implementations
could be utilized (using the functions we have provided
to transform from each of the above projects’ data
structures to data strctures provided by GAMMA and
vice versa) by any of projects listed above, in order to
improve library writers’ productivity when developing
scalable parallel libraries.

3 Programming Model and Toolbox
Details

The GAMMA system has been built as a MAT-
LAB toolbox with parallel constructs using the Global
Arrays (GA) [17] and MVAPICH [15] libraries. The
software architecture of GAMMA is shown in Fig-
ure 1. The GA library uses Aggregate Remote Mem-
ory Copy Interface (ARMCI) [12] in its communication
substrate.

Logical viewPhysical view

(704,640)

(192, 128)
(1,1)

(1024,1024)

P3P1

P2P0

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������

(a)

��������������������

��������������������

Process 0
Compute
Process 1
Compute

Local

Distributed Updated Distributed
Matlab Array Matlab Array

Matlab Array Matlab Array
Local

Put PutGetGet

����������������������������

	�	�		�	�		�	�		�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�������
�������
�������

�
�

�
�

�
�

�
�

��������������������

��������������������

��������������������

�����������������������������������

�������������������������

��������������������

��������������������

���������
���������
�������
�������

(b)

Figure 2. (a) Global shared view of a phys-
ically distributed MATLAB array and (b)
The Get-Compute-Put computation model

3.1 Features of the GAMMA program-
ming model

The features of the GAMMA programming model
can be summarized as follows:

• Global shared view of a physically dis-
tributed Array: GAMMA provides a new dis-
tributed array datatype, for parallel programming
in MATLAB, called “Global Arrays” that presents
each user with a global shared view of the MAT-
LAB arrays that are physically distributed across
various processes. Figure 2(a) illustrates this
model for an array that is distributed across pro-
cesses P0, . . . , P3; the required data that might
span across multiple processes can be accessed by
referencing it as a single logical block.

• Get-Compute-Put computation model: The
model inherently supports a Get-Compute-Put
computation style, as illustrated in Figure 2(b).
The data for the computation is fetched from
the distributed array independently using a
GA Get routine. A logical block, A[192 :
704, 128 : 640], where A is a handle to an ar-
ray of size 1024 × 1024, can be obtained by
any process by a call to GA Get as block =

GA Get(A, [192, 128], [704, 640]). ([192, 128] rep-
resents the lower indices of the logical block and
[704, 640] represents the higher indices of the block
as shown in Figure 2(a)). The computed data is
then stored into the global array, again indepen-
dently, using a GA Put routine. The computation
model enables a GAMMA user to make full uti-
lization of the extensive set of library functions
provided by sequential MATLAB.

• Pass-By-Reference Semantics: The model
provides a pass-by-reference semantics for dis-
tributed arrays with the belief that it might re-
duce redundant memory copies of large distributed
arrays. By providing pass-by-reference feature,
GAMMA compromises on being fully compatible
with MATLAB’s value semantics based program-
ming model. However, since GAMMA is primar-
ily targeted for library builders, we believe that
pass-by-reference semantics gives better flexibility
in the model to exploit performance optimizations
wherever possible.

• Management of data locality: The model pro-
vides support to control the data distribution and
also to access the locality information and there-
fore gives explicit control to the user to exploit
data locality. This encourages library writers to
develop locality-aware code.

• Synchronization: Support for one-sided and
asynchronous access to the global data requires
user to handle synchronization mechanisms to en-
sure consistency. The user is provided with var-
ious explicit synchronization primitives to ensure
the consistency of the distributed data.

• Data parallelism: The model provides sup-
port for data parallel operations using collective
operations that operate on the distributed data
e.g., common matrix operations such as transpose ,
sum, scale , etc. These routines provide efficient
implementations of numerous MATLAB opera-
tors.

• Data replication: GAMMA also provides sup-
port to replicate near-neighbor data, i.e., data re-
siding in the boundary of the remote neighbor pro-
cess.

• Distributions: The toolbox supports both regu-
lar and irregular block distributions of distributed
arrays.

• Support for MPI: GAMMA also provides sup-
port for message passing semantics to utilize any
existing programs written in MATLAB using mes-
sage passing semantics.

• Processor groups: The toolbox provides a facil-
ity to divide the parallel computing domain into

[rank nproc] = GA Begin();
% define column distribution

dims = [N N]; distr = [N N/nproc];
A = GA Create(dims, distr);
[loA hiA] = GA Distribution(A, rank);
GA Fill(A, 1);

% perform fft on each column of the initial array
tmp = GA Get(A, loA, hiA);
tmp = fft(tmp);
GA Put(A, loA, hiA, tmp);
GA Sync();

% GA Transpose requires the resultant array to be different
thatn source

ATmp = GA Create(dims, distr);
GA Transpose(A, ATmp);
GA Sync();

% perform fft on each column of the transposed array
[loATmp hiATmp] = GA Distribution(ATmp, rank);
tmp = GA Get(ATmp, loATmp, hiATmp);
tmp = fft(tmp);
GA Put(ATmp, loATmp, hiATmp, tmp);
GA Sync();
GA Transpose(ATmp, A);
GA Sync();
GA End();

Figure 3. Parallel 2D Fast Fourier Trans-
form in GAMMA

subsets of processors that can act independently of
other subsets. This functionality allows improved
load balance.

3.2 Challenges in the implementation of
the GAMMA system

The implementation of the toolbox presents several
challenges.

First, MATLAB is an untyped language. Hence, the
toolbox dynamically tracks the type of the data on
which the operations are being performed in order to
make the appropriate calls to underlying layers. Fur-
ther, in MATLAB, a user is not exposed to any explicit
memory management routines. Therefore, the memory
in the user space (i.e., MATLAB space) is managed au-
tomatically by the toolbox.

Secondly, in MATLAB, a variable name is not bound
to a particular memory location as in languages like C
and Fortran. Due to this property, upon providing ac-
cess to the local portion of the global array, the data
that is being written to the array subsequently need
not be written in the same location. This might hap-
pen due to the copy-on-write optimization present in
MATLAB which might move the data to a different lo-
cation when a memory location is being shared by two

or more variables. This makes in-place write impossi-
ble if both Global Arrays and MATLAB use different
memory managers.

Thirdly, MATLAB is based on value based seman-
tics, while we provide reference based semantics to our
datatype, “Global Arrays”. This is because GAMMA
is intended for building parallel programming libraries
and providing value based semantics for the “dis-
tributed” arrays might result in copies of large arrays.
GAMMA provides Get and Put functions to transfer
data between the two different operating spaces and, all
the regular MATLAB functions can be used to operate
on the data that is brought into the MATLAB’s space.
This however, might lead to scalability issues in cases
where frequent updates of the distributed arrays are
required to be made (the case when different processes
interact frequently). To address this issue, we provide
a special class of objects, called, “local”. An object
of type “local” provides a handle to the local part of
the distributed global array. We provide in-place op-
erations (for e.g., inplacePlus) for MATLAB operators
(for e.g., plus), which accepts the two arrays on which
the operation is to be performed and the array where
the result is to be stored. These operations involve no
copy and provide reference based semantics which a
programmer can utilize to achieve superior scalability.
Programs written in MATLAB are built on the basic
set of operators and few in-built functions. Since, all
the operators have been overloaded for objects of the
type “local”, existing programs written in MATLAB
language require no change to execute in the system
with the “local” objects.

GAMMA also handles transfer of data between the
MATLAB workspace and the GA workspace. In addi-
tion, during the data transfer from the GA workspace
to the MATLAB workspace, the toolbox dynamically
creates a data block in the MATLAB workspace infer-
ring the type, size, and dimensions of the block from
the Get request. Furthermore, the toolbox handles
the data layout incompatibility issues between MAT-
LAB and GA and preserves the MATLAB semantics
for the user. The toolbox also supports out-of-order
(arbitrary) array indexing and thereby preserves an im-
portant feature of MATLAB. For example, consider a
vector A[1 : 100]. A user can index the vector in an
arbitrary fashion as A([54 87 15]).

3.3 Illustration of the GAMMA model

Figure 3 shows the code for parallel 2D Fast Fourier
Transform (FFT) using GAMMA. The code is a
straightforward implementation of a standard parallel
2D FFT algorithm. The call to GA Begin initializes
the underlying layers (MPI, ARMCI, and GA) and re-
turns the rank of the process and the total number of

processes. The use of distr in the call to GA Create
defines the data distribution: each block is of size
N × (N/nproc), and process Pi is assigned the block
with logical indices for the upper left corner (1, 1 + i×
N/nproc) and lower right corner (N, (i+1)×N/nproc).
For better illustration, the example assumes that the
global array A is initialized with values of 1, using
GA Fill . Each process gets the block of data to operate
on locally through a one-sided GA Get routine (the val-
ues of loA and hiA are 2-element vectors). Every pro-
cess then computes their local result using the sequen-
tial built-in fft function in MATLAB, and puts back
the computed data into the distributed array using a
one-sided GA Put call. The example also demonstrates
how the programming model allows programmer to uti-
lize the functions provided by sequential MATLAB.

4 Experimental Results

In this section, we present a detailed assessment
of GAMMA along the dimensions of programmability,
and performance scalability. Using GAMMA, we im-
plemented the NAS parallel benchmarks: FT (Fourier
Transform), CG (Conjugate Gradient), IS (Integer
Sort), and EP (Embarrassingly Parallel). These imple-
mentations were evaluated against the standard MPI-
based Fortran (or C) implementations. All the above
benchmarks, namely, NAS EP, FT, CG, and IS in-
curred no redundant copy from the Global Array space
to the MATLAB space. To illustrate the benefit of the
in-place array access, we have implemented the Jacobi
iterative solver in which accessing the local portions of
the global array using reference based semantics can
provide significant performance gains by avoiding re-
dundant data copy from the global address space to
the MATLAB space. The results are compared with
the naive version wherein data is required to be explic-
itly transferred from Global Arrays address space to
MATLAB and vice-versa.

4.1 Experimental Setup

The experiments were conducted on the Ohio Super-
computer Center’s Intel Pentium 4 cluster constructed
from commodity PC components running the Linux
operating system. The hardware and software config-
uration of the cluster is as follows: two 2.4 GHz Intel
P4 Xeon processors on each node; 4GB RAM on each
node; InfiniBand interconnection network; Red Hat
Linux with kernel 2.6.6; MATLAB Version 7.0.1.24704
(R14) Service Pack 3. All experiments were conducted
such that no two processes were on the same node in
the cluster, ensuring that the parallel processing envi-
ronment is fully distributed.

Application Serial C/Fortran C/MPI or Fortran/MPI MATLAB GAMMA
FT 665 1205 189 209
CG 506 1036 59 98
IS 422 665 128 197
EP 130 177 35 39

Table 2. Lines of source code for the NAS benchmarks.

1 2 4 8 16 32
FT(GAMMA) 0.97 1.85 3.49 7.13 16.90 41.82
FT(C/F+MPI) 0.77 1.37 2.78 5.15 8.53 32.56
CG(GAMMA) 0.96 1.80 3.47 5.44 9.01 10.54
CG(C/F+MPI) 0.90 1.62 3.22 5.48 8.54 10.19
IS(GAMMA) 0.99 1.92 3.54 6.21 10.97 17.19
IS(C/F+MPI) 0.96 1.69 3.09 5.46 9.04 19.58
EP(GAMMA) 0.98 2.04 4.65 9.43 19.17 40.27
EP(C/F+MPI) 0.92 1.91 4.08 8.14 16.26 33.12

Table 3. Speedup: NAS, Class A

4.2 Programmability

GAMMA retains the programmability features of
MATLAB which makes it an attractive system for
achieving both high productivity and high performance
for computationally intensive applications. Even
though there does not exist an ideal metric for evalu-
ating programmability of a parallel language/toolbox,
the number of source lines of code (SLOC) is typi-
cally being used as a metric to measure programma-
bility (ease of use) [4]. Table 2 compares the SLOC
required to implement the NAS parallel benchmarks
using GAMMA with those required to implement the
sequential versions in MATLAB and the parallel and
sequential versions of the benchmarks in Fortran (or
C). The measurements in Table 2 clearly show that
the GAMMA-based implementations require only a
modest increase in the code size, compared to sequen-
tial MATLAB. Furthermore, compared to the standard
MPI-based Fortran (or C) implementations of the NAS
benchmarks, the number of SLOC is reduced signifi-
cantly, and sometimes even dramatically (e.g., by a fac-
tor of 10 for the CG benchmark). The results clearly
indicate that programming in GAMMA could poten-
tially achieve substantial productivity benefits, com-
pared to a message-passing-based programming model.
These benefits can be attributed to GAMMA’s feature-
rich programming model, array-based semantics and
the utilization of MATLAB’s extensive set of sequen-
tial libraries.

4.3 Performance Analysis

GAMMA not only provides good programmability,
but also achieves scalable performance. This section
presents the execution time and speedup results of the

NAS benchmarks FT, CG, IS and EP, written using
GAMMA. We also present these results for the stan-
dard MPI-based Fortran (or C) NAS implementation
(version 3.2). The sequential MATLAB versions of
the benchmarks are executed with MATLAB 7.0.1,
with the just-in-time compilation feature enabled. To
demonstrate the benefit of in-place array access, we
present the speedup results of Jacobi iterative solver
implemented using the naive version of GAMMA (in-
volving copy) and the optimized GAMMA version pro-
viding reference-based semantics.

• NAS FT: NAS FT solves a 3D partial differen-
tial equation using FFTs. This benchmark cap-
tures the essence of many spectral codes. From Ta-
ble 3 and Table 5 that present the speedup of the
GAMMA-based implementation and that of the
standard hand-coded Fortran/MPI (or C/MPI)
implementation for Class A and Class B, and Ta-
ble 1 that presents the execution times of sequen-
tial MATLAB implementation and sequential For-
tran/C implementation for Class A and Class B,
it can be inferred that the execution times of
the GAMMA implementation become compara-
ble to that of the Fortran implementation with
increasing number of processors. Our measure-
ments also show that the speedups achieved by
GAMMA implementation are slightly better than
the speedups achieved by standard Fortran im-
plementation. This is because the communica-
tion efficiency of GAMMA is comparable to that
achieved using MPI in traditional languages. The
computation efficiency of MATLAB also increases
superlinearly as the problem size handled by each
processor decreases (with the increase in number
of processors) in NAS FT.

• NAS CG: The NAS Conjugate Gradient (CG)
benchmark is a scientific kernel that uses an in-
verse power method to find the largest eigenvalue
of a symmetric definite random sparse matrix. As
in the case of NAS FT, from Table 3, Table 5 and
Table 1, it can be observed that the execution
times of the GAMMA implementation gradually
become comparable to that of the Fortran imple-
mentation. This is possible because of the utiliza-
tion of the “processor group” feature available in
the GAMMA system. It can also be observed that

1 2 4 8 16
Naive (N=512) 0.882 2.565 4.661 8.940 10.640
No Copy (N=512) 0.965 2.843 5.023 9.634 14.212
Naive (N=1024) 0.847 2.880 4.768 9.304 11.395
No Copy (N=1024) 0.869 3.213 5.708 10.07 14.502

Table 4. Speedups using reference based
semantics to access local portions of the
global arrays for Jacobi iterative solver.

the speedups achieved by GAMMA implementa-
tions are either comparable or slightly better than
the speedups achieved by Fortran implementations
due to the reasons described earlier.

• NAS IS: The NAS IS benchmark is a parallel
integer sort kernel. It performs a sorting operation
that is important in particle method codes; the
benchmark tests both integer computation speed
and communication performance. As in the cases
of NAS FT and CG, the execution times of the
GAMMA implementation eventually get closer to
that of the C implementation. Superior speedups
can be observed even in this case.

• NAS EP: The NAS EP benchmark is an embar-
rassingly parallel kernel. It provides an estimate
of the upper achievable limits for floating point
performance - that is, performance without sig-
nificant interprocess communication. As with the
other benchmarks, it can also be observed here
that the performance gap between the two im-
plementations decrease with increasing number of
processors.

• Jacobi iterative solver: The Jacobi iterative
solver uses the Jacobi method to solve a linear
system of equations arising in the solution of a
discretized partial differential equation. All data
were distributed using a two-dimensional block
distribution. Table 4 demonstrates the benefit of
providing reference-based semantics for accessing
the local portions of the global array. The sequen-
tial execution times are 16.218 sec and 72.209 sec
for the problem sizes with N=512 and N=1024 re-
spectively. This benchmark also utilizes the in-
place semantics provided by GAMMA to achieve
superior speedups.

4.4 Overcoming MATLAB’s Memory
Limitations

The use of MATLAB for large-scale computationally
intensive applications is also limited because of mem-
ory constraints. For example, the sequential version of
MATLAB runs out of memory and is unable to exe-
cute the NAS benchmarks FT and EP for the Class B

1 2 4 8 16 32
FT(GAMMA) - - - 1 2.29 5.49
FT(C/F+MPI) - - - 1 1.98 3.96
CG(GAMMA) 0.99 2.01 8.97 19.87 39.85 68.50
CG(C/F+MPI) 0.99 4.35 8.35 22.53 37.45 68.06
IS(GAMMA) 0.99 1.94 3.52 6.28 10.96 17.38
IS(C/F+MPI) 0.94 1.71 3.32 5.95 9.72 16.35
EP(GAMMA) - - 1 1.90 4.02 9.30
EP(C/F+MPI) - - 1 1.99 3.99 8.02

Table 5. Speedup: NAS, Class B

problem size. One of the direct advantages of paral-
lel computing is the ability to run problems of larger
scale due to the availability of memory from multiple
nodes. By enabling parallel computing, GAMMA al-
lows MATLAB users to run large-scale problems with
data distributed across multiple processors. This is il-
lustrated with the results for FT and EP for Class B
problem size. With GAMMA, NAS EP Class B can be
run on four or more processors and NAS FT Class B
can be run on eight or more processors. The speedup is
calculated with respect to the execution time using the
minimum number of processors that could successfully
run the benchmark in GAMMA. Table 5 shows the
speedup for GAMMA and Fortran implementations of
NAS EP and FT Class B, with the execution time on
four processors as the reference for EP and that on
eight processors as the reference for FT.

These experimental results clearly indicate that
(1) the GAMMA implementations of the benchmarks
achieve good scalability, (2) the performance gap be-
tween the Fortran (or C) implementation of the NAS
benchmarks and the corresponding GAMMA imple-
mentation decreases as more processors are used, (3)
the GAMMA system provides significant productivity
benefits for library writers to build their custom paral-
lel libraries using distributed arrays, and (4) MATLAB
programmers can run computations of larger problem
sizes that are impossible to be run using the standard
sequential MATLAB.

5 Conclusions and Future Work

This paper has described GAMMA, a parallel MAT-
LAB environment providing a global shared view of ar-
rays that are physically distributed on clusters, and a
get-compute-put model of parallel computation. Sev-
eral examples were provided, illustrating the ease of
programming coupled with high efficiency. Use of the
get-compute-put model also facilitates effective reuse
of existing sequential MATLAB libraries as part of a
parallel application. An additional benefit of using the
GAMMA system is the ability to run larger problems
than sequential MATLAB.

The GAMMA toolbox is currently being used by

the staff and users at the Ohio Supercomputer Center
and will soon be made available as a public release.
GAMMA is part of a larger effort to develop a high-
productivity environment called ParaM [19] - a parallel
MATLAB project that aims at combining compilation
technology along with parallelization, to enable very
high performance. Efforts are currently underway to
develop a number of parallel MATLAB applications
and numerical libraries using GAMMA.

Acknowledgements

This work was supported in part by funding to the Ohio
Supercomputer Center Springfield Project through the
Department of Energy ASC program

References

[1] G. Almasi and D. Padua. Majic: compiling matlab for
speed and responsiveness. In PLDI ’02: Proceedings of
the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 294–303,
New York, NY, USA, 2002. ACM Press.

[2] J. F. Baldomero. MPI/PVM toolbox for Matlab.
http://atc.ugr.es/javier-bin/pvmtb eng.

[3] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck,
C. Bachmann, M. Haldar, P. Joisha, A. Jones, A. Kan-
hare, A. Nayak, S. Periyacheri, M. Walkden, and
D. Zaretsky. A MATLAB compiler for distributed,
heterogeneous, reconfigurable computing systems. In
Symposium on Field-Programmable Custom Comput-
ing Machines, pages 39–49, 2000.

[4] L. Briand, T. Langley, and I. Wieczorek. A replicated
assessment and comparison of common software cost
modeling techniques. In International Conference on
Software Engineering, pages 377–386, 2000.

[5] A. Chauhan. Telescoping MATLAB for DSP Applica-
tions. PhD thesis, Rice University.

[6] S. Chauveau and F. Bodin. Menhir: An environment
for high performance Matlab. In International Work-
shop on Languages, Compilers, and Run-Time Sys-
tems for Scalable Computers, LNCS 1511, pages 27–
40, 1998.

[7] R. Choy and A. Edelman. Parallel MATLAB: Doing
it right. Proceedings of the IEEE, 93(2):331–341, Feb.
2005.

[8] R. Choy, A. Edelman, J. R. Gilbert, V. Shah, and
D. Cheng. Star-P: High productivity parallel com-
puting. In Workshop on High Performance Embedded
Computing, 2004.

[9] DARPA. High productivity computing systems
(HPCS) program. http://www.highproductivity.org.

[10] P. Drakenberg, P. Jacobsen, and B. K̊aström. A CON-
LAB compiler for a distributed memory multicom-
puter. In SIAM Conference on Parallel Processing for
Scientific Computing, pages 814–821, 1993.

[11] B. B. Fraguela, J. Guo, G. Bikshandi, M. J. Garzaran,
G. Almasi, J. Moreira, and D. Padua. The hierarchi-
cally tiled arrays programming approach. In LCR ’04:

Proceedings of the 7th workshop on Workshop on lan-
guages, compilers, and run-time support for scalable
systems, pages 1–12, New York, NY, USA, 2004. ACM
Press.

[12] J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy library for distributed ar-
ray libraries and compiler run-time systems. In
IPPS/SPDP Workshops, LNCS 1586, pages 533–546,
1999.

[13] J. Kepner and S. Ahalt. MatlabMPI. Journal of Par-
allel and Distributed Computing, 64(8):997–1005, Aug.
2004.

[14] U. Kjems. PLab: reference page, 2000.
http://bond.imm.dtu.dk/plab/.

[15] J. Liu, J. Wu, S. Kini, D. Buntinas, W. Yu, B. Chan-
drasekaran, R. Noronha, P. Wyckoff, and D. Panda.
MPI over InfiniBand: Early experiences. Technical
Report OSU-CISRC-10/02-TR25, Ohio State Univer-
sity, Oct. 2002.

[16] Lucio Andrade. Parmatlab, 2001.
[17] J. Nieplocha, R. J. Harrison, and R. J. Littlefield.

Global arrays: A nonuniform memory access program-
ming model for high-performance computers. The
Journal of Supercomputing, 10(2):169–189, June 1996.

[18] B. R. Norris. An environment for interactive parallel
numerical computing. Technical Report 2123, Urbana,
Illinois, 1999.

[19] Ohio Supercomputer Center. ParaM: Compilation of
MATLAB for parallel execution.
http://www.osc.edu/springfield/research/matlab.shtml.

[20] M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao.
Preliminary results from a parallel MATLAB com-
piler. In International Parallel Processing Symposium,
pages 81–87, 1998.

[21] L. D. Rose, K. Gallivan, E. Gallopoulos, B. A. Marsolf,
and D. A. Padua. FALCON: A MATLAB interactive
restructuring compiler. In Languages and Compilers
for Parallel Computing, pages 269–288, 1995.

[22] RTExpress. Integrated Sensors Inc.
http://www.rtexpress.com.

[23] The Mathworks. Distributed Computing Toolbox and
MATLAB Distributed Computing Engine 2.0.1.
http://www.mathworks.com/products/distribtb/.

[24] N. Travinin, R. Bond, J. Kepner, and H. Kim. pMat-
lab: High Productivity, High Performance Scientific
Computing. In 2005 SIAM Conference on Computa-
tional Science and Engineering, 2005.

[25] A. E. Trefethen, V. S. Menon, C.-C. Chang, G. Cza-
jkowski, C. Myers, and L. N. Trefethen. MultiMAT-
LAB: MATLAB on multiple processors. Technical Re-
port TR96-239, Cornell Theory Center, Cornell Uni-
versity, 1996.

[26] UC Berkeley/LBNL. Berkeley UPC - Unified Parallel
C. http://upc.nersc.gov.

