
Differential Privacy for Analysis of Software Traces

Dissertation

Presented in Partial Fulfllment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Yu Hao

Graduate Program in Computer Science and Engineering

The Ohio State University

2023

Dissertation Committee:

Atanas Rountev, Advisor

Raef Bassily

Michael D. Bond

© Copyright by

Yu Hao

2023

Abstract

Remote software profling is employed by software developers to learn how their soft-

ware is used by client users. However, this data collection process does not provide guaran-

tees on the privacy of users’ data. Differential privacy (DP) is a promising mathematical

framework that provides rigorously defned data privacy for users. Some techniques have

been developed to incorporate DP as part of remote software profling. This dissertation is

the frst to study remote software execution trace profling under differential privacy, where

a trace is a sequence of run-time events. Prior related work has not considered DP software

trace profling, but rather the simpler problem of DP profling for individual events.

The frst contribution of this work focuses on the coverage of software traces, where each

user’s data is the set of traces she covers at run time. The goal of the software developers is to

estimate how many users cover a given trace, while providing differential privacy guarantees

for the coverage data shared by each individual software user. Such DP analysis requires that

the domain of possible traces be defned ahead of time. Randomization over such domains

is challenging due to their large (or even infnite) size, which makes it impossible to use

prior randomization techniques. To solve this problem, we propose to use count sketch, a

fxed-size hashing data structure for summarizing frequent items. Our techniques develop a

randomization approach for count sketch that achieves the desired DP protections. We also

propose an effcient algorithm to identify high-frequency (“hot”) traces.

ii

The second contribution generalizes the trace coverage analysis to trace frequency

analysis, where each user reports not only the set of traces she covers, but also their

frequencies, i.e., how many times a trace is covered by her execution of the software.

Correspondingly, the developers want to learn the trace frequencies across all users. Our

approach to this problem still employs count sketch due to the exponentially large domain.

Additionally, to achieve the DP guarantee, the randomization is done by adding random

values drawn from the Laplace distribution. The parameters of this distribution are closely

related to the desired privacy protections, and we develop several techniques for selecting

these parameters, for two distinct protection scenarios: hiding the presence of certain traces,

and hiding their “hotness”.

The third contribution of this work tackles two major obstacles for practical deployment

of the scheme proposed by the second contribution. First, the size of the count sketch has

signifcant effect on the DP protections that are achieved by the approach. We conduct

characterization on the effect of number of rows used in the count sketch. Based on this

study, we propose to amend the data collection scheme with pre-deployment confguration

of sketch rows. As a result, we show that high accuracy of the desired frequency estimates

can be achieved while preserving strong privacy guarantees. Second, we study potential

under-randomization, which weakens the DP promise. We propose to mitigate this issue by

adjusting the amount of noise added to users’ raw data between data collection rounds.

Two exemplars of software execution traces are used to demonstrate the proposed

approaches. First, we use a call chain analysis in which traces are described through a

regular language. Second, we study an enter/exit trace analysis in which traces are described

by a balanced-parentheses context-free language. Our experimental studies of call chain

iii

analysis and enter/exit trace analysis indicates that the DP frequency estimates for both trace

coverage and trace frequency achieve high accuracy and high privacy.

The growing adoption of differential privacy for practical use, together with its rigorous

foundations, provide strong motivation to study DP software analyses. The work described

in this dissertation presents promising fndings that contribute to broader efforts to integrate

privacy-preserving techniques in the analysis of deployed software, in response to growing

needs for better privacy of data collection.

iv

To my family

v

Acknowledgments

I would like to thank especially my advisor, Atanas Rountev, for his continuous support

and patient guidance during the Ph.D. program. Without him, this dissertation would not

have been possible. I also would like to thank Raef Bassily, Mike Bond, Zhiqiang Lin,

and Radu Teodorescu for serving on my defense and/or candidacy committees. I thank

Mike Bond, Feng Qin, and Yinqian Zhang for the interesting paper-reading courses. My

collaborators in the PRESTO group, Hailong Zhang and Sufan Latif, have always been

helpful and supportive. I had two great mentors, Jan Voung and Wontae Choi, during

my internship at Google. Lastly, I want to thank my family, friends, and others for being

supportive and helping me navigate through diffculties.

The material presented in this dissertation is based upon work supported by the National

Science Foundation under Grant CCF-1907715. Any opinions, fndings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily

refect the views of the National Science Foundation.

vi

Vita

December 2021 . M.S., Computer Science and Engineer-
ing, The Ohio State University, Columbus,
Ohio, US.

June 2018 . B.S., Computer Science, Beijing Institute
of Technology, Beijing, China.

Publications

Research Publications

Yu Hao∗ , Sufan Latif∗ , Hailong Zhang, Raef Bassily, and Atanas Rountev. Differential
Privacy for Coverage Analysis of Software Traces (*co-leads with equal contributions). In
European Conference on Object-Oriented Programming, July 2021.

Hailong Zhang, Yu Hao, Sufan Latif, Raef Bassily, Atanas Rountev. Differentially-Private
Software Frequency Profling Under Linear Constraints. In Object-Oriented Programming,
Systems, Languages and Applications, November 2020.

Sufan Latif, Yu Hao, Hailong Zhang, Raef Bassily, and Atanas Rountev. Introducing
Differential Privacy Mechanisms for Mobile App Analytics of Dynamic Content. In IEEE
International Conference on Software Maintenance and Evolution, September 2020.

Hailong Zhang, Yu Hao, Sufan Latif, Raef Bassily, and Atanas Rountev. A Study of Event
Frequency Profling with Differential Privacy. In ACM SIGPLAN International Conference
on Compiler Construction, February 2020.

Fields of Study

vii

Major Field: Computer Science and Engineering

Studies in:

Programming Language and Software Engineering
Privacy-preserving Data Analysis
Hardware Security

Prof. Atanas Rountev
Prof. R. Bassily
Prof. R. Teodorescu

viii

Table of Contents

Page

Abstract . ii

Dedication . v

Acknowledgments . vi

Vita . vii

List of Tables . xii

List of Figures . xiii

1. Introduction . 1

1.1 Overview and Outline . 3
1.2 Contributions and Impact . 5

2. Background . 6

2.1 Differential Privacy . 6
2.1.1 Randomized Response . 7
2.1.2 The Laplace Mechanism . 9

2.2 Count Sketch . 10

3. Local Differential Privacy for Coverage Analysis of Software Traces 11

3.1 Background and Problem Statement 11
3.1.1 Software Traces . 11
3.1.2 Trace Coverage Analysis for Deployed Software 14
3.1.3 Assumptions . 15

3.2 Randomized Count Sketch for Software Traces 16

ix

3.2.1 Count Sketch . 17
3.2.2 Sketch Randomization . 20
3.2.3 Effcient Randomization . 21
3.2.4 Server-Side Processing . 22
3.2.5 Selecting Sketch Size . 22

3.3 Identifcation of Hot Traces . 25
3.4 Evaluation . 28

3.4.1 Accuracy for All Covered Traces 31
3.4.2 Precision and Recall for Hot Traces 32
3.4.3 Accuracy of Estimates for Reported Hot Traces 35
3.4.4 Privacy Loss Parameter . 36
3.4.5 Summary of Results . 36

3.5 Conclusions . 37

4. Local Differential Privacy for Frequency Analysis of Software Traces 38

4.1 Problem Statement . 38
4.1.1 Frequency Analysis for Software Traces 38
4.1.2 The Differential Privacy Guarantee 39

4.2 Proposed Approach for Frequency Analysis 41
4.2.1 Randomized Count Sketch with Laplace Noise 41
4.2.2 Data Collection . 44
4.2.3 Hiding Trace Information . 46
4.2.4 Selecting Sketch Size . 47

4.3 Evaluation . 48
4.3.1 Hiding The Presence of Traces 49
4.3.2 Hiding The Hotness of Traces 52
4.3.3 Identifying Hot Traces . 56
4.3.4 Local Cost . 58

4.4 Summary . 61

5. Deploying LDP Frequency Analysis of Software Traces 62

5.1 Reducing The Privacy Budget . 64
5.1.1 Characterization Study of the Number of Sketch Rows 64
5.1.2 Confguring the Number of Sketch Rows 65
5.1.3 Evaluation . 69

5.2 Potential Under-Randomization . 71
5.2.1 Mitigating Under-Randomization 73
5.2.2 Evaluation . 75

5.3 Summary . 84

x

6. Related Work . 85

7. Conclusions . 88

Bibliography . 89

xi

List of Tables

Table Page

3.1 Experimental subjects. 30

4.1 Ratio of the approximate value of τ from test users to the ground truth with
varying percentiles for hiding trace presence. The ratios are average values
of 30 runs. 51

4.2 Ratio of the approximate value of τ from test users to the ground truth with
varying percentiles for hiding the hotness. The ratios are average values of
30 runs. 55

4.3 Cost of building local randomized sketches, averaged over 900 users. 59

5.1 The count sketch size (average of 5 runs) decided by the in-house character-
ization stage of the amended approach, for frequency analysis using ε = 2
and 50% protection of presence. 70

5.2 Percentage of users with under-randomization for call chain analysis and
enter/exit trace analysis with protecting 50% presence and hotness, ε = 2.0.
Averaged over 5 runs. 74

xii

List of Figures

Figure Page

3.1 Count sketch illustration, with m = 8 and s = 3 18

3.2 Error of estimates for all covered traces. 32

3.3 Recall and precision for hot traces. 33

3.4 Recall and precision for hot traces: strict vs relaxed hotness criterion. . . . 34

3.5 Error of estimates for reported hot traces. 35

3.6 Error of estimates for all covered traces for three values of ε 37

4.1 Data collection scheme for frequency analysis. 45

4.2 Normalized error (NE) for frequency estimates for call chains with varying
privacy budget ε and percentage of hidden (presence) traces x. 53

4.3 Normalized error (NE) for frequency estimates for enter/exit traces with
varying privacy budget ε and percentage of hidden (presence) traces x. . . . 54

4.4 Normalized error (NE) for frequency estimates for call chains with varying
privacy budget ε and percentage of hidden (hotness) traces x. 56

4.5 Normalized error (NE) for frequency estimates for enter/exit traces with
varying privacy budget ε and percentage of hidden (hotness) traces x. 57

4.6 Recall and precision for identifying hot traces averaged over 9 combinations
of varying privacy budget ε (0.5,1.0,2.0) and percentage of hidden traces x
(25,50,75). 60

xiii

5.1 The normalized error of the estimates of all call chains with variant number
of sketch rows in frequency analysis. 66

5.2 The normalized error of the estimates of all enter/exit traces with variant
number of sketch rows in frequency analysis. 67

5.3 Data collection scheme with confguration of number of sketch rows for
frequency analysis. 68

5.4 Normalized error (average of 5 runs) of estimates for test users versus real
users in the frequency analysis. 71

5.5 Data collection scheme with incremental update of τ for frequency analysis. 75

5.6 Under randomization (UR) rate (average of 5 runs) by batch for hiding the
presence of 50% call chains, ε = 2.0. 76

5.7 Under randomization (UR) rate (average of 5 runs) by batch for hiding the
hotness of 50% call chains, ε = 2.0. 77

5.8 Under randomization (UR) rate (average of 5 runs) by batch for hiding the
presence of 50% enter/exit traces, ε = 2.0. 78

5.9 Under randomization (UR) rate (average of 5 runs) by batch for hiding the
hotness of 50% enter/exit traces, ε = 2.0. 79

5.10 Normalized error (average of 5 runs) by batch for hiding the presence of
50% call chains, ε = 2.0. 80

5.11 Normalized error (average of 5 runs) by batch for hiding the hotness of 50%
call chains, ε = 2.0. 81

5.12 Normalized error (average of 5 runs) by batch for hiding the presence of
50% enter/exit traces, ε = 2.0. 82

5.13 Normalized error (average of 5 runs) by batch for hiding the hotness of 50%
enter/exit traces, ε = 2.0. 83

xiv

Chapter 1: Introduction

This dissertation proposes privacy-preserving mechanisms for remote software trace

profling. More specifcally, the proposed mechanisms allow software developers to collect

software execution traces from the population of software users in order to gain knowledge

of how their software is used in the feld, while providing privacy guarantees to participating

users. A trace is a sequence of run-time events generated by the deployed software when

a user interacts with it. The goal of the mechanisms is to achieve a balance between data

utility for software developer and privacy for participating software users.

Remote software profling has been both studied in academia and deployed in practice

extensively. It collects information about executions of software deployed on client users to

provide valuable feedback to software developers, facilitating and benefting the process

of debugging [12, 30, 31, 33, 41], performance optimization [3, 5, 51], and testing [10, 45].

While collecting such data from users, it is important to not potentially jeopardise their

privacy, either intentionally or accidentally. During the past decade, we see stronger demands

and efforts for the protection of data privacy. The importance of reducing the amount of

user information collected by business entities has increased. Both societal and legislative

pressures have highlighted the need for such reduction. However, for software-generated

event information—for example, collected with the help of popular analysis infrastructures

for mobile/web analytics (e.g., provided by Google and Facebook)—typically there are no

1

“built-in” privacy protection mechanisms. The infrastructures themselves collect a wealth of

information, including user IP addresses and GUI events. App-specifc data collection can

provide even more fne-grained knowledge about user’s behavior and interaction with the

software. For example, trace information can provide details about what paths through the

code a user has taken, and what functionality (possibly sensitive) she has executed. This

data could potentially be used to infer user-specifc habits, interests, and characteristics.

From the point of view of software users, the release of data collected from software

executions is often undeclared or obscured. Even if the user is aware of the data collection,

they are unlikely to have true appreciation of its implications. What is particularly troubling

is that the collected data could be linked with other sources of information about this user

(and such linking cannot be prevented even with anonymization [36, 37]) and could be used

as part of future larger-scale data mining and machine learning attempts to infer user-specifc

information. At data collection time, it is impossible to predict what extra data sources will

be linked and what future inferences will be possible using the collected data.

Privacy-preserving data analysis aims to develop systematic mechanisms for addressing

this problem. Such analysis benefts two categories of stakeholders. First, the privacy of

individual users is protected in a well-defned manner. Further, entities performing data

collection (e.g., Google and app developers using Google’s analytics infrastructure) beneft

as well: they are responsive to privacy expectations and do not have access to raw data

that can be compromised by unexpected data leaks or unethical business practices. Our

work focuses on one particular privacy-preserving mechanism: local differential privacy

(LDP). This model provides stronger privacy guarantee than its counterpart (the so-called

centralized DP) in that the latter requires a trusted “aggregator”. On the other hand, LDP

does not assume the presence of a trusted aggregator: in essence, software users do not

2

have to trust software developers or analytics infrastructure providers such as Google and

Facebook. In essence, an LDP software analysis adds random noise to the local data of a

software user, and then reports the randomized data to the remote software analytics server.

1.1 Overview and Outline

Two different properties—coverage and frequency—with respect to the profling of soft-

ware traces are extensively studied in this dissertation. We propose solutions to integrating

differential privacy to the data collection process, and design experiments to evaluate the

prposed solutions. The rest of the dissertation is structured as follows.

Background on Differential Privacy and Count Sketch. Chapter 2 lays out some back-

ground on the theory of differential privacy. We use an example in a simplifed setting to

illustrate the promise of differential privacy, and describe two classic DP mechanisms, which

are used later in our proposed software analyses. Count sketch, a hash-based data-structure,

is also briefy described.

Software Trace Coverage Analysis. Chapter 3 presents a novel differentially private

mechanism for software trace coverage analysis. Due to the large domain of software traces,

naive techniques that performs randomization directly on the original data are not applicable

in this setting. We employ a hash-based data structure, count sketch, that is used in data

science to estimate the frequency of popular data items in a large population. Using the count

sketch as a frequency oracle, we developed an algorithm to allow the software analytics

server to effciently identify “hot” traces, i.e., traces whose frequencies are above some

pre-defned threshold. We describe two popular exemplars of software traces—call chains

and enter/exit traces—and evaluate the approach on them. Our experimental evaluation

indicates that the proposed mechanism preserves the privacy of participating users while

3

allowing developers to learn accurate coverage information about the executed traces in

their software. This work appeared in the 35th European Conference on Object-Oriented

Programming[27].

Software Trace Frequency Analysis. Chapter 4 considers the frequency analysis of

software traces, a generalization of the coverage analysis. Instead of learning how many

users cover a given trace, in this scenario, developers aim to learn how many times a

trace is covered by the entire population of users. On top of count sketch, the Laplace

Mechanism is employed to achieve strong DP guarantee. We demonstrate that a combination

of these two techniques indeed achieves the desired LDP theoretical guarantees. Further, by

parameterizing the randomization, our approach provides the developers with the fexibility

to specify which traces need to be protected and whether their presence or hotness are

intended to be hidden. Experiments on the two exemplar trace trace analyses outlined above

demonstrate that our approach is effcient and highly accurate.

Deploying LDP Frequency Analysis. Chapter 5 studies two major obstacles for our

solution to the frequency analysis that pose challenges for practical deployment. Both

problems are related to the balance between accuracy and privacy. First, in the approach

from the previous chapter, the number of rows used in count sketch is large, which benefts

accuracy but reduces the privacy guarantee. We conduct a characterization study of this

effect and then, based on the insights from the study, propose to amend the data collection

scheme with pre-deployment confguration of sketch rows. The second problem is the

potential under-randomization, which happens when insuffcient Laplacian noise is added

for some users’ frequency data. We propose to mitigate this issue by adjusting the amount

of noise added to users’ raw data between data collection rounds. Our results show that with

4

the help of these two techniques, high accuracy of the desired frequency estimates can be

achieved while preserving strong privacy guarantees.

1.2 Contributions and Impact

Our work studies how to apply differential privacy to software trace profling, an area

that has not been studied in prior work. While a variety of techniques have been proposed

for effcient remote software profling, protecting user’s privacy during the profling process

has not been paid enough attention by the research community. Some recent work has

studied other profling problems such as method frequency profling and control-fow graph

node coverage analysis in the context of DP. This dissertation is the frst work that applies

DP to the profling of software execution traces. Novel approaches are designed to resolve

the challenges posed by software traces, for both coverage analysis and frequency analysis.

Experimental results demonstrate the accuracy, privacy, and effciency of these approaches.

In summary, our work advances the state of the art by expanding the current spectrum of

differentially-private remote software profling with effective novel techniques for software

trace analysis.

5

Chapter 2: Background

2.1 Differential Privacy

Differential privacy is applicable to data analyses where data is being collected from

many participants, and some processing of this data produces results that are then made

available to untrusted parties. Such untrusted parties could be, for example, government

agencies and business entities. Two main models of differential privacy have been considered

[16]. In the centralized model, a trusted “data curator/aggregator” collects the raw data from

participants, performs the data analysis, and releases the results to untrusted entities. As part

of the data analysis, some form of randomization is applied to ensure the differential privacy

guarantee (this guarantee will be described shortly). In the local model, the randomization is

performed by each participant, and the resulting modifed data is then released to untrusted

entities, which perform data analysis on this data. Again, the randomization ensures the

differential privacy guarantee. Our work focuses on the second scenario, which is well

suited for analysis of deployed software. In the specifc problems we consider, the raw data

for software user ui is the set (Chapter 3) or multiset (Chapter 4) Ti of locally-covered traces.

The user applies a local randomizer R to this data and then reports R(Ti). We assume a

typical setting where the reported data is collected by an untrusted analysis server. This

6

server analyzes the data from all users and computes an estimate f̂ (t) of the true frequency

f (t) for a software trace t.

2.1.1 Randomized Response

To illustrate this key indistinguishability property promised by differential privacy, we

present a classic simplifed example. For illustration, suppose that the raw data for user ui

is a single trace ti ∈ T , and the goal of the untrusted analysis server is to learn an estimate

of the global histogram—that is, an estimate of the true frequencies f (t) = |{i : ti = t}| for

all t ∈ T . A well-know randomization technique is derived from randomized response, an

approach used in social sciences to handle evasive answers to sensitive questions [57]. The

randomizer R : T →P(T) takes as input a single trace t and produces a set of traces, based

ε

on the following rules: (1) the input t is included in the output with some probability p,

and (2) for every other t ′ ∈ T , t ′ is included in the output with probability 1 − p. Thus, the

ε

real trace could be missing from the output, and any other trace could be part of the output.

Note that this approach is applicable only when T is fnite and, practically, the size of T is

relatively small.

2 /(1 + e 2), this approach provably achieves ε-indistinguishability:By selecting p = e

for any set Z ⊆ T and any two traces t ′ ∈ T and t ′′ ∈ T , the probabilities P[R(t ′) = Z] and

P[R(t ′′) = Z] can differ by at most a factor of eε . In other words, observing Z means that (1)

εε

the raw data that produced Z could have been any trace from T , and (2) no trace from T is

much more likely to have been the input, compared to the remaining elements of T .

In this simplifed problem, each user ui reports R(ti) to the analysis server; here 1 ≤ i ≤ n.

The server produces estimates f̂ (t) by computing h(t) = |{i : t ∈ R(ti)}| and then calibrating

2)h(t) − n)/(e 2 − 1).it in order to create an unbiased f (t) estimate: f̂ (t) = ((1 + e

7

Differential privacy guarantee The above local differential privacy mechanism ensures

the following differential privacy property: for every user ui, an external observer of R(ti)

cannot have high confdence that the hidden raw data is ti. In other words, whether the data

of user ui is ti cannot be ascertained with high probability based only on the observation of

R(ti).

More precisely, let P[R(X) = Z] be the probability that given input X , the randomizer

produces output Z. For any Z and any two different X ∈ T and Y ∈ T , the ratio of

P[R(X) = Z] and P[R(Y) = Z] should be bounded by eε . Here X and Y are considered to

be “neighbors” in the space of inputs to the randomization algorithm. Because the two

probabilities are close to each other, when someone observes any output Z, she cannot have

much higher confdence in the statement “the raw data is X”, compared to the confdence

she can have in the statement “the raw data is not X”. Here ε is the privacy loss parameter,

which is used to tune accuracy/privacy trade-offs. A typical value used in related work

is ln(9) [18, 55, 61]; for example, this value is used in the “basic one-time” version of a

popular randomization technique [18]. Larger values of ε improve the accuracy of analysis

results, but weaken the privacy guarantee.

A key assumption is that the adversarial observer of R(ti) knows fully all details of how

randomizer R works, for example, because this observer designed the randomizer in the

frst place, or because she reverse-engineered it from the program code. As part of this

assumption, the observer also knows the value ε which was embedded in the randomizer

design. Even under such strong assumptions, the differential privacy guarantee makes it

impossible to distinguish, in a probabilistic sense, neighbor inputs to the randomizer after

the randomizer output is publicly released. Such principled and quantifable protection is

one of the reasons differential privacy has been employed by companies such as Google

8

tt ii

tt ii

tt ii tt ii

tt ii tt jj tt ii tt jj

tt ii tt jj tt ii tt jj

TT tt ii TT

[18], Microsoft [35], Apple [4], and Uber [54], as well as by the U.S. Census Bureau [14].

More widespread use of such protection has become possible via recent open-source tools

for differentially-private analysis [42].

2.1.2 The Laplace Mechanism

Another way to achieve ε-Differential Privacy is by adding Laplacian noise, known as

the Laplace Mechanism. Here we give a brief discussion on the algorithm. More details can

be found in Section 3 of the classic description by Dwork and Roth [16].

Consider the same scenario as illustrated above where each user ui contributes a single

trace ti ∈ T . The local raw data by the user is represented as an one-hot bit vector t i of length

|T |. Each trace in T is uniquely mapped to a bit in t i. Only the bit mapped to trace ti is set

to 1, and all other bits are 0. The local randomizer R perturbs the raw data by adding random

variables drawn from the Laplace Distribution. Formally, the output of the local randomizer

is R(t i) = t i +(Y1, ...,Y|T |) where Yi are independent and identically distributed random

variables drawn from Lap(2/ε). Here Lap(2/ε) is the Laplace Distribution centered at 0

with scale 2/ε .

This approach achieves the same ε-indistinguishability as in the randomized response

mechanism described earier. For any output Z ∈ R|T | of the randomizer and any pair of

one-hot bit vectors t i and t j, the ratio of the probabilities P[R(t i) = Z] and P[R(t j) = Z]

is bounded by eε . Actually, the scale of the Laplace Distribution is set as 2/ε , because

max∥t i − t j∥1 = 2, i.e. the maximum ℓ1 distance between t i and t j is 2.

Only the randomized vectors are shared with the analytics server. To get the histogram

of frequencies for all traces in T , the server computes the sum of the randomized vectors, i.e.

T = ∑i∈{1,...,n} R(t i). Each position in T is the estimate of frequency for the trace mapped

9

to that position. Note that the mappings between positions in the vector and traces are the

same at each user’s side and the server side.

2.2 Count Sketch

Count sketch [11] is a hash-based data structure originally designed to fnd frequent

items in data streams. Our approaches in both Chapter 3 and Chapter 4 employ count sketch,

combined with the differential privacy mechanisms discussed earlier.

Counts sketch is based on s pairs of independent hash functions (hk,gk), for 1 ≤ k ≤

s, such that hk : T → {1, . . . ,m} and gk : T → {+1,−1}. The data in count sketch is

represented as a matrix of counters where the number of rows is s and the number of

columns is m. Assume each user i holds a set of data items Ti. In our techniques, Ti is used

to create a local count sketch Si. This sketch is then randomized in order to achieve the

desired differential privacy properties. The randomized local sketch is then shared with the

analysis server.

Each user initializes her local count sketch Si with all zeros. Then the data items in Ti

are encoded into the local sketch using the hash functions. For every data item t ∈ Ti, the

value of gk(t) is added to Si[k,hk(t)], for every 1 ≤ k ≤ s. In essence, for every row k in the

matrix, we use hash function hk to hash t into a value from {1, . . . ,m}, and then update a

counter for the corresponding column with +1 or −1 depending on hash function gk. After

receiving the local sketches Si from all the users, the server constructs a global sketch Sg by

element-wise addition of Si. Finally, for any t ∈ T , a frequency estimate can be obtained by

reporting the median value of Sg[k,hk(t)] × gk(t) over all 1 ≤ k ≤ s.

10

Chapter 3: Local Differential Privacy for Coverage Analysis of

Software Traces

This chapter proposes a novel approach for profling software trace coverage informa-

tion in a differentially private manner. In the setting of coverage analysis, the goal is to,

for each software trace in a domain of interest, get the number of users whose execution

covers the trace. Due to the extremely large domain of all possible traces, applying dif-

ferential privacy mechanism directly on the data items is ineffcient or even impossible if

the domain is unbounded. Our approach employs count sketch to represent the data and

proposes an effcient algorithm for the randomization that achieves differential privacy. We

describe two exemplars of software traces, which we use to evaluate our approach. The

experiments demonstrate that both user privacy and data utility can be achieved. The work

presented in this chapter appeared at the 35th European Conference on Object-Oriented

Programming [27].

3.1 Background and Problem Statement

3.1.1 Software Traces

We consider software traces, collected over a set of software users ui for i ∈ [1,n]. Each

user ui executes her own copy of the software. During execution, run-time events are

observed and recorded. Let E be the fnite set possible run-time events. This set is defned

11

before software deployment, as part of the design of the trace analysis. For convenience

of defnitions, we assume that E contains an artifcial “start” event s denoting the start of a

trace. A trace t is a string t ∈ E+, starting with s. We will use the notation t = ⟨s,e1, . . . ,ek⟩

to denote a trace t of length k. (Note that we exclude s when defning trace length.)

Let T be a domain describing conservatively (i.e., over-approximating) the set of all

possible traces that could be observed at run time. We expect this domain to be statically

described as part of the design of the trace analysis. In the simplest case, T = E+ . However,

the traces typically have structure that is constrained by the static properties of the software.

In particular, one important special case we investigate is when T is defned inductively

through a family of “extension” functions extk: E k ×E →P(E k+1). Here P(X) denotes

the power set of X and k ranges over the natural numbers. For any t ∈ T of length k, extk(t)

is the set of all traces t ′ ∈ T of length k + 1 such that t is a prefx of t ′ . That is, extk(t)

shows all ways in which t could be extended with one more event to form a valid trace.

For simplicity, we will omit the subscript k in extk when it is clear from the context. As

discussed later, this defnition of T enables incremental search for “hot” traces.

Below we discuss two examples of such trace domains T , both with direct connections

to popular categories of analyses. These exemplars illustrate how common properties of

such analyses can be mapped to the problem defnition and solution described in this work.

In particular, we defne these two domains via well-understood formal languages—a regular

language and a balanced-parentheses context-free language—which provides a natural

defnition for the domain and its extension function. As a result, our approach is directly

applicable to other trace analyses where the trace domain has a similar structure.

Both domains are based on a set of events corresponding to entering or exiting a software

component (e.g., method, module, or GUI window). We simplify the defnition by assuming

12

that each component is uniquely identifed by an integer id from [1,c]. In addition, we

introduce an artifcial component with id 0 which corresponds to the external environment—

e.g., the caller of the main method, or the framework code that invokes Android app entry

points. The set of events is then E = Enter ∪ Exit where Enter = {enter(i) : i ∈ [0,c]} and

Exit = {exit(i) : i ∈ [0,c]}. The artifcial start event s is enter(0).

3.1.1.1 Exemplar 1: Call Chains

We frst describe an exemplar analysis in which the static domain T of possible traces is

defned by a simple regular language. Suppose that we are given a set of static call edges

i → j showing that, at run time, the execution of component i may trigger the execution of

component j. A fnite sequence i → j → k → . . . of such call edges is a static call chain. A

call chain denotes a trace of events “i calls j which in turn calls k which in turn calls . . .”.

Equivalently, we can defne the domain T through a regular language containing strings

t = ⟨enter(0),enter(i1), . . . ,enter(ik)⟩ over the alphabet Enter. The static call graph can be

thought of as the fnite-state automaton that defnes this language, and the extension function

is the transition function of that automaton.

3.1.1.2 Exemplar 2: Enter/Exit Traces

Next we defne an exemplar analysis in which T is based on a balanced-parentheses

context-free language. This language captures the standard notion of interprocedurally valid

paths [48] and is defned by the following grammar:

Valid → enter(i) Valid | Balanced Valid | λ
Balanced → enter(i) Balanced exit(i) | Balanced Balanced | λ

where λ is the empty string. Non-terminal Balanced defnes a sequence of matching enter

and exit events. Starting non-terminal Valid describes a sequence with some not-yet-matched

13

enter events. Grammars of similar structure have been used extensively in a wide variety

of static analyses (e.g., [48, 50]). For our exemplar analysis we consider the domain of

enter/exit traces T to be strings derived from Valid and starting with enter(0). We further

restrict the strings to respect a given set of static call edges i → j. This can be easily encoded

in the defnition of the corresponding pushdown automaton, as follows. We can defne a

deterministic pushdown automaton with a single state. The input alphabet is Enter ∪ Exit

and the stack alphabet is Enter, with initial stack symbol enter(0). The transitions upon

observing input event enter(j) when the top of the stack is enter(i) is defned only if there is

a static call edge i → j. This transition pushes enter(j) onto the stack. If the input symbol is

exit(i), the transition is defned only if the top of the stack is enter(i), in which case the stack

top is popped. The trace extension function ext, which captures all ways in which a given

trace is extended with one more event, is easily derivable from this pushdown automaton.

There are two reasons we use these formalisms to describe our exemplar analyses. First,

the underlying structure, defned by a fnite-state automaton or a balanced-parentheses

pushdown automaton, is commonly observed in a variety other of dynamic analyses. Our

machinery can be directly employed for such analyses. Second, the automata naturally

provide the defnition of incremental algorithms to explore the domain of possible traces.

As described later, such algorithms play an important role in our identifcation of frequently-

occurring domain elements.

3.1.2 Trace Coverage Analysis for Deployed Software

When the program is executed by a software user, some subset of T is actually observed

(i.e., covered) at run time. A variety of run-time techniques can be used to determine this

coverage (e.g., [2, 7, 52, 65]). We consider such coverage across a large number of software

14

users, each running her copy of the program. Let there be n software users denoted by

u1, . . . ,un and let Ti ⊆ T be the set of traces covered when user ui executes the program. We

consider the following trace coverage analysis: for each t ∈ T , estimate the frequency of t

over the population of users, that is, f (t) = |{i : t ∈ Ti}|, while collecting the local data of

each user with differential privacy.

Trace information has been used extensively to analyze and optimize software perfor-

mance [1, 2, 5, 7, 26, 65]. The frequency information defned above can be used to focus

such efforts on important user behaviors. Similarly, testing and static checking can be

focused on traces that are commonly observed in the user population. Another example

is behavior fow analysis in mobile and web analytics frameworks [21, 39], which allows

developers to see different paths that users take through the app. The paths can be thought

of as a form of traces across GUI components, and the analysis annotates each edge with

the number of users who have performed the corresponding transition. A similar example

is funnel analysis [19, 21, 22, 39], which visualizes the completion rate of a given task in

terms of a series of specifc events and helps developers fnd optimizations in their software

design.

3.1.3 Assumptions

Several assumptions need to be explicitly stated before we describe our differentially-

private analysis (Section 3.2). As usual in this type of work, it is assumed that the design and

implementation of the approach are fxed before any data collection and are publicly known

by all stakeholders, including untrustred parties. Another assumption is that the software

code correctly implements the design; in particular, it does implement the randomization

as publicly announced, and does not try to circumvent it by sending the raw data (or some

15

version of it) to a malicious party. Although this is a strong assumption, it is no different

than what is currently used in remote analysis of deployed software, where the design is

typically undocumented and/or obfuscated, and there is no checking of the implementation

of the data collection for correctness or presence of malicious code.

If a software developer commits to using the correct design and implementing it as

expected, this raises the confdence of software users and watchdog agencies that indeed

privacy is protected. Further, several techniques can be used to increase this confdence,

including (1) open-source implementations, (2) use of certifed and trusted third-party

libraries, (3) scrutiny by privacy experts, and (4) code analysis via automated tools. Note

that there are no assumptions about the analysis server to which the randomized data is sent.

This server could be part of a privacy attack, possibly involving additional external sources

of information about the targeted software user. Even with this assumption, the differential

privacy guarantee holds [58].

3.2 Randomized Count Sketch for Software Traces

Even if a user’s local information contains a single trace, the approach outlined in the

previous section is not possible when T is infnite, since every elements of T must be

visited when randomization is applied. Even if T is made fnite—for example, by using

a pre-defned limit on trace length—the approach is still not practical. For illustration,

consider call chains for the localtv Android app used in our experiments. The alphabet

size |Enter| = 2974 in this app is close to the median for our set of benchmarks. Even

if we only consider chains of at most three methods and count the strings recognized

by the corresponding fnite-state automaton (as described in Section 3.1.1.1), we have

|T | = 3,272,137. Increasing this length by one, the size of T becomes more than 163

16

million. A further length increase by one results in |T | of over 8 billion. The cost of the

randomizer described earlier is proportional to the size of T , as each element t ∈ T must be

visited and a random value must be generated for that t (independently of the processing

of the remaining elements of T) in order to decide whether t is included in the randomizer

output. Further, the randomizer output, which needs to be sent to the analysis server, has

size dependent on the exponentially-large size of T . Clearly, these costs are infeasible.

3.2.1 Count Sketch

To address this problem we employ count sketch [11], a data structure originally designed

to fnd frequent items in data streams. Prior work [8] has considered the theoretical analysis

of using count sketch for a restricted form of differentially-private data analysis, where

each user has a single data item. However, there is no clarity on the practical use of this

data structure for analysis of real-world software execution data and for the more general

problem we consider, where each user has a set of local traces. Using insights from this

prior work, we develop a version of count sketch for our trace analysis and demonstrate

its effectiveness on data from actual software executions. Section 2.2 already explains the

basics about count sketch. Here we describe it again in the context of software traces. The

next subsection shows how randomization can be applied to achieve the differential privacy

guarantee.

Counts sketch in our setting is based on s pairs of independent hash functions (hk,gk),

for 1 ≤ k ≤ s, such that hk : T →{1, . . . ,m} and gk : T →{+1,−1}. Here parameters s and

m are chosen ahead of time; this choice will be discussed later. To perform analysis without

differential privacy, each user would create a local sketch and then send it to the analysis

server, where a global sketch is constructed and used to produce frequency estimates. The

17

Chain h1(t),g1(t) h2(t),g2(t) h3(t),g3(t)
t1 = ⟨0,473⟩ 3,−1 6,−1 8,1
t2 = ⟨0,93⟩ 1,1 7,1 3,−1
t3 = ⟨0,473,83⟩ 5,−1 1,−1 4,−1
t4 = ⟨0,473,472⟩ 5,−1 4,1 4,−1
t5 = ⟨0,473,83,1605⟩ 5,1 5,−1 2,1
t6 = ⟨0,473,472,971⟩ 8,1 1,−1 7,1
t7 = ⟨0,473,472,973⟩ 7,−1 3,−1 4,1

Local Sketch
1 0 -1 0 -1 0 -1 1

-2 0 -1 1 -1 -1 1 0
0 1 -1 -1 0 0 1 1

Figure 3.1: Count sketch illustration, with m = 8 and s = 3

local sketch for user ui is a s × m matrix Si initialized with 0 elements. For every locally-

covered trace t ∈ Ti, matrix element Si[k,hk(t)] is updated by adding to it the value of gk(t),

for every 1 ≤ k ≤ s. In essence, for every row k in the matrix, we use hash function hk to

hash t into a value from {1, . . . ,m}, and then update a counter for that value with +1 or

−1 depending on hash function gk. The local sketches Si for all users are then sent to the

analysis server, where a global sketch Sg is constructed by element-wise addition of all Si.

Finally, for any t ∈ T , a frequency estimate can be obtained by reporting the median value

of Sg[k,hk(t)] × gk(t) over all 1 ≤ k ≤ s.

Example Figure 3.1 illustrates the local sketch for one user, based on data obtained

from our implementation on one of our benchmarks (Android app drumpads). We use

integer method ids to denote app methods. For example, id 473 corresponds to method

MainActivity.initOnboarding and id 971 corresponds to OnboardingView.createImageScene.

For brevity, the example uses the method id to signify an enter event for the corresponding

method; id 0 corresponds to the start event.

18

Suppose that the locally-covered chains for some user are t1, . . . , t7. We illustrate count

sketch with m = 8 and s = 3. Thus, each chain t is hashed into a value hk(t) ∈ {1, . . . ,m}

using three different hash functions (i.e., 1 ≤ k ≤ 3). An additional hash gk(t) produces a

+1/ − 1 value. Accumulating these values, as described above, results in the local sketch

shown at the bottom of the fgure. For example, the frst cell in the second row has a value of

−2 because h2(t3) = h2(t6) = 1 (i.e., both chains map to this cell), and g2(t3) = g2(t6) = −1

(i.e, both contribute −1 to the value of the cell). This also illustrates that hashing does

produce collisions. Using s pairs of hash functions helps ameliorate this problem.

In this particular example the sketch accurately preserves the original information.

Consider, for example, chain t3. The cells for this chain, as determined by hashes hk,

are [1,5], [2,1], and [3,4] in [row,column] format. The corresponding cell values are −1,

−2, and −1. The median value of −1 × g1(t3), −2 × g2(t3), and −1 × g3(t3) is 1, which

accurately refects the raw local data.

The advantage of using this approach is that a local sketch Si for user ui provides a

fxed-sized representation of the arbitrary subset Ti of the set T of possible traces. Further,

randomization of the local sketch, as described shortly, can be performed in time proportional

to this s × m sketch size. Thus, instead of recording the raw data Ti and randomizing it with

randomized response to achieve the differential privacy guarantee over T , we will record the

sketch Si and randomize it to achieve the differential privacy guarantee over local sketches.

Finally, the count sketch technique is theoretically proven to produce accurate estimates

for high-frequency items, which aligns well with our goal to produce information about

frequently-occurring traces, as discussed further in Section 3.3.

19

3.2.2 Sketch Randomization

Trace-level randomization To introduce privacy-achieving randomization, for each

locally-covered trace t ∈ Ti the following actions are performed. First, for each row k

in the local sketch Si, the contribution of t to this row is expressed as a vector of length m

(which is the number of columns in the sketch). The vector has the value of gk(t) ∈ {+1,−1}

in position hk(t), and 0 values in all other positions. Then, the following randomization is

applied to this vector:

• for each position with a 0 value, independently of any other positions in the vector,

with equal probability the 0 value is replaced by +1 or −1

• for the position with the single −1/ + 1 value, the sign of this value is inverted with

probability 1/(eε + 1)

The resulting randomized vector contains only +1 and −1 values. We can think of this

process as applying a randomizer Rk : T →{+1,−1}m . It can be proven that this approach

achieves indistinguishability between t and any t ′ ∈ T ; the proof is omitted for brevity.

Thus, for any vector Z containing m values +1/ − 1, the probabilities P[Rk(t) = Z] and

P[Rk(t ′) = Z] differ by at most a factor of eε . By observing Z, a malicious observer cannot

conclude with high confdence that the underlying trace was t as opposed to any other t ′ ∈ T .

Set-level randomization Next we defne the complete randomizer: given the local set of

traces Ti, Rk(Ti)= ∑t∈Ti Rk(t) where the addition is element-wise. This defnition satisfes the

indistinguishability property in the following sense. Consider any t ∈ Ti and any t ′ ∈ T \ Ti.

′ ′Let T = (Ti \ {t}) ∪{t ′}. Thus, T is obtained by replacing t with t ′ . For any output Zi i

of Rk, the probabilities P[Rk(Ti) = Z] and P[Rk(Ti
′) = Z] differ by at most a factor of eε .

20

Thus, an observer of Z cannot determine with high confdence that a particular trace t was

present in Ti, as opposed to any other trace t ′ ∈/ Ti. The complete randomized local sketch is

constructed as a s × m matrix in which row k is Rk(Ti); we will denote this matrix by R(Si)

where Si is the non-randomized local sketch. This randomized local sketch is reported to the

analysis server.

3.2.3 Effcient Randomization

The approach described above is impractically expensive. Specifcally, for any t ∈ Ti

we need to compute s randomized vectors of length m, where each vector element requires

drawing a random value. In our experience the cost of such processing could be high for

data from actual software executions. Instead, we use an approach that frst records the

contributions of each t without randomization, and then draws random values from the

binomial distribution to implement “one-shot” randomization.

Algorithm 3.1 describes the details of this approach. Consider a cell [k, j] in the sketch.

Let N+1[k, j] be the number of traces that contribute +1 to the value in this cell, without

randomization. Similarly, let N−1[k, j] be the number of traces that contribute −1 to the cell.

Our approach frst records these counts (function add) without randomization. After data

collection is completed, finalize computes the randomized sketch. With randomization,

each of the N+1[k, j] occurrences of +1 contributes +1 with probability p and −1 with prob-

ability 1− p. Binomial distribution gives us the probability of y successes in x independent

trials, where each trial succeeds with probability p. Let binomial(x, p) denote a random

value drawn from this distribution. The randomization will contribute binomial(N+1[k, j], p)

21

values of +1 to the cell value; the remaining N+1[k, j] − binomial(N+1[k, j], p) contribu-

tions will be −1. Thus, at line 19 of the algorithm we compute the cumulative contribu-

tion of the “raw” +1 values as the difference between these two quantities—that is, as

2× binomial(N+1[k, j], p) − N+1[k, j]. A similar computation is performed at line 20 for the

−1 values. Finally, we also have to account for the randomization of 0 values, which is

done at line 21. The combined effect of these three cases is computed at line 22 as the cell

value in the randomized sketch. This approach has cost in the order of s× m, while a naive

implementation with separate randomization for each observed trace will have cost in the

order of |Ti|× s × m.

3.2.4 Server-Side Processing

The randomized local sketches R(Si) from all users are collected by the analysis server

and their element-wise sum is computed. To obtain unbiased estimates, all elements of the

sum need to be scaled by (eε + 1)/(eε − 1). The resulting s × m matrix Sg is the global

sketch produced by the analysis. For any t ∈ T , an estimate f̂ (t) of the true frequency

f (t) can be obtained as the median value of Sg[k,hk(t)] × gk(t) over all sketch rows k. This

processing is described in Algorithm 3.2. It is important to note that summing up of the local

sketches is essential in order for the randomized noises to “cancel out” across the population

of users.

3.2.5 Selecting Sketch Size

The selection of sketch size is important for achieving high accuracy of estimates. In

our implementation, both the number of rows s and the number of columns m are powers

of 2. Parameter s is set to 256, which is similar to values used in prior work [8]. When

selecting the number m of sketch columns, we aim to use a value that would produce a small

22

Algorithm 3.1: Randomized count sketch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

output :Si: randomized local sketch
Function init():

Si ←{0}s×m

N+1 ←{0}s×m

N−1 ←{0}s×m

Function add(t):
Ti ← Ti ∪{t}
for k ← 1 to s do

if gk(t) = +1 then
N+1[k,hk(t)] ← N+1[k,hk(t)] + 1

else
N−1[k,hk(t)] ← N−1[k,hk(t)] + 1

Function finalize():
εep ← 1+eε

for k ← 1 to s do
for j ← 1 to m do

z ← |Ti|− N+1[k, j] − N−1[k, j]
n+1 ← 2 × binomial(N+1[k, j], p) − N+1[k, j]
n−1 ← 2 × binomial(N−1[k, j], p) − N−1[k, j]
n0 ← 2 × binomial(z, 12) − z
Si[k, j] ← n+1 − n−1 + n0

number of hash collisions. One simple choice is to select m to be similar to the total number

of unique traces that would be represented in the global sketch—that is, similar to the size

of the union of all local sets Ti. The value of m has to be selected ahead of time, before

deployment, so that the randomization machinery is included in the distributed code. To

make this selection, we use an approach similar in spirit to existing techniques [6, 62]. First,

a group of opt-in users is used to obtain detailed information in a non-differentially-private

manner. Specifcally, the set of local traces Ti from each opt-in user ui is collected and

reported to the analysis server. Then, the union of these sets is determined. The value of

23

Algorithm 3.2: Server-side processing
1 Function global_sketch(R(S1), . . . ,R(Sn)):
2 Sg ←{0}s×m

3 for i ← 1 to n do
4 Sg ← Sg + R(Si)

ε +1Sg ← e
eε −1 × Sg5

6 Function estimate(t):
7 E ← 0/
8 for k ← 1 to s do
9 E ← E ∪{Sg[k,hk(t)] × gk(t)}

10 return median(E)

m is defned as the smallest power of 2 greater than or equal to the size of this union. This

value of m is then used by the regular software users, whose copy of the software embeds

this m value and only reports the randomized sketch of their local information.

In practice, there are several options for obtaining this opt-in data. First, some users may

be willing to share their raw data. Even in this case, instead of the raw data the approach

could collect some hashed version of it, which provides some degree of privacy protection

(although weaker than differential privacy). Alternatively, such data could also be provided

from in-house testing or beta testing. In our experiments, each run of the approach randomly

picks 10% of the users as opt-in users, computes m based on their data, and then performs

the rest of the experiment on the remaining 90% users.

The size of the sketch produced by this approach depends on the underlying volume of

collected data. Suppose, for example, that there are a total of 15 thousand unique traces

= 214across all software users, which corresponds to m . Assuming each sketch element is

represented as a 2-byte integer, the total sketch size is 8MB, which is a practical amount

of data to transfer. However, if the number of unique traces across the population of

24

software users is many hundreds of thousands, sketch size becomes impractical. If the goal

is to achieve high accuracy of estimates while having a reasonably small amount of data

communication with the analysis server, our approach would be most suitable for scenarios

where the total number of unique traces reported from the user population is in the order of

a few thousands to a few tens of thousands. Depending on the intended use of the analysis

information, this could be a reasonable constraint. For example, if the analysis data is used

to identify common user behaviors for the purposes of manual performance optimization

or user interface redesign, it is unlikely that frequency estimates for hundreds of thousands

of traces would be of value to software developers. To achieve such data sizes, a simple

approach is to use pre-defned limits on the sizes of local sets or the lengths of collected

traces. Our implementation limits the length of collected call chains to 10 events and the

length of collected enter/exit traces to 20 events. This also bounds the depth of exploration

for hot traces, which is described next.

3.3 Identifcation of Hot Traces

From the global sketch, the analysis server can estimate the frequency of any particular

trace t ∈ T . However, this is not enough for many forms of data analyses, since the size of

T is very large (or even infnite) and obtaining an estimate for each t is not possible. Next

we focus on one particular data analysis of signifcant practical importance: identifying the

hot traces and estimating their frequencies. Hot traces are useful in identifying common

user behavior, which themselves can be used for performance optimization, focused testing

and static checking, and application-fow optimization. We consider a trace t to be hot if its

true frequency f (t) ≥ h, where h = α × n is a “hotness threshold” defned by a parameter α

and the number of software users n. The question is, given the global sketch, how can we

25

effciently and accurately construct an estimate of the set of hot traces? Next, we develop

an approach to answer this question.

Exploration of estimated hot traces Our approach takes as input the global sketch Sg,

together with the set E of possible run-time events, the start event s ∈ E , and the family of

extension functions ext. We perform a pruned exploration of the elements of T defned by E

and ext. The key observation is that if a trace t is not hot, any t ′ that has t as a prefx cannot

be hot, since the number of users that covered t ′ cannot exceed the number of users that

covered t. This leads to the following approach: starting with the length-0 trace ⟨s⟩, explore

the space of possible trace extensions defned by ext. For each explored trace t, estimate its

frequency using sketch Sg and stop the exploration if the frequency estimate f̂ (t) is below

the hotness threshold h. Otherwise, continue the exploration with all traces in ext(t).

A key assumption of this approach is that for any given trace t, the set of extended

traces ext(t) can be computed effciently. We chose the two exemplar analyses presented in

Section 3.1—call chains and enter/exit traces—to illustrate two common cases where this

computation is naturally derived from the defnition of the underlying formal language. Such

trace structure is not specifc to these two examples; other dynamic analyses (e.g., paths

in control-fow graphs) have similar properties. For call chains, the traces are strings in a

regular language. Thus, the exploration is equivalent to exploring paths in the corresponding

fnite-state automaton. The extension function is defned by the set of possible transitions

from the current state of the automaton. For enter/exit traces, defned by a Dyck context-free

language (i.e., a language of balanced parentheses), the corresponding pushdown automaton

can be maintained during the exploration of strings, and the extension function is again

defned by the possible transitions from the current automaton state. Our implementation of

26

these exemplar analyses uses exactly this approach. In both cases, the transitions are effcient:

the cost of computing ext(t) is linear in the size of this set. Note that this approach is also

applicable in the more general case where T is defned by an arbitrary context-free grammar,

as the corresponding pushdown automaton can be maintained during trace exploration and

consulted to decide how to extend the current trace.

Relaxed hotness criterion Our experience indicates that the approach described above has

the following disadvantage: sometimes entire groups of hot traces with a common prefx are

not discovered because this prefx is misclassifed as not being hot due to an inaccuracy of

its frequency estimate. As a result, the exploration stops too early. To address this problem,

we designed a more robust “relaxed” check for hot traces. If for some explored trace t we

have h/2 ≤ f̂ (t) < h, we consider this trace a potentially-misclassifed hot trace due to an

inaccurate estimate. In such cases, we check whether at least one t ′ ∈ ext(t) has an estimate

above the threshold h. If such a t ′ exists, we take it as strong indication that t itself is hot

and treat it as such. The details of the entire approach are presented in Algorithm 3.3.

For illustration, consider an enter/exit trace derived from actual data for the equibase

app, which is one of our experimental subjects. The trace is t = ⟨enter(0),enter(1685),enter(1678),

enter(910),enter(805),enter(10),exit(10),exit(805),exit(910),enter(1677)⟩. The true fre-

quency is f (t) = 818. For the hotness cut-off h = 810 which was used in that experiment,

the trace is hot. However, because of estimate f̂ (t) = 763, the exploration will stop at this

trace if the relaxed criterion is not employed. As a result, 15 hot traces that have t as a

prefx would be missed. Using the relaxed criterion, all 15 traces are correctly discovered by

Algorithm 3.3.

27

Algorithm 3.3: Identifcation of hot traces
output :H: set of estimated hot traces

1 Function hot_traces():
2 H ← 0/
3 for t ∈ ext(s) do explore(t)

4 Function explore(t):
5 if hot(t) then
6 H ← H ∪{t}
7 for t ′ ∈ ext(t) do explore(t ′)

8 Function hot(t):
e ← f̂ (t)9

10 if e ≥ h then return true
11 if e < h/2 then return false
12 for t ′ ∈ ext(s) do
13 if f̂ (t ′) ≥ h then return true

14 return false

3.4 Evaluation

For evaluation, we used 15 Android applications that were used by prior related work [60,

61]. We simulated 1000 users interacting with each app using the Monkey tool [23].

Specifcally, we performed 1000 independent Monkey runs and considered each Monkey

execution as triggered by one simulated user. During this process, for each run, we collected

the sequence of method enter/exit events until the total number of enter events reaches

10× the number of methods in the app code. From this sequence we constructed the set

of observed call chains for that simulated user ui—that is, set Ti for call chain analysis. In

addition, we also considered the entry methods of the app and collect the subsequences

that start at the enter events of those methods; these subsequences form set Ti for enter/exit

trace analysis. Thus, for each of the two analyses we gathered sets T1,T2, . . . ,T1000. We also

wanted to study the effects the number of users, but since execution of a large number of

28

Monkey runs in device emulators takes a very long time, we employed an approach used by

others [60]: each of the 1000 sets was replicated 10 times to generate Ti for n = 10000.

The instrumentation is based on the Soot code rewriting tool [49]. Given the data

collected by the instrumentation, we ran all randomization separately from the executions

that gather the traces. This allowed us to conduct each experiment 30 times, in order

to report rigorous statistical results that account for the randomness introduced by local

randomizers [20]. Experiments were performed for several values of ε used in prior work

[18, 55, 60, 61]. For brevity, most results are presented for ε = ln(9), but the effects of

other values are also discussed. To implement count sketch, we used SHA-256 hashing. In

particular, hash functions hk and gk used in count sketch were implemented by prepending k

to the string representation of the trace (which itself is based on the methods ids), computing

SHA-256, and taking the appropriate number of bits from the result. We open sourced

the implementation of the proposed approach, the analyzed traces, and the instructions for

reproducing the experimental results. These artifacts are available at the following URL:

https://presto-osu.github.io/ecoop21/.

Table 3.1 shows the details of the subjects used in our experiments. Column “Classes”

lists the number of application classes, excluding several well-known third-party Android

libraries, e.g., dagger and okio. The group of columns labeled “Call Chains” describes

measurements for the call chain analysis, and the group labeled “Enter/Exit Traces” shows

the same measurements for the analysis of enter/exit traces. Column “Total” shows the total

number of unique traces across the 1000 local sets Ti. Column “Timeu ” shows the average

time (in seconds) to process the local data of a user, as described in Algorithm 3.1. Column

“Times ” contains the time (in seconds) to identify hot traces from the global sketch at the

29

https://presto-osu.github.io/ecoop21/

Table 3.1: Experimental subjects.

App Classes Call Chains Enter/Exit Traces

Total Timeu Times Total Timeu Times

barometer 379 2765 0.3 25 2717 0.4 6.4
bible 1107 1604 0.2 64 2427 0.2 21
dpm 272 1272 0.1 4.3 2475 0.2 3.7
drumpads 447 926 0.1 6 1289 0.1 4.1
equibase 252 773 0.1 3.2 1602 0.3 4.9
localtv 716 4037 0.3 42 5285 0.3 12
loctracker 198 480 0.1 0.8 1098 0.1 8.9
mitula 973 24757 2.8 1784 5614 0.8 27
moonphases 166 1755 0.2 3.3 947 0.1 0.6
parking 379 1477 0.1 10 2875 0.2 4.6
parrot 1099 7575 0.8 427 6499 0.9 63
post 1107 2358 0.4 92 3564 0.5 45
quicknews 1107 3668 0.4 51 6062 0.7 57
speedlogic 86 244 0.0 0.1 304 0.0 0.3
vidanta 1608 7811 0.8 833 6687 0.9 124

analysis server, using the approach from Algorithm 3.2 for n = 1000. For both analyses, the

costs are practical and suitable for real-world use.

As mentioned in Section 3.2.3, we initially attempted to perform randomization sepa-

rately for each covered trace, but incurred high running times for the local randomizer. This

led to the development of the optimized approach in Algorithm 3.1. For example, for the

parrot app, the naive randomization of call chains and enter/exit traces took 264 seconds

per user on average, while the optimized one took 1.7 seconds. We typically observed two

orders of magnitude improvement in the running time of the local randomizer.

30

3.4.1 Accuracy for All Covered Traces

The frst research question we consider is this: What is the accuracy of estimates for

traces that are covered by at least one user? Note that, from the data in the global sketch,

the analytics server cannot directly determine this set. (We address this issue in the next

subsection.) However, the knowledge of this accuracy provides a useful baseline. To answer

this question, we use a normalized L1 distance between the vector of true frequencies and

the vector of their estimates. Specifcally, for all t that appear in at least one Ti, we compute

the error as ∑t | f (t) − f̂ (t)|/∑t f (t). Values close to 0 mean that the estimates are overall

close to the real frequencies. Figure 3.2 shows these measurements for the two values of

n. As described in Section 3.2.5, each run of this experiment (and all later experiments)

used a randomly-selected set of size n/10 as opt-in users, and then performed the analysis

and computed all reported error measurements for the remaining users. For these and all

other experiments reported later, we followed a popular approach for statistically-rigorous

performance measurements [20]: 30 independent runs of the experiment were performed,

and the mean together with the 95% confdence interval are reported. The confdence

interval characterizes the variance due to the randomization. In the bar charts, the interval is

shown at the top of the corresponding bar. In many cases, the interval is so small (i.e., the

variance is so low), that it is hard to see in the fgures.

From this data, we reach the following answer to the above question: with suffciently

large number of users participating in the data collection, the estimates are close to the

real frequencies. For example, for the call chain analysis with n = 10000, the cumulative

error over all t is under 20% in all cases, and its average value across the 15 apps is 7.4%.

Similarly, for the enter/exit trace analysis with n = 10000, the cumulative error over all

covered traces is always under 15% and, averaged across the apps, is 8.4%. It is fairly

31

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r A
ll

1000 users 10000 users

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r A
ll

1000 users 10000 users

(a) Call chains (b) Enter/exit traces

Figure 3.2: Error of estimates for all covered traces.

common for Android apps to have many thousands of users, and popular apps usually have

hundreds of thousands of users. Thus, obtaining data from a suffcient number of app users

should be feasible.

3.4.2 Precision and Recall for Hot Traces

As discussed earlier, the set of all covered traces is not directly known to the analysis

server. Section 3.3 discussed an approach to identify hot traces. Our next research question

is: How accurately are the hot traces identifed? The metrics we use to answer this question

are recall (what portion of the true hot traces are discovered) and precision (what portion

of the reported hot traces are actually hot). We executed Algorithm 3.3 on the global

sketch to identify likely hot traces, with hotness threshold h = 0.9 × n. This was done in 30

independent repetitions of the experiment. The mean values from these experiments and

their 95% confdence intervals are shown in Figure 3.3.

32

0.0

0.5

1.0
Re

ca
ll

1000 users 10000 users

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.0

0.5

1.0

Pr
ec

isi
on

0.0

0.5

1.0

Re
ca

ll

1000 users 10000 users

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.0

0.5

1.0

Pr
ec

isi
on

(a) Call chains (b) Entry/exit traces

Figure 3.3: Recall and precision for hot traces.

Overall, the results of this experiment provide strong indication that hot traces can

indeed be identifed accurately with a suffcient number of users. For n = 1000, the average

recall across the 15 apps is 92.1% and the average precision is 92.5% for call chains, and

90.4% and 94.5% for enter/exit traces respectively. For n = 10000, the recall for call chains

increases to 99.3% and the precision to 95.0%; for enter/exit traces, the recall increases to

99.7% and precision decreases slightly to 94.1%. We investigated the apps with the lowest

precision and determined that they have a large number of traces whose true frequencies are

slightly below the threshold h; some of these almost-hot traces are misclassifed as being

hot, leading to the lower precision.

One related question is how the design choices for Algorithm 3.3 affect its precision

and recall. In Section 3.3, we discussed two possible criteria for deciding whether a trace

should be considered hot. The “strict” criterion is that a trace’s estimate f̂ (t) should exceed

the hotness threshold h. However, if this estimate is inaccurate and too small, the chain and

all other hot chains that have it as prefx will be missed. Thus, in the algorithm we use a

33

0.0

0.5

1.0
Re

ca
ll

Strict Relaxed

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.0

0.5

1.0

Pr
ec

isi
on

0.0

0.5

1.0

Re
ca

ll

Strict Relaxed

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.0

0.5

1.0

Pr
ec

isi
on

(a) Call chains (b) Enter/exit traces

Figure 3.4: Recall and precision for hot traces: strict vs relaxed hotness criterion.

“relaxed” criterion which also considers traces t with estimates h/2 ≤ f̂ (t) < h such that t

has at least one extended trace with an estimate that exceeds h. This relaxed criterion was

employed when collecting the data in Figure 3.3.

To understand the effects of this choice, we also measured precision and recall using

the strict criterion. Figure 3.4 shows a comparison between the two criteria for n = 1000;

the other value for n leads to similar conclusions. As can be seen from these measurements,

using the strict criterion results in lower recall. For example, for call chain analysis, three

apps have recall less than 50%. Similarly, for enter/exit trace analysis there are six apps with

recall below 50%. As expected, the strict criterion does improve precision, but this effect is

not very pronounced. Depending on the intended uses of the analysis, the app developers

may prefer higher recall or higher precision. Using these two criteria, or variations of them,

allows this trade-off to be adjusted as desired.

34

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r H
ot

1000 users 10000 users

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r H
ot

1000 users 10000 users

(a) Call chains (b) Enter/exit traces

Figure 3.5: Error of estimates for reported hot traces.

3.4.3 Accuracy of Estimates for Reported Hot Traces

For the set of traces reported by Algorithm 3.3 as likely-hot, we ask following question:

What is the accuracy of estimates for reported hot traces? Figure 3.5 shows the error of

estimates, using a metric similar to the one used in Figure 3.2: the sum of | f̂ (t) − f (t)| for

all reported hot traces t, normalized by the sum of f (t) for those t. Based on these results,

the answer to the question is that high accuracy is achieved for the frequency estimates

of hot traces. Combined with the high recall demonstrated earlier, our conclusion is that

hot traces and their frequencies can be successfully estimated via our differentially-private

analysis.

It is instructive to compare Figure 3.5 with Figure 3.2. Overall, the estimate error for hot

traces is smaller than the estimate error for all traces. For example, for n = 10000, the average

error value in Figure 3.5a is 1.6%, compared to 7.4% in Figure 3.2a, and 1.7% vs 8.4% for

Figure 3.5b vs Figure 3.2b. Theoretically, both count sketch and randomized response tend

35

to favor higher-frequency items. The higher accuracy for hot traces demonstrates that this

also holds in practice.

3.4.4 Privacy Loss Parameter

As discussed earlier, the privacy loss parameter ε can be used to tune accuracy/privacy

trade-offs. We considered the following question: To what degree does accuracy change

with changes in this parameter? In existing work, ε ranges from 0.01 to 10 [29]. Related

work that employs randomized response has used, for example, ln(3), ln(9), and ln(49)

[18, 60, 61]. We computed the error for all covered traces for these three values; the results

for ln(9) were already presented in Figure 3.2 and are repeated here. Figure 3.6 shows these

measurements for n = 1000; similar trends are seen for the other n value. Overall, with

increasing ε , the expected accuracy gains are observed but seem to level off. For call chains

and enter/exit traces, respectively, the average error across all apps decreases from 25.3%

and 28.7% for the smallest value of ε to 16.6% and 19.0% for ln(9), and then further to

14.5% and 16.5% for the largest value of the parameter. Based on these results, we consider

ln(9) to provide a reasonable trade-off and have used it to present the majority of data in our

evaluation.

3.4.5 Summary of Results

Our experimental results can be summarized as follows. First, as illustrated in Figure 3.2,

the frequency estimates have high accuracy, for practical values of ε . This results indicates

that with good privacy and suffcient number of software users, one can obtain accurate

frequency estimates for software traces. Second, based on the results in Figure 3.3, the set of

hot traces can be determined with high precision and recall. The relaxed identifcation of hot

traces is important for achieving this result (Figure 3.4). Third, the frequency estimates for

36

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Er
ro

r A
ll

 = ln(3) = ln(9) = ln(49)

ba
rom

ete
r

bib
le

dp
m

dr
um

pa
ds

eq
uib

as
e

loc
alt

v
loc

tra
ck

er
mitu

la
moo

np
ha

se
s

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dlo
gic

vid
an

ta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Er
ro

r A
ll

 = ln(3) = ln(9) = ln(49)

(a) Call chains (b) Enter/exit traces

Figure 3.6: Error of estimates for all covered traces for three values of ε .

hot traces are accurate and better than those for the remaining covered traces (Figure 3.5).

Finally, consider the accuracy/privacy trade-off spectrum: from smaller values of ε (i.e.,

stronger privacy) and lower accuracy, to larger values of ε and high accuracy. As indicated

by Figure 3.6, after a certain point in this spectrum there do not seem to be signifcant

additional improvements in accuracy.

3.5 Conclusions

We develop the design of a differentially-private trace coverage analysis, based on an

incremental defnition of the trace domain. We employ local count sketches, randomize them

effciently, and analyze them at the server side to obtain frequency estimates and to search

for hot traces. The approach is illustrated with a call chain analysis and an enter/exit trace

analysis. Our experimental studies present promising fndings: with realistic numbers of

software users, one can use these privacy-preserving techniques to obtain accurate frequency

estimates for trace coverage and to effectively identify hot traces.

37

Chapter 4: Local Differential Privacy for Frequency Analysis of

Software Traces

This chapter generalizes the problem studied in Chapter 3 to the analysis of frequencies

of software traces. More specifcally, given a trace t ∈ T , the coverage analysis studied in

Chapter 3 answers the following question: how many users’ executions cover t? The answer

to such a question is in [0,n] where n is the number of users. However, a trace t ∈ T may

occur more than once in a user’s execution of the copy of the program. In this chapter, we

answer the following question instead: given t ∈ T , how many times does it occur among

all the users? We defne such a profling problem as frequency analysis of software traces,

as a generalization of the coverage analysis described earlier. For some developers, gaining

the frequency knowledge about how users are using their program is more pertinent and

benefcial than having the coverage information. As will be shown later in this chapter,

applying differential privacy to this scenario brings new challenges.

4.1 Problem Statement

4.1.1 Frequency Analysis for Software Traces

Consider a program deployed across n users, denoted by u1, ...,un. Each user has her

own copy of the program. At run time, a user’s execution of the program covers a set

of traces (refer to Section 3.1 for the defnition of traces), each one of which could be

38

TT

TT

TT

covered multiple times. To capture this notion, we denote the traces covered by user ui by a

multiset Ti where the underlying set of unique traces is support(Ti) ⊆ T . The multiplicity

of t ∈ T , i.e., the number of times t occurs in Ti, is denoted by Ti(t). Alternatively, the local

information for ui can be thought of as a vector T i ∈ N|T |, with each entry corresponding to

one of the traces t ∈ T . Both notations are used in the rest of this section for the convenience

of clear explanation. Without loss of generality, we assume that ∑t∈T T i(t) = k, where k is

a pre-defned parameter—that is, the L1 norm ∥T i∥1 is equal to k. Further, we assume that

this k applies to all users ui. If a user records fewer than k observations, a unique “dummy”

trace could be added to T to increase the counts to k.

We consider the following two trace frequency analysis problems. First, for each t ∈ T ,

to estimate the frequency f (t) of t over the population of users, while collecting the local

data of each user with differential privacy. Here f (t) = ∑n
i=1 Ti(t). Second, to identify a

set of hot traces whose frequencies are relatively higher than those of the remaining traces.

Formally, we want to identify a set of traces H = {t ∈ T : f (t) ≥ αkn} where α is a cut-off

threshold parameter.

4.1.2 The Differential Privacy Guarantee

For completeness of presentation, we repeat below the key aspects of the differential

privacy guarantee. In a differential privacy algorithm, a randomizer is used to add statistical

noise on the input data which is the real data from users, and the output which is the

randomized data is shared with the analytics server (or any entity not trusted). Differantial

privacy guarantees that given any output, one cannot distinguish the real input data a from

any of its neighboring data b with high confdence. In a local model of DP, which is the one

39

ff zz′′ zzff ff
ff ′′ zz

′′ff ff

′′ff ff

′′′′ ff ff ′′ff ffff ff

′′ ′′ ff ff ′′ff ffff ff

ff

′′ ff ff ′′ff ff

used in our approach, a local randomizer is used at the user end to perturb the real data of

the user, and only the output of the local randomizer is shared with the data server.

Formally, randomzier R achieves ε-differential privacy if for any pair of neighboring

′ Pr[R(f)=z] εfrequency vectors f , f ∈ N|T | and for any possible output z ∈ R|T | of R, ≤ e .
Pr[R(f ′)=z]

′ This means that the probabilities of the the real data being f or f are close to each other, so

′ that f and f are indistinguishable from each other in a statistical sense. Note that the ratio

of the two probabilities is bounded by eε where e is Euler’s number which is approximately

equal to 2.71828 and ε is a parameter which is also know as the “privacy budget”. The

value of ε determines the strength of the protection. The smaller the privacy budget, the

stronger the protection, but also the less accurate the estimates. Thus, achieving a balance

between privacy and utility (i.e. accuracy of estimates) is the goal for all differential privacy

algorithms.

4.1.2.1 Defning Neighbors

The defnition of neighbors lies in the core of the above defnition of ε-differential privacy,

because the indistinguishability property is guaranteed only for neighboring input data

vectors. We borrow a defnition from prior work [62]. Consider any pair of input frequency

′ ′ vectors f and f . The L1 distance between them is f − f 1 = ∑t∈T | f (t) − f ′ (t)|. Recall

that the sum of a frequency vector is equal to k. Therefore, this distance is always in

{0,2,4, ...,2k}. To normalize, we defne the distance between two frequency vectors as

′) =
1 1′ d(f , f f − f ∑ | f (t) − f ′ (t)|1 =
2 2 t∈T

The neighbors of a frequency vector f is then defned as

′ Neighbors(f) = { f | d(f , f ′) ≤ τ}

40

ff ii

ff ii ff ii

ff

ff

ff

The threshold τ defnes how far neighbors can be from each other. In next section, we will

talk about how the value of τ is selected in order to achieve the goals of indistinguishability

for different scenarios.

4.2 Proposed Approach for Frequency Analysis

Our approach is twofold. As introduced earlier in this section, the analysis of trace

frequencies faces the same exponentially large domain problem as in the trace coverage

analysis. Thus, count sketch is still used to solve this problem. In addition, the randomization

is done by using the Laplace mechanism, instead of the randomized-response-based one

as used in Chapter 3. This is because the randomized-response approach could only

achieve weak differential privacy guarantee. To see this, consider the following hypothetical

adaptation of the approach from Chapter 3: for each trace t covered by user ui, add it to the

local sketch by repeating the process as described in Algorithm 3.1 for f i(t) times, where

f i(t) is the frequency of t in f i. In this approach, only vectors differing by 2, i.e. their L1

distance is 2, are guaranteed to be indistinguishable.

4.2.1 Randomized Count Sketch with Laplace Noise

Recall that a local frequency vector f i for user ui is in N|T | and its size is the size of T

which is the domain of all possible traces up to the pre-defned depth limit l. This means that

f i contains not only frequencies of the traces covered by user ui, but also zero frequencies

for the traces that are not covered. This is needed because in an LDP solution, randomization

is defned over a pre-defned data domain, and this domain cannot depend on the specifcs of

the local data of any particular user ui (i.e., it cannot depend on the set of covered traces by

the user). This is a fundamental requirement for achieving the DP probabilistic guarantees.

However, a critical challenge for applying LDP directly on f i is that the domain T is

41

ff

ff cc

ff

ff

ff cc

ff cc ff cc

ff ff

exponentially large. In the simplest possible defnition, T = E ∪E1 ∪ ... ∪E l (Recall that

in Section 3.1, we defne E as the set of possible run-time events. And here E r denotes

the Cartesian product of r copies of E .) For any non-trivial program and l, the size of this

over-approximation of T could easily reach billions of elements. Even if static analysis is

used to reduce domain size (e.g., via context-sensitive call graph analysis), ultimately the

exponential growth cannot be avoided.

This large size leads to two problems: (1) the cost of randomization is very high, since

each t ∈ T requires the processing of an independent random value; (2) the size of the

reported randomized data is |T |, which is not practical in any realistic settings. Note that

without privacy, the only data that is reported is for t with non-zero frequency measurements.

However, after randomization, in order to achieve differential privacy, the randomized data

for all t ∈ T must be reported.

A solution to this challenge is to frst map the data vector f ∈ N|T | into a “compressed”

data vector over a signifcantly smaller domain Tc. This resulting compressed vector

f c ∈ N|Tc| is then randomized in a manner that ensures the differential privacy property with

respect to the original data vector f . Note that the compression provides an additional layer

of privacy protection, since many real vectors f could be mapped to the same compressed

vector f c.

This can be achieved in Count Sketch [11]. To map the large domain to the compressed

smaller domain, a pair of hash functions h : T →Tc and g : T →{+1,−1} is used. For any

tc ∈ Tc, entry f c(tc) in the compressed vector f c is the sum of contributions from all t ∈ T

for which h(t) = tc; that is, all t that are hashed to tc using the hash function h. Each of

those contributions is g(t) × f (t). Here the value f (t) for element t from the original vector

42

ff ff cc

ff

ff

ff cc

ff ff ff

ff cc ff cc

ff cc ff cc

ff cc ff cc ff ff

ff cc ff cc

ff cc

ff cc

f is accumulated into f c(tc) with either a positive sign or a negative sign, depending on the

value of g(t) (which is either +1 or −1).

We propose to apply Laplace noise to this compressed representation, as follows. Sup-

pose we would like to achieve indistinguishability between a given vector f and all its

′ neighbors f (i.e., all vectors at distance ≤ τ , as defned at the end of the previous section).

For each element of f c, we draw a random value from the Laplace distribution Lap(2
ε

τ)

and add that value to this element. The resulting vector is a randomized version of the

compressed vector.

A key question is whether this approach achieves probabilistic indistinguishability

′ between the given vector f and each of its neighbors. Consider any f , f ∈ N|T | and their

corresponding f c, f c′ ∈ N|Tc|. It can be shown that

∑ | f (t) − f ′ (t)| ≥ ∑ | f c(tc) − f c ′ (tc)|
t∈T tc∈Tc

This property can be derived from the standard inequality ∑i |ai| ≥ |∑i ai|. As a corollary,

′ the compressed vectors f c, f c′ for two neighbors f , f are also neighbors. Thus, adding

Laplacian noise of magnitude 2τ to the compressed vector achieves indistinguishability for
ε

the original vector.

To increase accuracy, count-sketch uses multiple pairs of hash functions ⟨h1,g1⟩, . . . ,⟨hs,gs⟩.

These pairs are used to compute s compressed vectors f c1, . . . , f cs. For any t ∈ T , an

estimate of the frequency of t can be obtained by taking the median of the s values

gi(t) × f ci(hi(t)). Without loss of generality, Tc can be considered to be the set {1, . . . ,m}.

Thus, the entire count-sketch data structure is a matrix with s rows and m columns, where

each row i is the vector f ci containing m elements.

The overall process is detailed in Algorithm 4.1. Recall that the local data of user ui

is actually a multiset of traces covered by the user at least once, which is denoted as Ti.

43

The underlying set is denoted as support(Ti) and the frequency of t ∈ support(Ti) is Ti(t).

First, the count sketch Si is initialized with all zeros. Then, each trace t is added to Si by

updating each row j using the corresponding pair of hash functions i.e. h j and g j. Lastly,

each element of Si is added with a random number independently drawn from the Laplace

distribution.

Algorithm 4.1: Local Laplace Randomizer
Input :Ti: multiset of traces covered by users ui
Output :Si: randomized local sketch

1 Si ←{0}s×m

2 foreach t in support(Ti) do
3 for j ← 1 to s do
4 Si[j,h j(t)] ← Si[j,h j(t)] + g j(t) × Ti(t)

5 for j ← 1 to s do
6 for k ← 1 to m do
7 Si[j,k] ← Si[j,k]+ Lap(2

ε

τ)

4.2.2 Data Collection

Figure 4.1 illustrates the overall data collection scheme. The frst part of the collec-

tion determines suitable values for several confguration parameters; this process will be

described shortly. The resulting confguration is instantiated for the n users of the software.

Each user ui participating in the data collection computes their own local traces Ti ,

using standard profling techniques. This information is mapped to a local sketch matrix as

described above. Each matrix element is then randomized by adding Laplacian noise (an

independent random value is drawn for each matrix element). The resulting randomized

sketch is then communicated with an analytics server.

44

Tester

Tester

App

User_1
(T1, f1)

User_2

(T2, f2)

User_n
(Tn, fn)

𝜏

𝚺
Analytics server

Laplace
Mechanism

Count
Sketch

Developer

𝜂

Figure 4.1: Data collection scheme for frequency analysis.

The processing of collected user data is outlined in Algorithm 4.2. The server collects the

randomized sketches RSi of all users ui and constructs a global randomized sketch G, which

is the element-wise sum of the collected local sketches (function build_sketch). The

resulting global sketch can be used to answer queries of the form: “What is the (estimated)

global frequency of a given trace t ∈ T ?” (function estimate_freq). To answer the query,

for each row i of the global sketch the server computes a value which is the product of gi(t)

and the value at column hi(t) at that row. The query answer is the median value among the

values computed for all sketch rows.

This data collection scheme ensures that (1) the local information of any user ui is shared

with “the outside world” with differential privacy guarantees, and (2) the global frequency of

any trace can be estimated by the analytics server based on the collected locally-randomized

data.

45

ff ff ff ff

ff ff

ff ff ff ff

ff ff ff

ff

ff ff ff

ff ff

Algorithm 4.2: Processing of collected user data
1 Function build_sketch(RS1, . . . ,RSn):
2 G ←{0}s×m

3 for i ← 1 to n do
4 G ← G+ RSi

5 Function estimate_freq(t):
6 Est ← 0/
7 for i ← 1 to s do
8 Est ← Est ∪{gi(t) × G[i,hi(t)]}
9 return median(Est)

4.2.3 Hiding Trace Information

′ For a pair of frequency vectors f and f to be neighbors, their distance d(f , f ′), i.e.

1 ′ f − f 1, needs to be within τ . Choosing the value for τ determines what traces are2

guaranteed with the differential privacy indistinguishability, i.e. being “hidden”. We propose

two concepts for a traces being hidden: its presence and its hotness. A trace t is present in

f iff. f (t) > 0. Similarly, a trace is “hot” in f iff. f (t) > η where η is some pre-defned

threshold.

4.2.3.1 Hiding The Presence of A Trace

Given a frequency vector f and some trace t which is present in f , i.e. f (t) > 0, to hide

′ its presence in differential privacy, there must be some neighboring vector f where t is

absent, i.e. f ′ (t) = 0 and d(f , f ′) ≤ τ . However, there is another constraint that must be

considered. Recall that in Section 3.1, the traces are defned inductively by the family of

extension functions ext. A trace t is a prefx of t ′ if t ′ ∈ ext(t) ∪ ext2(t) ∪ Note that here

we use extk to denote the composition of the extension function k times. It’s obvious that if t

′ is absent, t ′ should be absent too. Thus, in the neighboring vector f , f ′ (t ′) = 0 for all t ′ of

46

ff

ff

ff ff ff

ff

ff ff

which t is a prefx. It’s easy to see that the diffculty of hiding a trace t in a frequency vector

f is the sum of the frequencies of t and of all t ′ for which t is a prefx.

4.2.3.2 Hiding The Hotness of A Trace

The second scenario, hiding the hotness of traces, is similar to hiding the presence. The

difference is that a hotness threshold η is introduced. For a hot trace t in vector f , i.e.

′ f (t) > η , to hide its hotness, τ should be at least the minimum distance between f and f

where t is cold, i.e. f ′ (t) ≤ η . Note that there’s not need to consider whether the traces for

which t is a prefx are hot or not, because it is possible that a trace is hot while its prefx is

cold. Take call chains (one of the exemplars of software traces defned in Section 3.1) as an

example. Suppose there are two call chains c1 =< m1,m2 > and c2 =< m1,m2,m3 >. c1 is

a prefx of c2 because method m2 calls to method m3. But suppose that the call statement to

m3 is in a CFG-loop, e.g., a for-loop. Therefore, at run time, it’s possible that the frequency

of c2 is larger than that of c1.

The diffculty of hiding the hotness of t in f is equal to f (t) − η . If a trace is not hot in

a frequency vector, the diffculty of hiding its hotness in the vector is zero.

4.2.4 Selecting Sketch Size

The size of count sketch is an important parameter to tune for achieving balance between

accuracy and effciency, because it is a hash functions based data structure. The output size

of hash functions should be chosen carefully such that hash collisions does not become a

dominant factor to the analysis error. We set number of rows, i.e. number of pairs of hash

functions, as 256. For number of columns, i.e. the output size of hash functions, instead of

fxing it as an arbitrarily large number, we confgure it to be approximately the same as the

number of unique traces covered by users when they run the software. More specifcally, a

47

small set of opt-in users (in our experimental evaluation, we use 10% of all simulated users)

are selected to report the traces they have covered, and the number of columns of the count

sketch will be confgured as the smallest power of 2 greater than or equal to the number of

unique traces covered by opt-in users. Our work in Chapter 3 uses the same approach. In

reality, this set of opt-in data can come from in-house testing.

4.3 Evaluation

To evaluate the proposed approach, we use the same 15 Android apps and profling

approach used in the coverage analysis. The offcial Android application testing tool Monkey

is used to emulate users. More specifcally, we frst instrument the apps to record when an

app method is entered or exited. The instrumentation is introduced with the Soot rewriting

tool [49]. We then run Monkey 1000 times (simulating 1000 users) on each app. During

each run, a trace of enter/exit events is collected. The collection is terminated when the total

number of enter events in a trace reaches 10× the number of application methods. Then

from these enter/exit events, call chains and enter/exit traces are determined.

In the evaluation of coverage analysis (Section 3.4), we limit the length of call chains to

be within 10 and enter/exit traces to be within 20. This limit ensures that the exploration

of hot traces (Section 3.3) can be bounded. Such exploration is not possible for frequency

information, since a hot trace may have a cold prefx (as opposed to coverage information,

where a covered trace can only have covered prefxes). Thus, there is no limit for call chain

length for the experiments conducted in this section. However, we do keep the length limit

for enter/exit traces, because the number of them gets extremely large when unlimited.

In the analyzed data, the sum of frequencies of all call chains for each user, i.e. k, is

equal to 10× the number of application methods. For enter/exit traces, we aim to have

48

ff ff

ff ii

k equal to 20× the number of application methods. However, here it is possible that k is

less than that number, because when the collection of traces is terminated, there can be

enter events whose matching exit events are not yet observed. To fx this issue, we append

matching exit events to the traces so that the sum of frequencies of all enter/exit traces for

each user is always 20× the number of application methods.

Since we limit the length of enter/exit traces to be at most 20, ignoring the traces of

length more than 20 causes k not equal to 20x the number of application methods. Instead

of discarding their frequencies, we accumulate them into the enter/exit traces of length 20

which are also their prefxes. This essentially makes the frequency of an enter/exit trace of

length 20 to not represent the frequency of itself but the sum of frequencies of itself and of

all the traces for which it is a prefx. The source code that implements the randomization,

the simulated traces, and instructions to reproduce the experimental results presented in this

section are publicly available in https://presto-osu.github.io/dp-trace-freq.

4.3.1 Hiding The Presence of Traces

This section and the following section evaluate the frequency oracle proposed in Sec-

tion 4.2, using two different strategies for deciding the parameter τ: hiding the presence

and hiding the hotness of traces. This section uses the frst problem: hiding the presence of

certain traces.

Let D(f , t) be the diffculty of hiding the presence of t in f , as defned in Section 4.2.3.1.

To hide the presence of any trace t that appears in at least one of the n users who are partici-

pating in the software trace data collection process, τ should be set as max1≤i≤n D(f i, t).

However, τ must be determined in advance and hard-coded into the software before that

software is deployed to the users. The developers cannot predict what the real frequency

49

https://presto-osu.github.io/dp-trace-freq

ff ii

ff ii

ff ii

vectors f i will look like. To solve this problem, we leverage an approach similar to the

one from the earlier chapter: we assume access to the true local information for some set

of opt-in users. In our experiments, we choose randomly 10% of the 1000 simulated users

and use their real frequency vectors to approximate the appropriate values used for τ in

the experiments, as described below. Only the remaining 90% users are assumed to be

participating the differential privacy data collection process. In reality, the developers may

collect such real frequency vectors from in-house testing, or from real users who agree to

share their data with the developers. Recall that in Section 4.2.4, to decide the appropriate

size for the sketch, 10% users are randomly selected as opt-in users. Here we use the same

set of users, denoted by “tester” in Figure 4.1 and referred to as “test users” in the rest of

this section. We will refer the users participating in the differentially-private data collection

as “real users”.

Let U ′ be the set of test users and U be the set of users that participate in the differentially-

private data collection (i.e., the 90% of users, as described above). Following an approach

similar to prior work [62], let τ(t) be the value of τ for hiding the presence of t in the

frequency vectors of all the users in U , i.e. τ(t) = maxui∈U D(f i, t). For all traces T that

appear in the frequency vectors for users from U , their diffculties, i.e. τ(t) for t ∈ T , are

sorted in ascending order. The x percentile of this list (depending on how many traces

we intend to cover for DP protection) should be taken as the value for τ . In the proposed

approach, τ(t) and the x percentile is approximated from the set U ′ of test users. That is, the x

percentile is taken from the sorted list of τ ′ (t) for all t in T ′, where τ ′ (t) = maxui∈U ′ D(f i, t)

′and T ′ is the set of traces covered in the data of users ui ∈ U .

Table 4.1 shows the ratio of the value of τ approximated by the test users to the ground

truth value, with varying percentiles for each app. Ideally, a ratio close to 1 is the best. A

50

FF FF FF FF

Ratio of the approx. τ to the ground truth
app Call Chains Enter/Exit Traces

25% 50% 75% 25% 50% 75%
barometer 0.8 0.8 0.8 1.0 0.8 0.8

bible 0.6 0.8 0.8 0.7 0.7 0.9
dpm 0.9 0.9 1.0 1.0 0.9 0.9

drumpads 1.0 0.9 0.9 0.9 1.3 1.3
equibase 0.8 0.8 0.9 1.2 0.9 0.9
localtv 0.8 1.0 1.0 1.1 0.8 1.0

loctracker 0.8 1.0 1.0 1.3 1.1 1.1
mitula 1.0 1.0 1.0 1.0 0.8 0.8

moonphases 0.8 0.6 0.7 3.4 2.4 0.9
parking 0.7 0.7 0.8 0.8 0.8 0.7
parrot 1.0 1.0 1.0 0.9 0.9 0.9
post 1.0 0.9 1.0 1.2 1.1 1.0

quicknews 1.0 0.9 0.9 0.9 1.1 1.0
speedlogic 1.1 1.0 0.9 2.7 1.6 0.8

vidanta 1.1 1.0 0.9 0.9 0.8 0.7

Table 4.1: Ratio of the approximate value of τ from test users to the ground truth with
varying percentiles for hiding trace presence. The ratios are average values of 30 runs.

ratio greater than one means more noise is added than necessary, while a ratio less than 1

means insuffcient noise is added. As can be seen, most ratios are between 0.8 and 1.2. As

mentioned earlier, a similar approach has been used in prior work [62].

Error of frequency estimates. To evaluate the accuracy of the frequency oracle, we

measure the error of the frequency estimates. This error is the distance between the estimates

and the ground truth, over all traces covered by at least one real user. The error is normalized

by nk, which is the sum of all elements in the ground truth. Here n is the number of “real

1users”, i.e. 900. Thus, the reported error metric is 2nk ∑t |F(t) − F̂ (t)| where F and F̂ are

the vectors of ground truth and estimates, respectively.

Following prior work [62], the experiments explore values of 0.5, 1.0, and 2.0 for the

privacy budget ε , and 25%, 50%, and 75% for the percentage x of traces whose presence is

51

hidden with deferential privacy. Figure 4.2 and Figure 4.3 show the error for each of the

combinations of ε and x for each app. The error is taken as the average of 30 independent

runs. Note that we also collected data for protection at x = 100% (i.e., τ is large enough to

hide the presence of every covered chain); as expected, the magnitude of noise is so large

that the resulting estimates are essentially meaningless. We observed similar trends in the

experiments for both call chains (Figure 4.2) and enter/exit traces (Figure 4.3).

Recall that the random noise being added to sketch elements is drawn from Laplace

distribution Lap(2
ε

τ). With increasing ε and decreasing x (which leads to decreasing τ),

the error decreases. Values of ε used by related prior work have been typically in the

range of 1 to about 4 [18, 55]. As can be seen in Figure 4.2 and Figure 4.3, for ε = 2

our experiments indicate that typically 50% of observed traces can be hidden (i.e., there is

“plausible deniability” that they never were executed) while achieving overall normalized

error of around 1%. Increasing the protection to 75% of the chains typically increases the

error by a few percentage points. Overall, these measurements indicate that such differential

privacy protection can be ensured for many call chains and enter/exit traces of individual

software users, while still achieving accurate population-wide frequency estimates.

4.3.2 Hiding The Hotness of Traces

This section evaluates the approach for hiding the hotness of traces, using a similar

′method as the one described in the previous section. The set U of test users is randomly

selected (as 10% of all users) and their real frequency data is used to approximate the value

of τ . Recall that a trace is considered hot at user end if its frequency is above threshold η .

k ′ ′We set η as where T is the set of traces that appear in U . This is approximately the |T ′|

average frequency of a trace. We also observed similar result for other threshold values.

52

ff ii ff ii ff ii

-1 0 1

0.005
0.010
0.015

NE
barometer

-1 0 1
0.000

0.002

0.004

bible

-1 0 1
0.00

0.01

0.02

dpm

-1 0 1
0.0000

0.0025

0.0050

drumpads

-1 0 1

0.005

0.010

0.015
equibase

-1 0 1
0.00

0.02

0.04

NE

localtv

-1 0 1
0.00

0.01

0.02

loctracker

-1 0 1
0.00

0.05

mitula

-1 0 1
0.00

0.05

moonphases

-1 0 1

0.0025

0.0050

0.0075
parking

-1 0 1
log

0.00

0.01

0.02

NE

parrot

-1 0 1
log

0.00

0.01

post

-1 0 1
log

0.00

0.01

0.02
quicknews

-1 0 1
log

0.00

0.02

0.04
speedlogic

-1 0 1
log

0.00

0.02

vidanta

x = 25 x = 50 x = 75

Figure 4.2: Normalized error (NE) for frequency estimates for call chains with varying
privacy budget ε and percentage of hidden (presence) traces x.

The value of τ for hiding the hotness of a trace t in all the users in U is approximated as

τ(t) = maxui∈U ′ D(f i, t), where D(f i, t) is the diffculty of hiding the hotness of t in f i as

′defned in Section 4.2.3.2. Note that if a trace is not hot in any user in U , τ(t) = 0. Then

′τ(t) for all t that are hot in at least on user in U are sorted in ascending order, and the x

percentile is taken to be the value of τ . The ratios of the approximated τ to the ground truth

are listed in Table 4.2. Most of them are close to 1, while there are some outliers such as 4.8

and 0.3.

Error of frequency estimates. Figure 4.4 and Figure 4.5 show the normalized error of

frequency estimates of all the traces covered by at least one real user for hiding the hotness

of traces with ε varying in {0.5,1.0,2.0} and x varying in {25,50,75}. As expected, the

53

-1 0 1
0.00

0.05

0.10
NE

barometer

-1 0 1
0.00

0.01

0.02

bible

-1 0 1
0.00

0.05

0.10

dpm

-1 0 1
0.00

0.05

drumpads

-1 0 1
0.00

0.05

equibase

-1 0 1
0.0

0.1NE

localtv

-1 0 1
0.00

0.02

0.04

loctracker

-1 0 1
0.0

0.2

0.4
mitula

-1 0 1
0.0

0.5

moonphases

-1 0 1
0.00

0.02

parking

-1 0 1
log

0.00

0.05

0.10

NE

parrot

-1 0 1
log

0.00

0.05

post

-1 0 1
log

0.00

0.05

0.10
quicknews

-1 0 1
log

0.0

0.1

0.2
speedlogic

-1 0 1
log

0.0

0.1

vidanta

x = 25 x = 50 x = 75

Figure 4.3: Normalized error (NE) for frequency estimates for enter/exit traces with varying
privacy budget ε and percentage of hidden (presence) traces x.

trend is similar to that of hiding the presence. The error increases as ε decreases (less privacy

budget) or x increases (more traces to hide).

The only exception is speedlogic. In Figure 4.4, for ε = 0.5, the error for x = 75 is

lower than that for x = 50. This is because of the under-approximation of τ (the ratio in

Table 4.2 for speedlogic call chains is 0.5 and 0.3 for x = 50 and x = 75 respectively).

The ground truth τ for x = 50 and x = 75 is 23 and 43 respectively, while the approximation

is only 12 and 11. In Figure 4.5, the error of x = 25 is higher than that of x = 50 for ε = 0.5.

This is caused by the over-approximation of τ: 47 versus 9 (averaged over 30 runs). Also,

there is an anomaly for x = 25 alone. Instead of going down as ε increases, the error is

abnormally lower for ε = 1 than for ε = 2. We investigated and found that the approximation

54

Ratio of the approx. τ to the ground truth
app Call Chains Enter/Exit Traces

25% 50% 75% 25% 50% 75%
barometer 1.1 0.9 1.2 1.5 1.7 0.8

bible 1.8 0.9 1.5 1.1 1.6 2.1
dpm 0.9 1.0 1.0 1.1 1.0 0.8

drumpads 0.9 1.1 0.8 2.0 2.2 1.5
equibase 1.0 1.0 1.2 0.5 0.8 0.9
localtv 1.2 1.0 0.7 1.3 0.9 0.7

loctracker 0.7 0.9 0.9 0.9 0.9 0.9
mitula 0.9 0.8 0.9 1.0 0.9 1.8

moonphases 0.7 0.9 0.8 1.2 0.7 1.6
parking 1.7 4.8 4.8 1.8 2.0 1.6
parrot 0.8 0.8 0.8 0.8 1.0 1.0
post 1.1 1.0 1.0 0.8 0.8 1.0

quicknews 1.3 1.1 1.0 1.0 1.0 0.8
speedlogic 1.0 0.5 0.3 8.0 1.2 1.0

vidanta 0.8 1.0 1.0 1.1 0.7 0.8

Table 4.2: Ratio of the approximate value of τ from test users to the ground truth with
varying percentiles for hiding the hotness. The ratios are average values of 30 runs.

of τ was not stable: over-approximated for ε = 0.5 and 1.0, but under-approximated for

ε = 2.0.

Overall, high accuracy is achieved for all values of ε when at most half of hot traces

are protected: for both call chains and enter/exit traces, error is less than 3% for most apps

and less than 6% for the other three apps. Even for 75% protection rate, for most apps we

observe less than 6% error with higher privacy budgets, and less than 10% with the lowest

privacy budget.

One open question is how to improve the results obtained by test users. As discussed

early, sometimes τ values obtained from this set of users are signifcantly different from the

τ values for the real users. As discussed for app speedlogic, this could lead to unreliable

frequency estimates. The key issue is that the true frequencies over the test users may

55

differ signifcantly from the true frequencies over the users that participate in the actual data

collection. Future work should consider techniques for (differentially-private) detection

of such divergence, and explaining to software developers the potential impact of the

divergence.

-1 0 1

0.005

0.010

0.015

NE

barometer

-1 0 1
0.00

0.05

bible

-1 0 1
0.00

0.02

0.04

dpm

-1 0 1
0.00

0.02

0.04

drumpads

-1 0 1

0.005

0.010

0.015
equibase

-1 0 1

0.02

0.04

NE

localtv

-1 0 1

0.01

0.02
loctracker

-1 0 1

0.02

0.04
mitula

-1 0 1
0.00

0.02

moonphases

-1 0 1
0.0

0.1

parking

-1 0 1
log

0.00

0.02

NE

parrot

-1 0 1
log

0.00

0.02

0.04
post

-1 0 1
log

0.000

0.025

0.050

quicknews

-1 0 1
log

0.005

0.010
speedlogic

-1 0 1
log

0.000

0.025

0.050

vidanta

x = 25 x = 50 x = 75

Figure 4.4: Normalized error (NE) for frequency estimates for call chains with varying
privacy budget ε and percentage of hidden (hotness) traces x.

4.3.3 Identifying Hot Traces

One of the examples of how the global sketch can be used is to identify the set of “hot”

traces whose global frequencies are greater than a pre-defned hotness threshold. This

information can be used, for example, for subsequent performance optimizations or software

functionality refnements. To identify the set of (esimtated) hot traces, we consider the traces

56

-1 0 1
0.00

0.05

0.10
NE

barometer

-1 0 1
0.00

0.05

bible

-1 0 1
0.00

0.05

0.10
dpm

-1 0 1
0.00

0.02

0.04

drumpads

-1 0 1

0.005

0.010
equibase

-1 0 1

0.01
0.02
0.03

NE

localtv

-1 0 1

0.01

0.02

loctracker

-1 0 1
0.00

0.05

0.10
mitula

-1 0 1
0.0

0.1

0.2
moonphases

-1 0 1
0.0

0.1

0.2
parking

-1 0 1
log

0.00

0.02

0.04

NE

parrot

-1 0 1
log

0.00

0.02

0.04

post

-1 0 1
log

0.00

0.02

0.04
quicknews

-1 0 1
log

0.01
0.02
0.03

speedlogic

-1 0 1
log

0.00

0.05

vidanta

x = 25 x = 50 x = 75

Figure 4.5: Normalized error (NE) for frequency estimates for enter/exit traces with varying
privacy budget ε and percentage of hidden (hotness) traces x.

covered by the pre-deployment test data. If the frequency estimate of a trace in the global

sketch is above the threshold, the chain is reported as being hot. In our experiments, we

choose the hotness threshold to be kn (where n is the number of users supplying randomized

sketches, and k is the sum of frequencies per user) divided by the number of unique traces

in the test data. This threshold approximates the average frequency of a trace. Note that

the threshold here is not the same thing as the local hotness threshold η used for hiding the

hotness of traces discussed in Section 4.2.3.2.

Figure 4.6 shows the recall and precision of the identifed hot traces. The results are

average values of the 9 different combinations of three ε values: 0.5,1.0,2.0; and three x

values: 25,50,75. Each of the combination is run 30 times. Figure 4.6a and Figure 4.6b use

57

the protection strategy of hiding the presence, while Figure 4.6c and Figure 4.6d use hiding

the hotness. As can be seen, the recall in all the four fgures are very high (above 0.96). The

precision is all above 0.96 except for three apps in Figure 4.6b. This is because their low

precision for x = 75. For example, the precision of moonphases for ε = 0.5 and x = 75 is

below 0.8. The reason for the low precision is the high error of the frequency estimates,

which is shown in Figure 4.3.

4.3.4 Local Cost

The running time to compute local randomized sketches is part of the expense that a

software user incurs when participating in this data collection. The running time for local

sketch construction is shown in Table 4.3. This cost includes the hashing of traces to sketch

elements, the updates of those elements based on frequency information, and the subsequent

addition of randomized noise to each element. As can be seen from these measurements,

the local cost is rather low and therefore suitable for practical use.

58

Running time in seconds
app

Call Chains Enter/Exit Traces
barometer 0.13 0.12

bible 0.07 0.07
dpm 0.06 0.07

drumpads 0.04 0.06
equibase 0.05 0.12
localtv 0.10 0.11

loctracker 0.03 0.07
mitula 1.47 0.28

moonphases 0.09 0.04
parking 0.05 0.07
parrot 0.32 0.32
post 0.14 0.18

quicknews 0.13 0.24
speedlogic 0.01 0.01

vidanta 0.34 0.34

Table 4.3: Cost of building local randomized sketches, averaged over 900 users.

59

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.5

1.0
recall precision

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.5

1.0
recall precision

(a) Call Chains with Hidden Presence. (b) Enter/Exit Traces with Hidden Presence.

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.5

1.0
recall precision

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.5

1.0
recall precision

(c) Call Chains with Hidden Hotness. (d) Enter/Exit Traces with Hidden Hotness.

Figure 4.6: Recall and precision for identifying hot traces averaged over 9 combinations of
varying privacy budget ε (0.5,1.0,2.0) and percentage of hidden traces x (25,50,75).

60

4.4 Summary

This chapter tackles the problem of frequency analysis of software traces, which is a

generalization of the coverage analysis studied in Chapter 3. The difference between these

two problems is that in frequency analysis, each user’s local data is a vector of natural

numbers representing the number of times each traces is covered by the user, while in

coverage analysis, the local data is a vector of zeros or ones indicating weather a trace is

covered.

Same as in the approach for coverage analysis, count sketch is used to handle the issue

caused by unbounded domain size of traces. To achieve strong privacy protection, we employ

the Laplace Mechanism parameterized by τ which specifes how distant the neighboring

inputs are. Only neighboring inputs are guaranteed with differential privacy.

Using the same emulated traces collected in the evaluation of coverage analysis in

Section 3.4, we conduct extensive experiments that demonstrate the effectiveness of this

approach.

61

Chapter 5: Deploying LDP Frequency Analysis of Software Traces

The techniques presented in the previous two chapters defne and evaluate the core

algorithms for LDP coverage/frequency analysis of software traces. However, in order to

deploy an actual data collection scheme, several open problems need to be solved. First,

how should an analyst select the tradeoffs between accuracy and privacy before the data

collection is deployed? Recall that the approaches described earlier use count sketch, a hash

function based data structure, to share the data between users and the server. To improve

accuracy due to potential hash collisions, multiple pairs of hash functions are used, instead

of the basic version with a single pair of hash functions. Therefore, the local data at user

end is a sketch matrix of t × m where t is the number of pairs of hash functions and m is

the size of the output of hash functions hi which map the domain of traces to integers in

{1, ...,m}. Chapters 3 and 4 propose two different randomization algorithms for Count

Sketch to achieve ε-differential privacy. The local randomizers are parameterized with ε ,

known as the “privacy budget”. Given that the randomizer at each row of the local sketch

has privacy budget ε , the overall privacy budget for the entire count sketch is thus t × ε .

In the evaluations of Chapters 3 and 4, we set t as 256, and ε as relatively small values

used by most other works [4, 18, 62]. This means that the effective privacy budget t × ε

is large. While this approach achieves high accuracy of estimates, using this fxed large

privacy budget is clearly undesirable. Our goal is to understand better the tradeoffs between

62

sketch shape (i.e., number of rows m and number of columns t) and accuracy, and to defne

an approach for selecting sketch size before deployment of the LDP analysis. Section 5.1

discusses these problems and the proposed solutions for frequency analysis.

The second issue is the potential under-randomization on users’ local data. Recall that

in Chapter 4, we proposed the defnition of neighbors based on the parameter τ , which

essentially specifes the limit on the distance between neighbors for which the differential

privacy indistinguishability is guaranteed. The amount of noise added to each user’s raw

data by the local randomizer is dependent on τ , and its value is estimated by the developers

from a set of test users whose raw data is available to them. This process of confguring τ

happens ahead of the time when the software is deployed to all users, because randomization

of the data is performed at user end so that only each user herself has access to her own raw

data and only the randomized version of the data is transmitted to the analytics server which

is controlled by the software developers. However, a user’s real data (i.e. the frequency

vector of software traces) in practice could be different from the data of the test users, such

that the value of τ used to achieve the intended protection on traces is much less than the

value of τ that should have been used to achieve the same level of DP guarantee for such

a user. If the estimated τ is less than the real τ for a user’s data, that means insuffcient

amount of noise is added to the user’s raw data and therefore the claimed DP protection

does not hold. To assess and improve the scenario when there is deviation of τ in practice,

Section 5.2 conducts a series of experiments and proposes an improvement on the approach

in Chapter 4 to mitigate under-randomization.

63

′′ff ff

ff
ff ′′

ffff
ff ′′ff ′′

5.1 Reducing The Privacy Budget

To better understand the issue of large privacy budget, we conduct a characterization

study on the effect of number of rows used in the count sketch. In the evaluations for

the coverage analysis and frequency analysis, the number of rows of the count sketch

is both set to 256, which produces low error for the frequency oracle but leads to high

privacy budget of the overall process, i.e. 256 × ε where ε is the privacy budget for each

independent row of the count sketch. To prove this statement, consider two neighboring

′ frequency vectors f and f . Let Ri (i ∈ {1, ..,256}) be the process that maps the input

vector to a single row of the count sketch and adds Laplacian noise to it. Let R be the overall

process that produces the whole count sketch with 256 rows. For any output count sketch

Z = (Z1, ...,Z256) where Zi is a single row produced by Ri, it has been shown in Section 4.2

εthat P[Ri(f)=Zi] ≤ e , where P[...] denotes the probability of some event. Consequently,
P[Ri(f ′)=Zi]

∏
256P[R(f)=Z] i=1 P[Ri(f)=Zi] 256ε=

∏
256 ≤ e .

P[R(f ′)=Z] i=1 P[Ri(f ′)=Zi]

5.1.1 Characterization Study of the Number of Sketch Rows

In the experiments below, we explore different settings where the number of rows is less

than 256. More specifcally, we reduce the number of rows while increasing the number of

columns to keep the size of the sketch matrix fxed. This essentially makes the size of the

count sketch a budget, and keeping the budget fxed gives a fair comparison among different

sketch shapes. Other settings of the experiments in Section 4.3 are left unchanged. For

simplicity, we focus on the frequency analysis because it is a generalization of coverage

analysis and is thus more representative of realistic data collection.

To compare different numbers of rows for the frequency analysis, we repeat the ex-

periments in Section 4.3. The number of rows is set to be a power of two ranging from 1

64

to 256. The number of columns is increased so that the total size of the count sketch for

any of the settings is the same as it is for 256 rows. For example, let m be the number of

columns for 256 rows. Then for 128 rows, the number of columns is 2 × m; for 64 rows, the

number of columns is 4 × m, and so on. The same metric of error as in Section 4.3 is used.

For simplicity, we choose the scenario for hiding the presence of 50% traces and ε = 2 as

an example. Figure 5.1 and Figure 5.2 show the result (average of 5 runs) for call chains

and enter/exit traces respectively. The same trend is observed for all apps studied in the

experiment. Smaller number of rows leads to worse error. As the number of rows gets closer

to 1, the error gets higher faster.

In count sketch, multiple rows are used to reduce the error caused by hash collisions.

However, since we choose the number of columns (the range of hash functions) to be close

to the number of traces covered by the test users and the number of columns are increased

exponentially as the number of rows is decreased, the effect of hash collisions is not the

reason causing this trend. Recall that the fnal estimate of the frequency of a given trace is

the median of the estimates retrieved from each row of the count sketch matrix. Each of

the estimates is a randomized value whose expected value is the real value because it is an

unbiased estimate as achieved by both the randomized response mechanism in Chapter 3

and the Laplace mechanism in Chapter 4. Taking the median of those estimates reduces the

error.

5.1.2 Confguring the Number of Sketch Rows

The characterization study shows that for most of the analyzed apps, using fewer rows in

the count sketch still produces low error for the estimates. Based on this insight, we propose

to amend the overall data collection process for frequency analysis in Figure 4.1 with the

65

0 1 2 3 4 5 6 7 8

0.01

0.02

NE

barometer

0 1 2 3 4 5 6 7 8

0.001

0.002

0.003

bible

0 1 2 3 4 5 6 7 8

0.005

0.010

dpm

0 1 2 3 4 5 6 7 8

0.001

0.002

0.003

drumpads

0 1 2 3 4 5 6 7 8

0.005

0.010

equibase

0 1 2 3 4 5 6 7 8

0.01

0.02

0.03

NE

localtv

0 1 2 3 4 5 6 7 8

0.005

0.010

0.015
loctracker

0 1 2 3 4 5 6 7 8

0.02

0.04

0.06

mitula

0 1 2 3 4 5 6 7 8

0.02

0.04

0.06

moonphases

0 1 2 3 4 5 6 7 8

0.0025

0.0050

0.0075

parking

0 1 2 3 4 5 6 7 8
log rows

0.01

0.02

NE

parrot

0 1 2 3 4 5 6 7 8
log rows

0.005

0.010

0.015

post

0 1 2 3 4 5 6 7 8
log rows

0.005

0.010

0.015

quicknews

0 1 2 3 4 5 6 7 8
log rows

0.01

0.02

0.03

speedlogic

0 1 2 3 4 5 6 7 8
log rows

0.01

0.02

vidanta

Figure 5.1: The normalized error of the estimates of all call chains with variant number of
sketch rows in frequency analysis.

confguration of the number of rows of count sketch. The amended approach is illustrated in

Figure 5.3. Compared to the original process, the data of test users are also used to perform

a series of experiments to decide the number of rows in the count sketch. In addition to τ

and η , which are the parameters for the amount of noise added by the local randomizer and

the hotness threshold for hiding the hotness of traces respectively, the test users’ data is also

used for determining the appropriate number of columns in the count sketch. The details of

how this process works are described next.

The software developers frst analyze the real data of the test users to determine the value

of τ depending on the level of protection they are aiming for, and the value of η if they are

choosing the scenario where the hotness of traces are protected instead of presence. This

66

0 1 2 3 4 5 6 7 8

0.02

0.04

0.06

0.08

NE

barometer

0 1 2 3 4 5 6 7 8

0.005

0.010

bible

0 1 2 3 4 5 6 7 8

0.025

0.050

0.075
dpm

0 1 2 3 4 5 6 7 8

0.01

0.02

0.03

drumpads

0 1 2 3 4 5 6 7 8

0.02

0.04

0.06

equibase

0 1 2 3 4 5 6 7 8

0.05

0.10

NE

localtv

0 1 2 3 4 5 6 7 8

0.02

0.04
loctracker

0 1 2 3 4 5 6 7 8

0.05

0.10

0.15

mitula

0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

moonphases

0 1 2 3 4 5 6 7 8

0.01

0.02

0.03

parking

0 1 2 3 4 5 6 7 8
log rows

0.025

0.050

0.075

NE

parrot

0 1 2 3 4 5 6 7 8
log rows

0.02

0.04

0.06

post

0 1 2 3 4 5 6 7 8
log rows

0.02

0.04

quicknews

0 1 2 3 4 5 6 7 8
log rows

0.1

0.2
speedlogic

0 1 2 3 4 5 6 7 8
log rows

0.025

0.050

0.075

vidanta

Figure 5.2: The normalized error of the estimates of all enter/exit traces with variant number
of sketch rows in frequency analysis.

process is the same as the original approach in Section 4.2. Then a series of experiments are

conducted on the test users using various confguration for the size of the count sketch. In

each experiment, the local randomizer is run on each user and local sketches are constructed.

The global sketch is constructed by aggregating all the local sketches. By inquiring the

global sketch, the developers obtain estimates of frequency for all the software traces covered

by at least one test user. The normalized error of the estimates (as used in the evaluation in

Section 4.3) is calculated as the comparing metric for different sketch size confgurations.

The only difference between the experiments is the size of count sketch. The base line

confguration is 256(rows) × m(columns) where m is the smallest power of 2 that is greater

than or equal to the size of the set of traces covered by the test users. Other confgurations

67

are 1× 256m, 2× 128m, 4× 64m, ..., 128× 2m. The number of rows is always a power of 2

and the total size is always 256m. Each confguration is repeated 5 times and the average

error is taken. The one with the smallest number of rows that achieves the target error, which

is specifed by the developers, will be used in the fnal deployment of the software. Because

the error decreases almost monotonically as the number of rows grows, as we learned from

the characterization study, a binary search strategy can be used instead of trying all of the

confgurations. An alternative simple strategy is to search from the smallest number of rows

and stop until the target error is reached. This strategy takes less time than the binary search

when the smaller numbers of rows are enough to achieve the target error. For example, if

one single row is enough to achieve the target error, the binary search strategy requires 3

trails (4 rows, 2 rows, 1 row) while the simple approach takes just one trial.

Tester

Tester

App

User_1
(T1, f1)

User_2

(T2, f2)

User_n
(Tn, fn)

𝜏

𝚺
Analytics server

Laplace
Mechanism

Count
Sketch

Developer

𝜂

Sketch Size

Figure 5.3: Data collection scheme with confguration of number of sketch rows for fre-
quency analysis.

68

5.1.3 Evaluation

We evaluated the amended approach on the same 1000 simulated users for 15 Android

apps as used in the evaluation for the original approach. More details of the process of

obtaining the simulated data is in Section 4.3. However, in order to get the result for a larger

population of users (which is the realistic scenario where LDP data collection is useful), we

replicated each of the 1000 users by ten times. Then, 10% of the 10000 total resulting users

were randomly selected as test users. Note that for each repetition of the experiments, the

test users are selected independently. We set the target error to be 0.1.

Reduced Privacy Budget The most important goal of amending the data collection

approach is to reduce the number of rows in count sketch and therefore to reduce the

privacy budget. Table 5.1 shows the fnal count sketch size determined by the in-house

characterization stage for the frequency analysis of both call chains and enter/exit traces,

using ε = 2 and protecting 50% traces’ presence. For call chains, one single row is enough

to achieve the 0.1 target error for all apps. For enter/exit traces, one single row is enough for

most apps, and 4 rows are enough for all apps. This greatly reduces the privacy budget from

256 × 2 to 2 − 8 compared to the original approach. The number of columns is increased by

64− 256 times to keep the total sketch size the same as in the original approach which uses

256 rows. So, the volume of data shared between the users and the analytics server is not

increased. Note that increasing the number of columns does not affect the privacy budget.

Accuracy of Frequency Estimates An important question that needs to be answered is

how good are the estimates of frequencies of traces, using this amended approach. According

to the trend in Figure 5.1 and Figure 5.2, reducing the number of rows causes the error of

69

Count Sketch Size in Log Base 2
app call chains enter/exit traces

log2(#rows) log2(#columns) log2(#rows) log2(#columns)
barometer 0 20 0 20

bible 0 19 0 20
dpm 0 19 0 20

drumpads 0 18 0 19
equibase 0 18 0 19
localtv 0 21 1 20

loctracker 0 17 0 19
mitula 0 24 2 19

moonphases 0 19 2 17
parking 0 19 0 20
parrot 0 21 0 21
post 0 20 0 20

quicknews 0 20 0 21
speedlogic 0 16 0 17

vidanta 0 22 1 20

Table 5.1: The count sketch size (average of 5 runs) decided by the in-house characterization
stage of the amended approach, for frequency analysis using ε = 2 and 50% protection of
presence.

estimates go up. However, our goal is to keep the error under the target error while using as

few rows as possible. The in-house characterization experiments can only make sure that

the error for the test users is below the target error limit. So, this part of the experiments

focuses on the error for the real users.

Figure 5.4a and Figure 5.4b compare the normalized error for test users versus real users,

for call chains and enter/exit traces respectively. It indicates that the experimental study on

test users tends to exaggerate the error of estimates for real users. One likely explanation is

that the number of test users is expected to be signifcanly smaller than the number of real

users, and theoretically LDP analysis accuracy increases with the number of users. Given

70

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.00

0.02

0.04

0.06

0.08

test users real users

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.00

0.02

0.04

0.06

0.08

test users real users

(a) Call chains. (b) Enter/exit traces.

Figure 5.4: Normalized error (average of 5 runs) of estimates for test users versus real users
in the frequency analysis.

that the error for test users is below the target limit, the fnal global count sketch obtained

from the data of real users is very likely to achieve the target error limit.

5.2 Potential Under-Randomization

Both approaches for trace coverage and frequency analysis employ the local differential

privacy model where randomization on the data happens at user end compared to the central

model where the randomization happens at server side. The local randomizer at the user

end perturbs the user’s private raw data to ensure differential privacy. In the approach for

frequency analysis, the local randomizer is parameterized by τ which determines the level of

noise added to the user’s raw data. Recall that in Section 4.2.3, we proposed two scenarios

for hiding the information of software traces: hiding the presence of certain traces, and

hiding their hotness. We introduced the defnition of neighbors of frequency vectors based

on their ℓ1 distance and parameterized by τ which specifes the maximum distance between

71

neighboring frequency vectors. Consequently, the larger the value of τ is, the more noise

is needed by the local randomizer to achieve the intended DP indistinguishability among

neighbors.

In the evaluation in Section 4.3, a small portion (10%) of the 1000 emulated users is

selected (randomly) as testing users whose raw data is shared with the analytics server. One

of the ways of how these testing users are used is to confgure the value of τ . From the raw

data of the test users, the developers can get the set of traces covered by at least one test

user and their frequencies by each individual user. Then the value of τ can be decided based

on how many traces (25%, 50%, or 75%) need to be protected. Section 4.3 describes the

details of this process. Essentially, the value of τ embedded in the local randomizer is an

approximation of what it would have to be for the real users.

However, when the randomization happens at each user’s local side, τ could be different

from what it must be in order to protect the traces presence (or hotness) for that specifc user.

This deviation could cause under-randomization for that user when τ is less than what it

should be to deliver the claimed privacy guarantee for her data. Take the scenario of hiding

the presence of 50% traces as an example. If for some user’s frequency vector, τ is only big

enough to hide signifcantly fewer than 50% of her traces, there is a under-randomization

and for her, the DP guarantee is weakened.

We conducted a characterization study to obtain further insights on this issue. At the

local side, for each user, we compute τlocal and compare it with the value of τ used in the

actual local randomizer. More specifcally, let Ti be the frequency vector of traces by user ui,

and Ti(t) is the frequency of trace t (i.e. the number of times t is covered by user ui). For

each trace t such that Ti(t) > 0, we compute the diffculty of hiding its presence (or hotness)

in Ti. The defnition of diffculty and how it is computed are described in Section 4.2.3.

72

Then the diffculties are sorted in ascending order and the x percentile is taken as τlocal.

Recall that x here is the parameter that specifes how many traces are intend to be protected.

The DP guarantee claims that x% of the user’s traces are protected. Under-randomization

happens when τlocal is greater than τ .

Table 5.2 shows the under-randomization rates for each app, using x = 50% (for hiding

presence and hotness respectively) and ε = 2 on both the analysis of call chains and enter/exit

traces. On average, 38%/48% (for hiding the presence and hotness respectively for call

chains) and 46%/48% (for hiding the presence and hotness respectively for enter/exit traces)

users are affected by this issue. For hiding the presence, 3 out of 15 apps (call chains)

and 8 out of 15 apps (enter/exit traces) have more than half of users experiencing under-

randomization. The number is 8 (call chains) and 7 (enter/exit traces) for hiding the hotness.

This shows us that for many users, their DP guarantee is weakened. For example, for

localtv, the DP guarantee that at least 50% of the covered call chains’ presence is hidden

fails for 90% users. The next part of this section proposes an approach to tackle this problem.

5.2.1 Mitigating Under-Randomization

The underlying cause of the under-randomization issue is the difference between the

distributions of the data of test users and the data of real users. In order to alleviate (if not

completely eliminate) under-randomization, software developers have to be aware of the

severity of under-randomization and adjust the value of τ accordingly. Our solution is to

establish a feedback loop regarding τ between the real users and the developers. Figure 5.5

demonstrates the amended data collection process. Compared to the original scheme in

Figure 4.1, two changes are made. First, along with the randomized count sketch, the local

τi of each user are also shared with the analytics server. Unlike the frequency vectors, τi

73

call chains enter/exit traces
app presence hotness presence hotness

barometer 22% 82% 83% 100%
bible 31% 83% 53% 74%
dpm 28% 18% 58% 8%

drumpads 21% 92% 96% 7%
equibase 1% 12% 2% 50%
localtv 90% 6% 74% 9%

loctracker 67% 2% 65% 3%
mitula 34% 51% 1% 92%

moonphases 2% 70% 59% 31%
parking 32% 93% 47% 99%
parrot 10% 19% 27% 70%
post 43% 82% 36% 72%

quicknews 46% 12% 68% 5%
speedlogic 40% 36% 17% 78%

vidanta 1% 68% 0% 16%

Table 5.2: Percentage of users with under-randomization for call chain analysis and enter/exit
trace analysis with protecting 50% presence and hotness, ε = 2.0. Averaged over 5 runs.

should not be considered as sensitive data that could leak anything meaningful about a user’s

′privacy. The second change is that the server now computes a new parameter value τ by

′taking the maximum value of all local τi and the old value of τ . The new value τ is used

by all the local randomizers for the next data collection cycle. As a result, the value of τ is

gradually incremented until the under-randomization issue is mitigated.

This scheme can be applied in the general setting where there are several separate rounds

of data collection. In each round, some group of users from the previous round drops from

the collection, some group from the previous round remains, and some new users join the

collection. With each data collection round, the value of τ increases (if needed). Such a

scheme is likely to decrease the impact of under-randomization over time. The experiments

presented below quantify this observation.

74

Tester

Tester

App

User_1
(T1, f1, 𝜏1)

User_2

(T2, f2, 𝜏2)

User_n
(Tn, fn, 𝜏n)

𝜏

𝚺
Analytics server

Laplace
Mechanism

Count
Sketch

Developer

𝜂

𝜏'=Max(𝜏,𝜏1,…,𝜏n)

𝜏'

Figure 5.5: Data collection scheme with incremental update of τ for frequency analysis.

5.2.2 Evaluation

To simulate a data collection process with multiple rounds, we randomly divide the

simulated 10000 Android users into four groups: 1000 of them are used as test users, and

3000 of the rest for each batch. Each batch is considered as the participants in a data

collection round. The source code that implements the two refnements proposed in this

chapter, the simulated traces, and instructions to reproduce the experimental results are

publicly available in https://presto-osu.github.io/dp-trace-freq.

Figure 5.6, Figure 5.7, Figure 5.8, and Figure 5.9 illustrate how the percentage of users

experiencing under-randomization in each batch changes as the batch number increases.

The experiments in Figure 5.6 and Figure 5.7 (Figure 5.8 and Figure 5.9) are conducted on

call chains (enter/exit traces), protecting 50% traces’ presence and hotness respectively, and

using ε = 2.0. Here the defnition of under-randomization rate is the number of users whose

75

https://presto-osu.github.io/dp-trace-freq

local τ is greater than τ used by the randomizer divided by the total number of users in each

batch. Each experiment is repeated 5 times and the average is taken.

The fgures show that for all apps, especially those having high under-randomization

rate at the frst batch, the rate drops rapidly at the second batch. Even though some users

may have a weakened DP protection during the frst batch, our approach can greatly curb

the under-randomization and thus improve privacy beginning at the second batch.

1 2 3
0.00

0.25

0.50

0.75

1.00

UR
 ra

te

barometer

1 2 3
0.00

0.25

0.50

0.75

1.00
bible

1 2 3
0.00

0.25

0.50

0.75

1.00
dpm

1 2 3
0.00

0.25

0.50

0.75

1.00
drumpads

1 2 3
0.00

0.25

0.50

0.75

1.00
equibase

1 2 3
0.00

0.25

0.50

0.75

1.00

UR
 ra

te

localtv

1 2 3
0.00

0.25

0.50

0.75

1.00
loctracker

1 2 3
0.00

0.25

0.50

0.75

1.00
mitula

1 2 3
0.00

0.25

0.50

0.75

1.00
moonphases

1 2 3
0.00

0.25

0.50

0.75

1.00
parking

1 2 3
batch

0.00

0.25

0.50

0.75

1.00

UR
 ra

te

parrot

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
post

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
quicknews

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
speedlogic

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
vidanta

Figure 5.6: Under randomization (UR) rate (average of 5 runs) by batch for hiding the
presence of 50% call chains, ε = 2.0.

As the value of τ is gradually increased, there is expected to be some impact on the

accuracy of the estimates because greater τ leads to more random noise added to the raw

data. Figure 5.10, Figure 5.11, Figure 5.12, and Figure 5.13 show the normalized error

76

1 2 3
0.00

0.25

0.50

0.75

1.00

UR
 ra

te

barometer

1 2 3
0.00

0.25

0.50

0.75

1.00
bible

1 2 3
0.00

0.25

0.50

0.75

1.00
dpm

1 2 3
0.00

0.25

0.50

0.75

1.00
drumpads

1 2 3
0.00

0.25

0.50

0.75

1.00
equibase

1 2 3
0.00

0.25

0.50

0.75

1.00

UR
 ra

te

localtv

1 2 3
0.00

0.25

0.50

0.75

1.00
loctracker

1 2 3
0.00

0.25

0.50

0.75

1.00
mitula

1 2 3
0.00

0.25

0.50

0.75

1.00
moonphases

1 2 3
0.00

0.25

0.50

0.75

1.00
parking

1 2 3
batch

0.00

0.25

0.50

0.75

1.00

UR
 ra

te

parrot

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
post

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
quicknews

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
speedlogic

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
vidanta

Figure 5.7: Under randomization (UR) rate (average of 5 runs) by batch for hiding the
hotness of 50% call chains, ε = 2.0.

of estimates for the experiments corresponding to Figure 5.6, Figure 5.7, Figure 5.8 and

Figure 5.9 respectively. On average, the error becomes 1.7 times (in Figure 5.10), 6.3 times

(in Figure 5.11), 3.5 times (in Figure 5.12), and 6.6 times (in Figure 5.13) larger for the third

round of data collection compared to the error for the frst round. However, for most apps,

the error is still below around 1% (call chains) and 5% (enter/exit traces).

77

1 2 3
0.00

0.25

0.50

0.75

1.00

UR
 ra

te

barometer

1 2 3
0.00

0.25

0.50

0.75

1.00
bible

1 2 3
0.00

0.25

0.50

0.75

1.00
dpm

1 2 3
0.00

0.25

0.50

0.75

1.00
drumpads

1 2 3
0.00

0.25

0.50

0.75

1.00
equibase

1 2 3
0.00

0.25

0.50

0.75

1.00

UR
 ra

te

localtv

1 2 3
0.00

0.25

0.50

0.75

1.00
loctracker

1 2 3
0.00

0.25

0.50

0.75

1.00
mitula

1 2 3
0.00

0.25

0.50

0.75

1.00
moonphases

1 2 3
0.00

0.25

0.50

0.75

1.00
parking

1 2 3
batch

0.00

0.25

0.50

0.75

1.00

UR
 ra

te

parrot

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
post

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
quicknews

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
speedlogic

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
vidanta

Figure 5.8: Under randomization (UR) rate (average of 5 runs) by batch for hiding the
presence of 50% enter/exit traces, ε = 2.0.

78

1 2 3
0.00

0.25

0.50

0.75

1.00

UR
 ra

te

barometer

1 2 3
0.00

0.25

0.50

0.75

1.00
bible

1 2 3
0.00

0.25

0.50

0.75

1.00
dpm

1 2 3
0.00

0.25

0.50

0.75

1.00
drumpads

1 2 3
0.00

0.25

0.50

0.75

1.00
equibase

1 2 3
0.00

0.25

0.50

0.75

1.00

UR
 ra

te

localtv

1 2 3
0.00

0.25

0.50

0.75

1.00
loctracker

1 2 3
0.00

0.25

0.50

0.75

1.00
mitula

1 2 3
0.00

0.25

0.50

0.75

1.00
moonphases

1 2 3
0.00

0.25

0.50

0.75

1.00
parking

1 2 3
batch

0.00

0.25

0.50

0.75

1.00

UR
 ra

te

parrot

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
post

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
quicknews

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
speedlogic

1 2 3
batch

0.00

0.25

0.50

0.75

1.00
vidanta

Figure 5.9: Under randomization (UR) rate (average of 5 runs) by batch for hiding the
hotness of 50% enter/exit traces, ε = 2.0.

79

1 2 3
0.0026

0.0027

0.0028

NE

barometer

1 2 3

0.0006

0.0008

bible

1 2 3
0.0014

0.0016

0.0018

dpm

1 2 3
0.00048

0.00050

0.00052

0.00054

0.00056
drumpads

1 2 3
0.0022

0.0024

0.0026

equibase

1 2 3

0.005

0.010

0.015

NE

localtv

1 2 3

0.002

0.003

0.004

loctracker

1 2 3

0.0070

0.0075

0.0080

0.0085

0.0090
mitula

1 2 3

0.01015

0.01020

0.01025
moonphases

1 2 3
0.0010

0.0011

0.0012

0.0013

parking

1 2 3
batch

0.0021

0.0022

NE

parrot

1 2 3
batch

0.0014

0.0015

0.0016

0.0017

0.0018
post

1 2 3
batch

0.0016

0.0018

0.0020

0.0022
quicknews

1 2 3
batch

0.0041

0.0042

0.0043

speedlogic

1 2 3
batch

0.0028

0.0030

0.0032
vidanta

Figure 5.10: Normalized error (average of 5 runs) by batch for hiding the presence of 50%
call chains, ε = 2.0.

80

1 2 3

0.002

0.003

0.004

0.005

NE

barometer

1 2 3

0.005

0.010

0.015

0.020
bible

1 2 3

0.006

0.007

0.008

0.009

dpm

1 2 3
0.0025

0.0050

0.0075

0.0100

drumpads

1 2 3

0.003

0.004

0.005
equibase

1 2 3
0.0064

0.0066

0.0068

0.0070

0.0072

NE

localtv

1 2 3

0.006

0.008

0.010

loctracker

1 2 3

0.0050

0.0055

0.0060

0.0065

mitula

1 2 3

0.0050

0.0075

0.0100

0.0125

0.0150
moonphases

1 2 3
0.00

0.02

0.04

0.06
parking

1 2 3
batch

0.0025

0.0050

0.0075

0.0100

NE

parrot

1 2 3
batch

0.004

0.006

0.008

post

1 2 3
batch

0.005

0.010

0.015

0.020

0.025
quicknews

1 2 3
batch

0.004

0.006

0.008

speedlogic

1 2 3
batch

0.005

0.010

0.015

0.020

0.025
vidanta

Figure 5.11: Normalized error (average of 5 runs) by batch for hiding the hotness of 50%
call chains, ε = 2.0.

81

1 2 3
0.008

0.010

0.012

0.014

NE

barometer

1 2 3

0.002

0.003

0.004
bible

1 2 3

0.01

0.02

0.03

0.04
dpm

1 2 3

0.005

0.010

0.015

drumpads

1 2 3

0.008

0.009

0.010

0.011

0.012
equibase

1 2 3

0.025

0.050

0.075

0.100

NE

localtv

1 2 3

0.004

0.006

0.008

loctracker

1 2 3
0.015

0.020

0.025

0.030

0.035
mitula

1 2 3

0.02

0.04

0.06

0.08

0.10
moonphases

1 2 3
0.003

0.004

0.005

0.006
parking

1 2 3
batch

0.008

0.009

0.010

0.011

0.012

NE

parrot

1 2 3
batch

0.006

0.007

0.008

0.009

post

1 2 3
batch

0.0050

0.0075

0.0100

0.0125

quicknews

1 2 3
batch

0.010

0.015

0.020

0.025
speedlogic

1 2 3
batch

0.00876

0.00877

0.00878

vidanta

Figure 5.12: Normalized error (average of 5 runs) by batch for hiding the presence of 50%
enter/exit traces, ε = 2.0.

82

1 2 3

0.01

0.02

0.03

0.04

0.05

NE

barometer

1 2 3

0.005

0.010

0.015

0.020

bible

1 2 3
0.008

0.010

0.012

0.014

0.016
dpm

1 2 3
0.002

0.003

0.004

0.005

drumpads

1 2 3

0.01

0.02

0.03

equibase

1 2 3
0.0035

0.0040

0.0045

0.0050

NE

localtv

1 2 3

0.006

0.008

0.010

0.012
loctracker

1 2 3

0.005

0.010

0.015

0.020
mitula

1 2 3
0.006

0.008

0.010

0.012

0.014
moonphases

1 2 3
0.00

0.02

0.04

0.06
parking

1 2 3
batch

0.004

0.006

0.008

0.010

0.012

NE

parrot

1 2 3
batch

0.003

0.004

0.005

0.006

0.007
post

1 2 3
batch

0.005

0.006

0.007

quicknews

1 2 3
batch

0.004

0.006

0.008

0.010

0.012

speedlogic

1 2 3
batch

0.0075

0.0100

0.0125

0.0150

vidanta

Figure 5.13: Normalized error (average of 5 runs) by batch for hiding the hotness of 50%
enter/exit traces, ε = 2.0.

83

5.3 Summary

This chapter focuses on two main issues regarding the deployment of the proposed LDP

frequency analysis: high privacy budget and potential under-randomization.

The frst part designs and conducts a characterization study on the effects of the number

of rows in the count sketch. The overall privacy budget is ε× the number of rows, where ε

is the privacy budget for a single row. We found that the accuracy of frequency estimates of

traces tends to decrease as fewer rows are used, with the overall size of count sketch fxed.

Based on this insight, we propose to confgure the sketch size by conducting pre-deployment

experiments on a set of test users. The smallest number of rows that achieves the target

accuracy will be used in the deployment. Evaluation of this solution shows that for most of

the analyzed apps, one row is enough to achieve 1% error.

The experiment in the second part reveals that a large number of users may be affected

by under-randomization, which happens when the τ parameter used by the local randomizer

is smaller than it needs to be in order to hide the intended percentage of traces covered by

the user. The amount of random noise added to each user’s raw data is determined by τ and

the value of τ is the same for all the local randomizers. To mitigate under-randomization,

we propose to increase the value of τ for the next data collection cycle based on feedback

from the users’ local τ values. Experiments show that the under-randomization rate drops

quickly while high accuracy is still achieved.

84

Chapter 6: Related Work

Differential privacy There is a large body of work on both the theory and practice of

differential privacy. As already discussed, several approaches based on randomized response

consider a single data item per user [8, 18, 55], while we are interested in a set of data items

(i.e., a set of locally-covered traces). Differentially-private analysis of software executions

has also been studied in prior work [61–63]. In those efforts the domain of possible

items is small, enumerated ahead of time before software deployment, and the randomizer

output is straightforward to generate and store. A key distinguishing feature of our work is

that the domain of possible traces is either infnite or very large, which requires different

randomization techniques. We address this problem by using a count sketch representation.

This allows tunable trade-offs between accuracy and representation size, as well as higher

accuracy for high-frequency traces. Effcient randomization of simple bitvectors has also

been considered [61]. Our effcient randomization (Section 3.2.3) requires more general

reasoning. Because of the small number of possible data items, these prior efforts do not

need to explore a large domain in order to identify hot items. In contrast, we need to develop

effective search in a domain containing billions of possible traces. We demonstrate how to

achieve this using considerations of trace prefxes and suffxes, and illustrate the approach

85

for context-free-language domains by exploring the states of the corresponding automaton

(Section 3.3).

Privacy-preserving techniques in programming languages and software engineering

The programming languages community has investigated techniques for testing and veri-

fcation of differentially-private algorithms and implementations [38, 56, 59, 64]. Privacy

issues are also important for many areas in software engineering, including design [25],

testing [9, 24, 34, 53], and defect prediction [32, 46, 47]. Other than the work described

earlier, we are not aware of attempts to employ differential privacy techniques in this area.

Given the strong theoretical properties of such techniques, and their increasing adoption in

industry and government [4, 14, 18, 35, 54], it is a worthwhile research goal to reconsider a

range of software engineering techniques using differential privacy machinery.

Analysis of deployed software Remote analysis of deployed software is an area with a

signifcant body of prior work. As one example, residual coverage monitoring [45] uses

coverage information from software users for testing purposes. GAMMA [43] collects data

from software users and orchestrates the data collection across program instances. Placement

of profling probes has been considered by several projects [15, 40]. Failure reproduction and

debugging are aided by collected data from deployed software [12]. Similarly, researchers

have proposed analysis of post-deployment failure reports [41].

Privacy in remote software analysis has been targeted by prior efforts. Anonymization

of collected data has taken several forms [13, 17]. As shown by privacy researchers [36, 37],

anonymization is not enough to provide strong privacy guarantees. Instead, we consider the

principled protection provided by local differential privacy. Remote software analyses from

prior work could potentially beneft from developing differentially-private versions for them.

86

Examples of such analyses include impact analysis and regression testing [44], as well as

failure analysis [28, 30, 31].

87

Chapter 7: Conclusions

There is a large body of prior work on software analysis that could be revisited with

increased emphasis on privacy in general, and differential privacy in particular [12, 13,

28, 30, 31, 41, 43, 44]. Such studies will contribute to broader efforts to integrate privacy-

preserving techniques in the analysis of deployed software, in response to growing needs

for better privacy of data collection. This dissertation studies one particular category of

software profling: software execution traces. We propose novel approaches based on local

differential privacy to achieve privacy-preserving remote analysis of software traces.

In particular, we consider two problems: coverage analysis and frequency analysis.

The former is about whether a trace is covered, while the latter is about how frequently a

trace is executed. Chapter 3 proposes a novel approach for coverage analysis, employing

count sketch to handle the exponentially large trace domain problem, as well as effcient

randomization. In addition, a technique is proposed for discovering the frequently covered

(hot) traces. Chapter 4 and Chapter 5 extend the work to the analysis of frequency of

traces, employing Laplacian random noise for achieving differential privacy and providing

the fexibility to choose between different protection modes. This work is the frst to

integrate differential privacy into the profling of software traces. Extensive experiments

using simulated users on Android application are conducted to demonstrate the effcacy of

the proposed approaches.

88

Bibliography

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and

N. R. Tallent. HPCToolkit: Tools for performance analysis of optimized parallel

programs. Concurrency and Computation: Practice and Experience, 22(6):685–701,

2010.

[2] G. Ammons, T. Ball, and J. Larus. Exploiting hardware performance counters with

fow and context sensitive profling. In PLDI, page 85–96, 1997.

[3] G. Ammons, J. Choi, M. Gupta, and N. Swamy. Finding and removing performance

bottlenecks in large systems. In ECOOP, pages 172–196, 2004.

[4] Apple. Learning with privacy at scale. https://machinelearning.apple.com/

2017/12/06/learning-with-privacy-at-scale.html, 2017.

[5] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. A survey of adaptive

optimization in virtual machines. Proceedings of the IEEE, 93(2):449–466, 2005.

[6] B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits. BLENDER: Enabling

local search with a hybrid differential privacy model. In USENIX Security, pages

747–764, 2017.

[7] T. Ball and J. Larus. Optimally profling and tracing programs. TOPLAS, 16(4):

1319–1360, July 1994.

89

https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

[8] R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta. Practical locally private heavy

hitters. In NIPS, pages 2285–2293, 2017.

[9] A. Budi, D. Lo, L. Jiang, and Lucia. kb-anonymity: A model for anonymized behaviour-

preserving test and debugging data. In PLDI, pages 447–457, 2011.

[10] M. Canini, V. Jovanovic,´ D. Venzano, B. Spasojevic,´ O. Crameri, and D. Kostic.´

Toward online testing of federated and heterogeneous distributed systems. In USENIX

ATC, pages 20–20, 2011.

[11] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.

In ICALP, pages 693–703, 2002.

[12] J. Clause and A. Orso. A technique for enabling and supporting debugging of feld

failures. In ICSE, pages 261–270, 2007.

[13] J. Clause and A. Orso. Camoufage: Automated anonymization of feld data. In ICSE,

pages 21–30, 2011.

[14] A. Dajan, A. Lauger, P. Singer, D. Kifer, J. Reiter, A. Machanavajjhala, S. Garfnkel,

S. Dahl, M. Graham, V. Karwa, H. Kim, P. Leclerc, I. Schmutte, W. Sexton, L. Vil-

huber, and J. Abowd. The modernization of statistical disclosure limitation at the

U.S. Census Bureau. https://www2.census.gov/cac/sac/meetings/2017-09/

statistical-disclosure-limitation.pdf, Sept. 2017.

[15] M. Diep, M. Cohen, and S. Elbaum. Probe distribution techniques to profle events in

deployed software. In ISSRE, pages 331–342, 2006.

[16] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Founda-

tions and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

90

https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf

[17] S. Elbaum and M. Hardojo. An empirical study of profling strategies for released

software and their impact on testing activities. In ISSTA, pages 65–75, 2004.

[18] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable

privacy-preserving ordinal response. In CCS, pages 1054–1067, 2014.

[19] Facebook. Facebook analytics. https://analytics.facebook.com, 2020.

[20] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java performance

evaluation. In OOPSLA, page 57–76, 2007.

[21] Google. Google Analytics. https://analytics.google.com.

[22] Google. Firebase Analytics. https://firebase.google.com, 2020.

[23] Google. Monkey: UI/Application exerciser for Android. https://developer.

android.com/studio/test/monkey, 2020.

[24] M. Grechanik, C. Csallner, C. Fu, and Q. Xie. Is data privacy always good for software

testing? In ISSRE, pages 368–377, 2010.

[25] I. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman, and A. Balissa.

Privacy by designers: Software developers’ privacy mindset. Empirical Software

Engineering, 23(1):259–289, 2018.

[26] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance debugging in the large via

mining millions of stack traces. In ICSE, pages 145–155, 2012.

[27] Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev. Differential privacy for

coverage analysis of software traces. In European Conference on Object-Oriented

Programming (ECOOP), pages 8:1–8:25, 2021.

91

https://analytics.facebook.com
https://analytics.google.com
https://firebase.google.com
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey

[28] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil. Applying classifcation techniques

to remotely-collected program execution data. In ESEC/FSE, pages 146–155, 2005.

[29] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C. Pierce, and A. Roth.

Differential privacy: An economic method for choosing epsilon. In CSF, pages

398–410, 2014.

[30] W. Jin and A. Orso. BugRedux: Reproducing feld failures for in-house debugging. In

ICSE, pages 474–484, 2012.

[31] W. Jin and A. Orso. F3: Fault localization for feld failures. In ISSTA, pages 213–223,

2013.

[32] Z. Li, X. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying. On the multiple sources and

privacy preservation issues for heterogeneous defect prediction. IEEE Transaction on

Software Engineering, pages 1–21, 2017.

[33] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug isolation via remote program

sampling. In PLDI, pages 141–154, 2003.

[34] Lucia, D. Lo, L. Jiang, and A. Budi. kbe-anonymity: Test data anonymization for

evolving programs. In ASE, pages 262–265, 2012.

[35] Microsoft. New differential privacy platform co-developed with Harvard’s OpenDP

unlocks data while safeguarding privacy. https://blogs.microsoft.com/

on-the-issues/2020/06/24/differential-privacy-harvard-opendp, 2020.

[36] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In

S&P, pages 111–125, 2008.

92

https://blogs.microsoft.com/on-the-issues/2020/06/24/differential-privacy-harvard-opendp
https://blogs.microsoft.com/on-the-issues/2020/06/24/differential-privacy-harvard-opendp

[37] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In S&P, pages

173–187, 2009.

[38] J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gaddamadugu, L. Wang, N. Somani,

M. Zhang, N. Sharma, A. Shan, and D. Song. Duet: An expressive higher-order lan-

guage and linear type system for statically enforcing differential privacy. Proceedings

of the ACM on Programming Languages, 3(OOPSLA), Oct. 2019.

[39] Oath. Flurry. http://flurry.com.

[40] P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and B. Liblit. Optimizing

customized program coverage. In ASE, pages 27–38, 2016.

[41] P. Ohmann, A. Brooks, L. D’Antoni, and B. Liblit. Control-fow recovery from partial

failure reports. In PLDI, pages 390–405, 2017.

[42] OpenDP. OpenDP. https://projects.iq.harvard.edu/opendp, 2020.

[43] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. GAMMA system: Continuous

evolution of software after deployment. In ISSTA, pages 65–69, 2002.

[44] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging feld data for impact

analysis and regression testing. In ESEC/FSE, pages 128–137, 2003.

[45] C. Pavlopoulou and M. Young. Residual test coverage monitoring. In ICSE, pages

277–284, 1999.

[46] F. Peters and T. Menzies. Privacy and utility for defect prediction: Experiments with

MORPH. In ICSE, pages 189–199, 2012.

93

http://flurry.com
https://projects.iq.harvard.edu/opendp

[47] F. Peters, T. Menzies, L. Gong, and H. Zhang. Balancing privacy and utility in

cross-company defect prediction. IEEE Transaction on Software Engineering, 39(8):

1054–1068, 2013.

[48] T. Reps. Program analysis via graph reachability. IST, 40(11-12):701–726, 1998.

[49] Soot. Soot analysis framework. https://soot-oss.github.io/soot, 2020.

[50] M. Sridharan and R. Bodik. Refnement-based context-sensitive points-to analysis for

Java. In PLDI, pages 387–400, 2006.

[51] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A dynamic

optimization framework for a java just-in-time compiler. In OOPSLA, pages 180–195,

2001.

[52] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise calling context

encoding. IEEE Transaction on Software Engineering, 38(5):1160–1177, 2012.

[53] K. Taneja, M. Grechanik, R. Ghani, and T. Xie. Testing software in age of data privacy:

A balancing act. In ESEC/FSE, pages 201–211, 2011.

[54] Uber. Uber releases project for differential pri-

vacy. https://medium.com/uber-security-privacy/

differential-privacy-open-source-7892c82c42b6, July 2017.

[55] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for

frequency estimation. In USENIX Security, pages 729–745, 2017.

[56] Y. Wang, Z. Ding, G. Wang, D. Kifer, and D. Zhang. Proving differential privacy with

shadow execution. In PLDI, pages 655–669, 2019.

94

https://soot-oss.github.io/soot
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6

[57] S. Warner. Randomized response: A survey technique for eliminating evasive answer

bias. Journal of the American Statistical Association, 309(60):63–69, 1965.

[58] A. Wood, M. Altman, A. Bembenek, M. Bun, M. Gaboardi, J. Honaker, K. Nissim,

D. O’Brien, T. Steinke, and S. Vadhan. Differential privacy: A primer for a non-

technical audience. Vanderbilt Journal of Entertainment and Technology Law, 21(1):

209–276, 2018.

[59] D. Zhang and D. Kifer. LightDP: Towards automating differential privacy proofs. In

PLDI, pages 888–901, 2017.

[60] H. Zhang, S. Latif, R. Bassily, and A. Rountev. Introducing privacy in screen event

frequency analysis for Android apps. In SCAM, pages 268–279, 2019.

[61] H. Zhang, Y. Hao, S. Latif, R. Bassily, and A. Rountev. A study of event frequency

profling with differential privacy. In CC, page 51–62, 2020.

[62] H. Zhang, Y. Hao, S. Latif, R. Bassily, and A. Rountev. Differentially-private software

frequency profling under linear constraints. Proceedings of the ACM on Programming

Languages, 4(OOPSLA), Nov. 2020.

[63] H. Zhang, S. Latif, R. Bassily, and A. Rountev. Differentially-private control-fow

node coverage for software usage analysis. In USENIX Security, pages 1021–1038,

2020.

[64] H. Zhang, E. Roth, A. Haeberlen, B. Pierce, and A. Roth. Testing differential privacy

with dual interpreters. Proceedings of the ACM on Programming Languages, 4

(OOPSLA), Nov. 2020.

95

[65] X. Zhuang, M. Serrano, H. W. Cain, and J.-D. Choi. Accurate, effcient, and adaptive

calling context profling. In PLDI, pages 263–271, 2006.

96

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	1. Introduction
	1.1 Overview and Outline
	1.2 Contributions and Impact

	2. Background
	2.1 Differential Privacy
	2.1.1 Randomized Response
	2.1.2 The Laplace Mechanism

	2.2 Count Sketch

	3. Local Differential Privacy for Coverage Analysis of Software Traces
	3.1 Background and Problem Statement
	3.1.1 Software Traces
	3.1.2 Trace Coverage Analysis for Deployed Software
	3.1.3 Assumptions

	3.2 Randomized Count Sketch for Software Traces
	3.2.1 Count Sketch
	3.2.2 Sketch Randomization
	3.2.3 Efficient Randomization
	3.2.4 Server-Side Processing
	3.2.5 Selecting Sketch Size

	3.3 Identification of Hot Traces
	3.4 Evaluation
	3.4.1 Accuracy for All Covered Traces
	3.4.2 Precision and Recall for Hot Traces
	3.4.3 Accuracy of Estimates for Reported Hot Traces
	3.4.4 Privacy Loss Parameter
	3.4.5 Summary of Results

	3.5 Conclusions

	4. Local Differential Privacy for Frequency Analysis of Software Traces
	4.1 Problem Statement
	4.1.1 Frequency Analysis for Software Traces
	4.1.2 The Differential Privacy Guarantee

	4.2 Proposed Approach for Frequency Analysis
	4.2.1 Randomized Count Sketch with Laplace Noise
	4.2.2 Data Collection
	4.2.3 Hiding Trace Information
	4.2.4 Selecting Sketch Size

	4.3 Evaluation
	4.3.1 Hiding The Presence of Traces
	4.3.2 Hiding The Hotness of Traces
	4.3.3 Identifying Hot Traces
	4.3.4 Local Cost

	4.4 Summary

	5. Deploying LDP Frequency Analysis of Software Traces
	5.1 Reducing The Privacy Budget
	5.1.1 Characterization Study of the Number of Sketch Rows
	5.1.2 Configuring the Number of Sketch Rows
	5.1.3 Evaluation

	5.2 Potential Under-Randomization
	5.2.1 Mitigating Under-Randomization
	5.2.2 Evaluation

	5.3 Summary

	6. Related Work
	7. Conclusions
	Bibliography

