
Detection of Energy Inefficiencies in Android Wear Watch Faces
Hailong Zhang

Ohio State University
Columbus, Ohio, USA
zhang.4858@osu.edu

Haowei Wu
Ohio State University
Columbus, Ohio, USA

wuhaow@cse.ohio-state.edu

Atanas Rountev
Ohio State University
Columbus, Ohio, USA

rountev@cse.ohio-state.edu

ABSTRACT
This work considers watch faces for Android Wear devices such
as smartwatches. Watch faces are a popular category of apps that
display current time and relevant contextual information. Our study
of watch faces in an app market indicates that energy efficiency is
a key concern for users and developers.

The first contribution of this work is the definition of several
energy-inefficiency patterns of watch face behavior, focusing on
two energy-intensive resources: sensors and displays. Based on
these patterns, we propose a control-flow model and static analysis
algorithms to identify instances of these patterns. The algorithms
use interprocedural control-flow analysis of callback methods and
the invocation sequences of these methods. Potential energy ineffi-
ciencies are then used for automated test generation and execution,
where the static analysis reports are validated via run-time execu-
tion. Our experimental results and case studies demonstrate that the
analysis achieves high precision and low cost, and provide insights
into potential pitfalls faced by developers of watch faces.

CCS CONCEPTS
• Theory of computation→ Program analysis; • Software and
its engineering→ Software testing and debugging;

KEYWORDS
Android Wear, smartwatch, energy, sensor, static analysis, testing
ACM Reference Format:
Hailong Zhang, HaoweiWu, and Atanas Rountev. 2018. Detection of Energy
Inefficiencies in Android Wear Watch Faces. In Proceedings of the 26th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’18), November 4–9, 2018,
Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3236024.3236073

1 INTRODUCTION
Wearable devices are becoming increasingly popular. Annual sales
of smartwatches are expected to double by 2021, reaching over
80 million devices [15]. Other wearables such as head-mounted
displays, body cameras, and wrist bands exhibit similar trends. This
popularity is driven by the enhanced mobility and range of activi-
ties supported by such devices, and by their ability to sense external

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236073

conditions (e.g., temperature and GPS location) and user’s physio-
logical state (e.g., heart rate, perspiration, and range of movement).

The focus of our work is the Android Wear (AW) platform. While
AW shares some components with “traditional” Android, its core
features are different from those in the well-studied Android plat-
form. For example, an AW app running on a wearable device has a
lifecycle different from the standard Android lifecycle [17] and uses
entirely different platform APIs. Existing techniques for analysis
and testing of traditional Android apps cannot be applied directly
to AW apps. Some prior work [69] has considered the analysis and
testing of push notifications, where an Android app running on
a handheld device (e.g., a smartphone) displays notifications on
a wearable. However, we are not aware of any work focusing on
standalone AW apps, in which the wearable operates independently
from any handheld. Such apps presents the next generation of soft-
ware for AW devices and their importance is being emphasized in
the latest AW releases. The increasing use of standalone AW apps
requires new research advances and tools to improve developer
productivity and software quality, performance, and security.

An important category of standalone AW apps are watch faces.
Our studies, discussed in the next section, indicate that watch faces
are some of the most widespread examples of standalone AW apps:
among the AW apps we examined, around 59% were watch faces. A
watch face uses a digital canvas to display the current time and other
contextual information. It has access to sensors, GPS, Bluetooth,
networks, and data providers such as the user’s agenda. Watch
faces can be designed to be interactive, reacting to user’s touch and
performing tasks according to user-provided feedback. With the
introduction of AW 2.0, the functionality of watch faces has become
much richer than simply displaying time. In our case studies we
observed watch faces that monitor and display information related
to weather, light intensity, humidity, and air pressure, as well as
user-specific information about steps taken, heart rate, exercise
statistics, and daily agenda. We have performed an initial study of
watch faces in Google Play, which helped us highlight trends in
this area as well as the concerns of watch face users.

Based on this study, we have identified energy efficiency as
one of the key considerations for AW watch faces. While building
watch faces, developers have to follow various guidelines to achieve
energy efficiency. Our case studies of watch face code, as well as our
examination of user comments, indicate that these guidelines are
sometimes violated, leading to watch faces that drain the battery.
The first contribution of our work is the definition of several energy-
inefficiency patterns of watch face behavior. These patterns focus on
two energy-intensive resources: sensors and displays.

Based on these patterns, we propose an approach to identify
instances of energy-inefficient behaviors in watch faces. The ap-
proach is based on three contributions. First, we propose a static
control-flow model for watch faces, in order to capture possible

https://doi.org/10.1145/3236024.3236073
https://doi.org/10.1145/3236024.3236073
https://doi.org/10.1145/3236024.3236073

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Hailong Zhang, Haowei Wu, and Atanas Rountev

Null Interactive
select

Ambient

standby
 palm

Invisible

press_side_button
 swipe_up

 swipe_right
 swipe_left

 flick_wrist_out

 press_side_button
 tap_screen

 tilt
deselect

press_side_button
 swipe_right
 swipe_down
 flick_wrist_in

 standby

standby
 palm

Figure 1: States, events, and transitions.

run-time sequences of events and the corresponding sequences
of callbacks in the app code. While here we use this model for
analysis of energy inefficiencies, the model itself is more general
and could also be used for other categories of static analyses. Next,
based on the model, we define static analysis algorithms based on
interprocedural control-flow analysis of callback methods and the
invocation sequences of these methods. Control-flow sequences
that (statically) exhibit the inefficiency patterns are then used for
automated test generation and execution, where the static analysis
reports are validated via run-time execution.

The last contribution of this work is an experimental study of
applying the proposed approach to a variety of watch faces. We
demonstrate that the analysis achieves high precision and low cost.
Our companion case studies explain the underlying causes of these
inefficiencies and provide insights into potential pitfalls faced by
developers of AW watch faces.

2 BACKGROUND AND APP MARKET STUDY
Several watch faces could be installed on an AW device, and only
one of them is active at a time. The user selects the currently-active
watch face using the “watch face picker” AW component.

2.1 Watch Face Lifecycle
The lifecycle of a watch face is defined with respect to four states,
shown in Figure 1. State Null indicates that the watch face is not
selected by the user to be displayed (that is, another watch face is
currently active). In Interactive state, the watch face is selected to be
active, is visible on the screen, and is responsive to user interactions.
After a certain period of inactivity (5 seconds by default), or in
response to certain user actions, the watch face can transition
to state Ambient. In AW devices, there is a special mode to save
battery life: ambient mode, in which users are not interacting with
the device and the watch face only shows limited information in
a battery-friendly manner, e.g., with lower resolution and fewer
colors. Finally, state Invisible indicates that a watch face is active,
but is not visible on the screen and thus is inaccessible for users, e.g.,
because it is covered by some launched AW app, because the watch
face picker is invoked, or because a push notification is displayed.

While the AW documentation describes these states informally,
it does not specify a detailed model for possible transitions between
states. As a first step toward constructing such a model, we enu-
merated all possible user-triggered events ej . For each of the four
states si , we investigated the possible run-time transitions from si
when ej occurs. Figure 1 shows all possible transitions. Edges are
labeled with events. A detailed discussion of possible events will

1 class BReelWatchFaceService extends CanvasWatchFaceService {
2 Engine onCreateEngine() { return new Engine(); }
3 class Engine extends CanvasWatchFaceService.Engine {
4 WatchfaceController mWatchfaceController;
5 void onCreate() { mWatchfaceController = new WatchfaceController(); }
6 void onDestroy() { mWatchfaceController.destroy(); }
7 void onAmbientModeChanged(boolean inAmbientMode) {
8 mWatchfaceController.setAmbientMode(isInAmbientMode()); }
9 void onVisibilityChanged(boolean visible) {

10 mWatchfaceController.setVisibility(isVisible()); }
11 void onDraw(...) {...} } }

12 class WatchfaceController {
13 boolean mAmbientMode;
14 boolean mVisibility;
15 OrientationController mOrientationController;
16 WatchfaceController() {
17 mOrientationController = new OrientationController(); }
18 void setAmbientMode(boolean ambientMode) {
19 mAmbientMode = ambientMode;
20 if (mAmbientMode) mOrientationController.stop();
21 else mOrientationController.start(); }
22 void setVisibility(boolean visibility) {
23 mVisibility = visibility;
24 if (mVisibility) mOrientationController.start();
25 else mOrientationController.stop(); }
26 void destroy() { mOrientationController.stop(); } }

27 class OrientationController {
28 Sensor mSensor;
29 SensorManager mSensorService;
30 SensorEventListener mSensorEventListener = new SensorEventListener() { ... };
31 OrientationController() {
32 mSensorService = ... ;
33 mSensor = mSensorService.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); }
34 void start() {
35 mSensorService.registerListener(mSensorEventListener, mSensor); }
36 void stop() {
37 mSensorService.unregisterListener(mSensorEventListener); } }

Figure 2: Decompiled code from The Hundreds watch face.

be provided shortly; here we only mention a few examples. Event
“select” refers to the selection of the watch face using the watch
face picker; as a result, the watch face becomes active and visible.
Event “deselect” is triggered when the user chooses another watch
face using the picker; since the picker is displayed on top of the cur-
rent watch face, the source of this transition is state Invisible. The
default transition from Interactive to Ambient due to user inactivity
is denoted by an artificial “standby” event.

It is important to note that this model is imprecise. While it
represents all and only possible transitions from each state si upon
each event ej , not all paths in this model correspond to feasible
run-time behaviors. We revisit this issue in the next section.

2.2 Running Example
State changes trigger various callbacks from the AW platform to the
watch face code. To illustrate these callbacks, we use the example in
Figure 2. The example is extracted from The Hundreds watch face,
which is available in the Google Play app store and has 50K–100K
installs. (The Hundreds is an apparel and media brand.) The figure
shows the decompiled code; non-essential details are elided.

The code defines a subclass of CanvasWatchFaceService. This
superclass, defined in android.support.wearable.watchface, pro-
vides a canvas on which the code can draw using Android paint-
ing APIs. Nested class Engine contains the implementation of
the watch face: e.g., drawing hands on the screen, setting timers,
fetching sensor data, etc. The watch face lifecycle start/end is
defined by callback methods onCreate and onDestroy declared
in Engine. When the watch face enters ambient mode, callback
method onAmbientModeChanged is invoked by the AW platform

Detection of Energy Inefficiencies in Android Wear Watch Faces ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

with formal parameter inAmbientMode equal to true. Upon exiting
ambient mode, the same method is called with a false parameter
value. Similarly, callback onVisibilityChanged is invoked when
the watch face becomes invisible (with parameter visible equal to
false) and again when it becomes visible (with true parameter).

In this example, helper class WatchfaceController maintains
two fields. Field mAmbientMode records the parameter value for
the last call to Engine.onAmbientModeChanged. Note that the call
at line 8 uses the return value of isInAmbientMode() instead of
parameter inAmbientMode. Helper method isInAmbientMode is
defined in a superclass of Engine and returns a value which is the
same as the last inAmbientMode value. Field mVisibility records
the parameter of the last call to onVisibilityChanged. The call at
line 10 does not use directly the parameter value of visible, but
rather an equivalent return value from isVisible().

Class OrientationControllermanages the watch face’s use of
the accelerometer sensor. At initialization, an instance of this class
obtains the sensor. Upon state changes, the listener is registered
and unregistered. The unregistration (line 37) is needed for energy
efficiency reasons: the AW developer guidelines recommend that
whenever the watch face enters ambient mode, sensors are turned
off to allow the device to enter low-power mode. The code aims to
identify transitions to state Ambient (i.e., inAmbientMode at line 7
is true) and stop the sensor. Similarly, transitions to state Invisible
(i.e., visible at line 9 is false) stop the sensor.

Despite these efforts to follow the guidelines, the code con-
tains a logical error. One possible run-time behavior is a transi-
tion from Interactive to Invisible and from there to Ambient. This
could happen, for example, when the user opens a push notifi-
cation (which transitions from Interactive to Invisible) but does
not do anything for 5 seconds (which automatically transitions to
Ambient). The run-time sequence of callbacks in this scenario is
onVisibilityChanged(false), onAmbientModeChanged(true),
onVisibilityChanged(true). The last callback occurs because in
AW ambient mode is considered to be a visible (low-power) state.
For this callback sequence, the sensor is deactivated but then re-
activated and remains active in ambient mode, in clear violation of
AW guidelines. The underlying problem is the condition at line 24:
the correct condition is mVisibility && !mAmbientMode.

This example illustrates some of the challenges in developing
watch faces. First, possible AW behaviors are not defined by pre-
cise models and could be misunderstood by app developers. One
contribution of our work is defining a control-flow model to cap-
ture possible event sequences and the corresponding callbacks.
Second, the management of energy consumption is an important
consideration for AW devices and apps. As our studies suggest, mis-
management of energy-intensive resources (e.g., sensors, screen)
does occur in real-world watch faces.

2.3 App Market Study
To understand how AW watch faces fit in the larger AW ecosys-
tem, we performed an app market study. We used two collections
of AW apps: (1) Android Wear Center (AWC) [62] and (2) Goko
Store [28]. Each collection provides a reference to a Google Play
AW app, together with an app classification. For our purposes, this
classification can be used to distinguish watch faces from other AW

14
Q

3
14

Q
4

15
Q

1
15

Q
2

15
Q

3
15

Q
4

16
Q

1
16

Q
2

16
Q

3
16

Q
4

17
Q

1
17

Q
2

17
Q

3
17

Q
4

18
Q

1
0

1000

2000

3000

4000

5000

#
A

p
p

s

Watch faces

Other AW apps

Figure 3: Number of watch faces and other AW apps.

Figure 4: Word cloud of reviews for watch faces.

apps.1 For each AW app in these collections (including watch faces),
we used Google Play to determine the date of the last update. As of
February 2018, the total number of AW apps in these collections
was 5198, of which 3070 were watch faces.

Figure 3 shows a cumulative distribution of the number of AW
apps, based on the date of the last app update. Each x-axis point
corresponds to a quarter (e.g., Q4 of 2017). The corresponding y-
axis point is the number of apps whose last update is in this quarter
or in any previous quarter. Watch faces present a sizeable fraction
of all AW apps; this fraction is 59% for the last point on the x-axis.
Further, many of the watch faces in these collections have been
updated relatively recently. From the set of 3070 watch faces, some
are paid and some are free. We obtained 1490 watch faces that were
free and available in an unrestricted Play mirror [1]. Those watch
faces were used in our experimental evaluation described later.

We used a crawler to obtain the most helpful reviews for each
watch face. Figure 4 shows a word cloud for the reviews. We then
performed text analysis on reviews containing the top frequent
words. We saw many reviews complaining about the battery us-
age of watch faces: for example, “although this watchface is very
informative, it uses up too much battery life”, “it’s great but drains
my battery crazy fast”, and “unnecessary battery drain for the LG G
Watch in ambient mode”. These observations highlight the necessity
for watch faces to effectively manage energy usage.

3 MODELING OF CONTROL FLOW AND
ENERGY INEFFICIENCIES

Motivated by the prevalence of watch faces among AW apps, we
developed a control-flow model that can be used as the basis for
static analysis of watch faces as well as for test generation. To

1Google Play does not directly provide a way to identify watch faces, and searching
for relevant keywords produces a limited number of results, many not related to AW.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Hailong Zhang, Haowei Wu, and Atanas Rountev

the best of our knowledge, this is the first attempt to model the
possible control-flow behaviors of watch faces. Based on this model,
we present patterns of energy inefficiencies—specifically, patterns
related to (1) the use of sensors and (2) the displays in ambient mode.
The next section presents static analyses and testing techniques for
finding instances of these inefficiency patterns.

3.1 Refined Control-Flow Model
The model presented earlier in Figure 1 does not capture faith-
fully the full complexity of watch face behavior. As described
shortly, we created a tool to explore dynamically all possible se-
quences of events and states. Based on the observed paths, we
developed a refined model with a set of states State defined as
{Interactive,Ambient,Null, InvisibleAppList, InvisibleNotification,
InvisiblePicker}. Here we represent the circumstances under which
the watch face becomes invisible: (1) the user opens the list of apps
to select an app to run, (2) a push notification is received and dis-
played to the user, and (3) the user opens the watch face picker to
select a new watch face. The resulting model is shown in Figure 5.

The model is based on several categories of events. The effects
of swiping depend on the direction of the swipe: for example, swip-
ing from bottom to top opens the stream of push notifications.
Putting a palm over the screen causes the watch face to enter the
low-power ambient mode. Pressing the side button has a variety
of effects, depending on the current state. Wrist gestures can be
used for convenience: e.g., flicking the wrist in/out corresponds to
swiping down/up, and shaking the wrist acts like pressing the side
button. Tapping on the screen wakes up the watch from ambient
mode; tilting the screen also wakes up the watch. As discussed
earlier, select and deselect are artificial events representing the acti-
vation/deactivation of the watch face via the picker, and standby
denotes an automatic transition after a period of user inactivity.

There is considerable overlap in the behaviors of many of these
events. For simplicity, we elide events that have the same behavior
as other events, but are difficult to trigger automatically: specifically,
palm, tilt, and wrist gestures. Thus, we define the set of events as
Event = {select, deselect, press_side_button, tap_screen, standby,
swipe_right, swipe_left, swipe_down, swipe_up}.

Each e ∈ Event triggers a sequence of callbacks. The previous
section discussed lifecycle callbacks defined in subclasses of Engine:
(1) onCreate, called during initialization; (2) onDestroy, invoked
when a watch face is deselected; (3) onAmbientModeChanged, used
when entering/leaving ambient mode; (4) onVisibilityChanged,
called when the watch face becomes visible or hidden. The last two
callbacks are invoked with a boolean parameter indicating the state
change. Callbacks onCreateEngine, onCreate and onDestroy in
WatchFaceService (the class in which an Engine is nested) are also
of interest since they are invoked when a watch face is created and
destroyed. We define the set Callback of lifecycle callbacks to con-
tain onVisibilityChanged(true), onVisibilityChanged(false),
onAmbientModeChanged(true), onAmbientModeChanged(false),
onCreate(),onDestroy(), wfsOnCreateEngine(), wfsOnCreate(),
and wfsOnDestroy().

In the model in Figure 5, each state transition is (s, s ′, e, c) ∈
State × State × Event × Callback+. Here the transition is from s to
s ′ upon event e . The transition triggers the sequence of callbacks c .

To generate this model, we implemented and instrumented a
sample watch face to track state changes. More specifically, we
created a watch face that implements all relevant APIs and then
instrumented every method to track state transitions. Further, we
developed a tool to automatically trigger events in Event starting
from state Null. This tool also serves as the test case execution
engine which will be discussed later in the paper. We recorded the
state change if there was one, and continuously triggered events in
the new state. This process was repeated until the state returned
back to Null or there was no state transition observed. This sys-
tematic exploration produced a set of traces, which we analyzed to
create the state transition graph in Figure 5.

3.2 Potential Inefficiencies Due to Sensors
One of the critical issues for wearable devices is their low battery
capacity. When examining reviews for AW apps, we often see users
complaining about battery drain. Hardware sensors may be one of
the reasons for such drain. Sensors have to be acquired before and
released after use. An app binds a listener to a sensor, and unbind
it when the data is no longer needed. Callbacks in the listener are
invoked when new sensor data is obtained. This is illustrated by
the SensorEventListener object created at line 30 in Figure 2 and
the related calls to registerListener and unregisterListener.

There are multiple categories of sensors, e.g., acceleration, ro-
tation, gravity, magnetic field, heart rate, etc. Each category is
represented by an integer constant defined in class Sensor, as exem-
plified by TYPE_ACCELEROMETER at line 33 in the example. Typically
there exists only one hardware sensor for each category. A sensor
is represented by an instance of Sensor; in the example, mSensor
refers to such an object. When a listener is registered with a sensor,
a callback onSensorChanged in the listener is invoked when new
data is available; for brevity, this callback is not shown in Figure 2.

The guidelines for apps using sensors warn developers to “be
sure to unregister a sensor’s listener when you are done using the
sensor or when the sensor activity pauses” since “if a sensor listener is
registered and its activity is paused, the sensor will continue to acquire
data and use battery resources unless you unregister the sensor” [19].

In order to apply this guideline to watch faces, we define two
patterns of potential misuse. In this section we define them with
respect to run-time behavior, while the next section uses static ab-
stractions of this behavior. First, we define a sensor resource as a pair
res = ⟨lis, sen⟩ where lis is an instance of SensorEventListener
and sen is an instance of Sensor. We use this notion because there
could be several listeners for the same sensor object, or several
sensors that one listener listens to. Let Sensor be the set of such
pairs. An invocation of registerListener for particular lis and
sen is an “acquire” operation for the corresponding resources; we
will denote it by acq(res). Similarly, calling unregisterListener
is a “release” operation rel(res).

Consider a sequence of invocations of callback methods s =
c1, . . . , cm where ci ∈ Callback. Let acqi contain a set of acq(res)
elements such that the execution of callback method ci (including
the effects of its callees) acquires sensor resource res—i.e., it calls
registerListener for res and reaches the exit of ci without invok-
ing a corresponding unregisterListener. Similarly, reli contains
a set of rel(res) that occurred during the execution of ci .

Detection of Energy Inefficiencies in Android Wear Watch Faces ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Interactive

Ambientstandby
[onAmbientModeChanged(true)]

Invisible
Picker

swipe_left
swipe_right

[onVisibilityChanged(false)]

Invisible
AppList

press_side_button
[onVisibilityChanged(false)]

Invisible
Notification

swipe_up
[onVisibilityChanged(false)]

Null

select
[wfsOnCreate(),wfsOnCreateEngine(),

onCreate(),onVisibilityChanged(true)]

press_side_button
tap_screen

[onAmbientModeChanged(false)]

press_side_button
standby

[onVisibilityChanged(true)]

deselect
[onDestroy(),wfsOnDestroy()]

swipe_right
press_side_button

[onVisibilityChanged(true)]

standby
[onAmbientModeChanged(true),
onVisibilityChanged(true)]

swipe_down
press_side_button

[onVisibilityChanged(true)]
standby

[onAmbientModeChanged(true),
onVisibilityChanged(true)]

Figure 5: State transition graph for watch face lifecycle.

For the running example in Figure 2, consider the sequence of
states Interactive, InvisibleNotification, Ambient. As shown in Fig-
ure 5, the corresponding sequence of callback invocations is c1 =
onVisibilityChanged(false), c2 = onAmbientModeChanged(true),
c3 = onVisibilityChanged(true). There is one sensor resource
res defined by the pair of objects obtained at lines 30 and 33 in
Figure 2. The acquire/release sets are acq1 = ∅, rel1 = {rel(res)},
acq2 = ∅, rel2 = {rel(res)}, acq3 = {acq(res)}, and rel3 = ∅.

Similarly to traditional program analyses, the effects of some ci
can be expressed by a transfer function fi (S) = (S − Killi) ∪ Geni
where S is a set of sensors resources, Killi = {res | rel(res) ∈ reli }
and Geni = {res | acq(res) ∈ acqi }. Given a path p in the control-
flow model from Figure 5, let fp be the composition of functions fi
for the callback sequence along the path.

Following the informal general guidelines for sensor manage-
ment, we define two specific patterns of potential inefficiencies.
First, consider a path p that starts from state Null, ends at that state,
but does not contain it otherwise. If fp (∅) , ∅, this means that the
watch face acquired some sensor resource but did not release it by
the time the watch face was deselected. The second pattern occurs
when a path p starts at state Null and ends at state Ambient, but
does not contain either one as an intermediate state. If fp (∅) , ∅, in
the low-power ambient mode (which could exist for a long period of
time) there is active sensor that could drain the battery. Similar pat-
terns have been studied in prior work for Android apps [41, 64, 65]
but we are not aware of any similar work for AW apps, and in
particular watch faces, which have their own lifecycle and control
flow different from that of Android apps for handheld devices.

It is important to note that the second pattern does not neces-
sarily signify a problem with the app—in some scenarios, the app
has to record sensor data even in ambient mode. However, in our
studies we observed that typically this pattern does indicate unnec-
essary sensor usage, and the programmer should have released the

sensor resource before entering ambient mode. The code in Figure 2
exemplifies this problem: the programmer has indeed attempted to
release the sensor, but did so incorrectly.

One refinement that is needed in these definitions is the fol-
lowing: in addition to the callbacks in the control-flow model, the
effects of callback onSensorChanged should be accounted for. Upon
listener registration, the current value of the sensor is almost imme-
diately provided to the listener—specifically, the AW framework in-
vokes onSensorChanged on the listener object. This callback could
release the sensor. Thus, after each callback ci with an acqi , ∅,
the effects of invoking onSensorChanged should be “appended”
by composing transfer function fi with the transfer function of
onSensorChanged.

3.3 Potential Inefficiencies Due to Displays
Displaying graphics in bright and vibrant colors consumes more
energy than in plain dark colors [36], and may damage the screen
if managed incorrectly for OLED displays. Dark themes may save
as much as seven times the power of all-white displays [16]. In
particular, for watch faces in ambient mode, AW guidelines suggest
that developers to keep the graphics simple: “draw outlines of shapes
using a limited set of colors”, set background to “completely black or
grey with no image”, and “aim to have 95% of pixels black” [18, 20].

Unlike regular Android apps, where developers typically uti-
lize predefined screen components (e.g. Button), watch faces only
provide a low-level canvas to draw on. Developers are given an
instance of Canvas and the bounds in which the watch face should
be drawn. Class Paint is used for colors and styles of the draw-
ing. We are interested in colors, and in particular the following
APIs: (1) Paint.setColor(int), which takes as input a color value
and configures the paint to draw the corresponding color, and (2)
Canvas.drawColor(int), which takes a color value as a parameter
and fills the entire canvas with the specified color.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Hailong Zhang, Haowei Wu, and Atanas Rountev

1 class RadialWatchFaceService extends CanvasWatchFaceService {
2 class Engine extends CanvasWatchFaceService.Engine {
3 DrawableWatchFace faceDrawer;
4 void onCreate() { faceDrawer = new DrawableWatchFace(); }
5 void onAmbientModeChanged(boolean inAmbientMode) {
6 faceDrawer.setAmbient(inAmbientMode); }
7 void onDraw(Canvas canvas,Rect bounds) {
8 faceDrawer.draw(canvas,bounds); } } }

9 class DrawableWatchFace {
10 boolean mActive = true;
11 Paint mArcPaint = new Paint();
12 void setAmbient(boolean state) { mActive = !state; }
13 void void draw(Canvas canvas, Rect bounds) {
14 mArcPaint.setColor(0xff03a9f4); // blue
15 if (mActive) canvas.drawPath(secondsPath,mArcPaint);
16 mArcPaint.setColor(0xff8bc34a); // green
17 canvas.drawPath(minutesPath,mArcPaint);
18 mArcPaint.setColor(0xffe51c23); // red
17 canvas.drawPath(hoursPath,mArcPaint); } }

Figure 6: Decompiled code from Radial watch face.

Each color is represented by an integer value such as 0xFF000000
(black) and 0xFFFFFFFF (white). There are also APIs to obtain
color values from RGB and string representations. For example,
Color.parseColor transforms a string to its integer representa-
tion. To simplify the discussion, we elide such cases and only discuss
integer constants in the code, but our implementation does handle
these other cases.

The drawing on the canvas is performed by callback onDraw,
which is invoked (frequently) in state Interactive and (less fre-
quently) in stateAmbient. Figure 6 illustrates this behavior; some de-
tails have been omitted for brevity. Helper class DrawableWatchFace
contains the code for updating the canvas when onDraw is invoked.
In interactive mode, the hours, minutes, and seconds hands are
drawn. In ambient mode, the seconds hand is not drawn because
the screen updates (i.e., the calls to onDraw) by default happen
every 60 seconds in order to conserve energy. Although this class
records the current state (interactive vs. ambient, in field mActive),
the code logic inside draw uses the same set of colors for both cases.

We define two patterns for “suspicious” behavior that may indi-
cate display inefficiencies in ambient mode. Both are defined for a
pathp in the control-flowmodel of the form Interactive→Ambient→
Interactive. We consider the callbacks along p, with invocations
of onDraw interleaved: c1 = onAmbientModeChanged(true), c2 =
onDraw, c3 = onAmbientModeChanged(false), c4 = onDraw. Let
coli be the set of colors (appearing as parameters to setColor and
drawColor) during the invocation of ci and its transitive callees.

The first pattern we consider is when the set of colors does
not change when the state change occurs: that is, col1 ∪ col2 =
col3 ∪ col4. The example in Figure 6 matches this pattern because
col1 = col3 = ∅ and col2 = col4 = {blue, green, red}. The second
pattern is when the colors do change, but in ambient mode there
are colors that are not black or dark shades of grey. In the example,
suppose hypothetically that the call at line 14 (which uses the blue
color) were inside the if-statement at line 15. In that case we would
have had col2 = {green, red} and col4 = {blue, green, red}, which
does not exhibit the first pattern but does exhibit the second one.

Both patterns indicate that displaymanagement in ambient mode
may violate AW guidelines. However, we do not consider this to
be enough evidence to report a problem. After our static analysis
(described in the next section) identifies these patterns, we generate
and execute a test case to trigger the corresponding behavior at run

time. A snapshot of the watch face in ambient mode is taken and
analyzed with respect to the following AW guideline: at least x%
of pixels in ambient mode should be black [18]. The recommended
threshold is 95%; in our experiments we use a more relaxed value of
90%, and report only watchfaces that are below this threshold. The
entire process of test generation, execution, and snapshot analysis
is automated.

4 STATIC ANALYSIS AND INEFFICIENCY
TESTING

Given the patterns defined so far, we developed static analyses
to (1) construct the control-flow model in Figure 5, (2) analyze
callbacks from the model, as well as related callbacks such as
onSensorChanged and onDraw, and (3) identify instances of the
potential inefficiencies. These instances are then used to automati-
cally create test cases, whose run-time execution is used to decide
whether to report the behavior to the programmer.

The use of static analyses has several benefits, compared to
purely dynamic approaches. First, it provides detailed information
about the specific code paths along which the inefficiencies occur,
which is useful for code analysis and optimizations. Static analysis
results can be used to create a small number of targeted test cases
to cover the suspicious behaviors, which reduces the cost of subse-
quent testing. Further, static analyses can be employed to discover
potential problems early in the development process, by executing
then as part of the suite of static checkers used in development
environments.

4.1 Sensor-Related Inefficiencies
4.1.1 Sensor resources. The analysis first determines the acquire
and release operations for sensor resources. Recall from Section 3.2
that a run-time sensor resource res = ⟨lis, sen⟩ is a pair of a listener
object lis and a sensor object sen. Statically, lis is a new expression
for a SensorEventListener. The sensor object is an instance of
Sensor and always obtained by calls to getDefaultSensor with
an integer constant such as Sensor.TYPE_ACCELEROMETER. We per-
form propagation of integer constants to such calls. For each sensor
type, the analysis creates an artificial Sensor object. Those objects,
together with the listener objects, are then propagated to calls that
register and unregister listeners. Those calls correspond to acq(res)
and rel(res) elements in the analysis. The propagation is done via
flow-insensitive, context-insensitive, field-based value-flow analy-
sis [29], similar in spirit to points-to analysis.

4.1.2 Acquires and releases. For each method ci ∈ Callback, we
need to compute its acquire set acqi and release set reli . Callback
methods onAmbientModeChanged and onVisibilityChanged are
analyzed under four different contexts, for all possible combinations
of “invisible on/off” and “ambient on/off”. Here “on/off” refers to
the return (boolean) values of internal APIs isInAmbientMode and
isVisible, illustrated at lines 8 and 10 in Figure 2. Whenever
onAmbientModeChanged is invoked with true, subsequent calls to
isInAmbientMode return true, until onAmbientModeChanged is
called again with a false parameter. There is a similar relationship
between onVisibilityChanged and isVisible.

We consider the effects of onAmbientModeChanged under the
four possible contexts of isInAmbientMode() ∈ { true, false }

Detection of Energy Inefficiencies in Android Wear Watch Faces ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

and isVisible() ∈ { true, false }. This is needed to capture
cases where these status methods are used by the code to query the
watch face state (e.g., as done in the running example). Similarly,
we consider the effects of onVisibilityChanged under the same
four contexts. We have seen examples where both status methods
are used in the internal logic of a callback method, which means
that both should be included in the context.

The analysis uses the context information to identify control-
flow branches that are feasible under this context. First, the values
of the formal parameters of onAmbientModeChanged (line 7) and
onVisibilityChanged (line 9) are recorded based on the context.
In the running example, onAmbientModeChanged under context
⟨true,*⟩ will set parameter inAmbientMode to true; here * refers
to either value for isVisible(). Further, parameter ambientMode
at line 18 and field mAmbientMode at line 19 will be set to true as
well. As a result, the if statement at lines 20–21 will execute the call
to stop, which will release the sensor resource. If the context were
⟨false,*⟩, the call to start at line 21 would be executed instead
and the sensor resource would be acquired.

To account for this context, we first propagate the context in-
formation using a value-flow analysis, similar to the one used to
analyze sensor types, objects, and listeners. We utilize the SSA form
of Jimple (the IR of Soot [13]) for this propagation. Since we use the
analysis results to resolve conditionals (e.g., lines 20–21 and 24–25
in the running example), whenever several values flow to the same
variable/field, we set its value to ⊥ (i.e., “any”). In essence, this is a
form of copy constant propagation. At the end of this propagation,
the resulting values are used to resolve conditionals, if possible. A
⊥ value means that both branches are possible.

Once feasible branches of conditionals are determined, the anal-
ysis traverses the control-flow graphs of ci and its callees to deter-
mine acq(res) and rel(res) operations. For each encountered acq(res),
we perform an additional traversal to determine whether it is post-
dominated by any matching rel(res); if so, it should not be included
in acqi . For each encountered acq(res), we perform a traversal to
filter out those that are not guaranteed to be executed along all
possible control-flow paths.

4.1.3 Path exploration. The acquire and release sets for callbacks
are computed on demand during path exploration of the model
from Figure 5. The context information described above is based
on the model path being explored. Starting from Null, we perform
a depth-first traversal to construct paths that represent the lifetime
of a watch face (for pattern 1, ending with Null) or transition to
ambient mode (for pattern 2, ending with Ambient). Only paths
whose length does not exceed a parameter k are considered (value 3
is set in our implementation). Each ci that is invoked along the path
is considered, and the current state is maintained to determine the
current values of isInAmbientMode() and isVisible(), needed
to decide what context to use for ci . The traversal maintains a set
of acquired but not yet released sensors. When ci is processed, all
res from reli are removed from the set, and then the ones from acqi
are added to it. Any remaining res after the traversal is considered
to be an indicator for a potential inefficiency. We record all such
paths for subsequent test generation and execution.

For each reported path, we generate a test case based on the
events along the path. The test generation and execution is based

on a wrapper of MonkeyRunner [21] developed by us. Consider
a path s1 → . . . → sn . For each transition (s, s ′, e, c), event e is
mapped to an API call of the wrapper. During the execution, we
use dumpsys in Android Debug Bridge (ADB) to fetch information
about acquired sensors. At the start and end of the execution of a
test case, the test invokes ADB to record all listeners package names
and sensor types. If a sensor is inactive at the start but stays active
at the end, we consider the static analysis report to be confirmed.

4.2 Display-Related Inefficiencies
The first step of the analysis is to determine a set of colors for
each call site of set-color APIs. Recall from Section 3.3 that a color
is represented as an integer constant. We perform a propagation
of integers in the range of 0xFF000000 to 0xFFFFFFFF to calls
to Paint.setColor and Canvas.drawColor. The propagation is
similar to what was done for sensor types.

Next, a set of colors col is computed for onAmbientModeChanged.
The analysis of this callback is done under two different contexts:
when isInAmbientMode() is true and again when it is false. As
before, the context is used to determine which branches of con-
ditionals are feasible under that context. During a control-flow
traversal, whenever a call to setColor or drawColor is encoun-
tered, its set of colors is added to col. To account for the effects
of onDraw, an artificial call to it is added immediately before the
exit of onAmbientModeChanged. This allows for the effects of the
context to propagate to onDraw. For the example in Figure 6, the
boolean parameter to onAmbientModeChanged (which is the same
as the context) affects field mActive (line 12) which in turn is used
during drawing (line 15). Our analysis captures these kinds of de-
pendencies. If, hypothetically, the call to setColor at line 14 were
guarded by the conditional at line 15, our static analysis would have
determined that the corresponding blue color is used only under
context false.

The color sets of the callbacks are examined for the two patterns
introduced in Section 3.3. If there is a match of either pattern, a
test case is generated to select the watch face and put it in ambient
mode. A screenshot is taken during execution when the watch
enters ambient mode. The automated analysis of screenshots is
conducted offline. We calculate the percentage of black pixels and
report the watch face as containing a display inefficiency if the
percentage is below 90%, as described at the end of Section 3.3.

5 EVALUATION
We implemented the static analysis based on the Soot analysis
framework [13]. Analysis performance was evaluated on a machine
with 3.40GHz processor, 16GB RAM, and Ubuntu 16.04. Test ex-
ecution was conducted on an LG Watch Style running Android
Wear 2.9. The implementation of the approach and all benchmarks
are available at https://presto-osu.github.io/fse18.

5.1 Experimental Subjects
There are two ways to distribute AW apps: (1) as standalone apps;
and (2) embedded inside a handheld app. Recall from Section 2.3
that we obtained APKs for 1490 watch faces from a Play mirror [1].
We first perform a check on all downloaded APKs for embedded AW
APKs. If an APK has any internal APK, we collect the embedded

https://presto-osu.github.io/fse18

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Hailong Zhang, Haowei Wu, and Atanas Rountev

Table 1: Characteristics of experimental subjects

#Apps #Classes #Methods #Stmts Time (sec)

1490 93532 438762 6807236 1885.72

Table 2: Summary of sensor-related inefficiencies.

SenPat 1 SenPat 2

#Reported #Confirmed #Reported #Confirmed

13 11 26 23

APK as a study subject. Otherwise, we directly use the original
APK for further analysis. Table 1 shows the characteristics of all
experimental subjects. The total number of classes of the 1490
watch faces is shown in column “#Classes”. This includes all classes
except those from the android library and some well-known third-
party libraries such as com.google, org.joda, and org.mozilla.
Column “#Stmts” shows the number of statements in Soot’s IR.
Column “Time (sec)” shows the running time of static analyses
and test generation. The average cost of the analysis is around 2.7
seconds per 10K Jimple statements.

5.2 Sensor-Related Inefficiencies
Table 2 shows a summary of the result of detection for energy
inefficiencies caused by mismanagement of sensors. Columns “#Re-
ported” show the number of watch faces with potential inefficien-
cies reported by our static analysis for the two patterns described
in Section 3.2, denoted as “SenPat 1” and “SenPat 2” in the table.
Columns “#Confirmed” show the number of watch faces with a run-
time unreleased sensor during test execution. In our experiments,
a total of 13 watch faces are reported to have sensor unreleased
when they are inactive and destroyed (SenPat 1). This means that
the developer forgot to unregister sensor listeners in onDestroy,
wfsOnDestroy and onVisibilityChanged(false). For 11 out of
the 13 reports, the test cases exposed unreleased sensors. The anal-
ysis reports 26 instances for SenPat 2. Usually, this means that
the watch face attempted to unregister the sensor listener in an
incorrect way—e.g., some cases were missed for transitions to the
power-saving ambient mode, as illustrated by the insufficient check
at line 24 in the running example. This is likely caused by pro-
grammers’ misunderstanding of the watch face lifecycle. Using test
execution, we confirmed 23 of the 26 reports. Table 3 shows all
watch faces that are confirmed to have unreleased sensors during
test execution. The checkmarks in column “SenPat 1” and “SenPat 2”
indicate in what category a watch face is reported. The next-to-last
entry corresponds to the running example, which exhibits SenPat 2.

An example of SenPat 1 is Bokeh. The watch face acquires a grav-
ity sensor to guide themovement of the background image, similarly
to a live wallpaper in regular Android. There is only one imple-
mentation of SensorEventListener. Registrations for the gravity
sensor occur in onCreate and onAmbientModeChanged(false).
Every time the watch face enters ambient mode, the gravity sensor
is released by an unregistration in onAmbientModeChanged(true).
No other places have calls to (un)registerListner. The developer
intentionally did this to avoid unnecessary sensor acquisition as

Table 3: Confirmed sensor-related inefficiencies.

Package Name SenPat 1 SenPat 2

com.atektura.analogglowlitewatchface ✓
com.atektura.datestampwatchface ✓

com.blis.android.wearable.bliswatchface ✓
com.codingforlove.wear.watchfaces ✓

com.deglise.sensorface ✓
com.face.watch.meo ✓

com.mogoolab.androidwear.christmascounter ✓ ✓
com.newscope.bmwwatchface.row ✓

com.newscope.bmwwatchface ✓
com.osthoro.animatedearthwatchface ✓

com.osthoro.beautifulstuddedwatchface ✓
com.pandaeyes.cryptowatch ✓

com.smartartstudio.turbo.free.interactive.watchface ✓
com.smartartstudio.ultron.interactive.watchface ✓

com.trigonesoft.paranormal ✓
com.virtualgs.snowwatch ✓

com.zanyatocorp.illusionwatchface ✓
cz.dmn.bokehwatchface ✓

eu.stettiner.diamondwatchface ✓
eu.stettiner.dietwatch ✓ ✓

eu.stettiner.manyiconswatchface ✓
info.fathom.watchfaces.coubertin ✓ ✓
net.yt1300.watchfacemodel101b ✓ ✓
net.yt1300.watchfacemodel102 ✓ ✓

pl.nwg.dev.wear.rambler ✓
ru.slobodchikov.kgbwatchface ✓ ✓

wearable.android.breel.com.thehundreds ✓
wear.trombettonj.trombt1pearlfree ✓

there is no animation in ambient mode. However, when the watch
face is deselected, no release operation is performed during the tran-
sition from InvisiblePicker to Null and Interactive to InvisiblePicker .
Thus, the sensor remains active and drains the battery.

We observed false positives of the static analysis in the following
three cases. First, in the Ceres watch face (reported as SenPat 2), a
call to isInAmbientMode is performed inside onDraw, and sensor
listener unregistration is performed in ambient mode. Our analysis
of sensors does not consider this callback. However, according
to AW guidelines, the system “calls the Engine.onDraw() method
every time it redraws your watch face, so you should only include
operations that are strictly required to update the watch face inside
this method” [22]. Since onDraw is called much more frequently
than the lifecycle callbacks, a better design is to move the release of
sensors outside of onDraw. The other two examples are Scuba and
Speeds, reported as SenPat 1&2. They both maintain an internal
state machine, using custom enums to represent the state of the
watch face. This state is then used to correctly acquire and release
the sensors. Our analysis does not model the effects of these internal
states and state transitions.

Based on the results from Table 3, analysis precision is 11/13=85%
for SenPat 1 and 23/26=88% for SenPat 2. We also determined anal-
ysis recall. First, we checked all 1490 watch faces and found that 58
of them register sensors. We extensively studied the code and the
run-time behavior of all 58 watch faces, and manually identified 11
instances of SenPat 1 and 26 instances of SenPat 2. Thus, the recall
is 11/11=100% for SenPat 1 and 23/26=88% for SenPat 2. In the three
false negatives, the listener is the watch face service. It should be
possible to generalize our analysis to handle this case.

For the 23 watch faces that did exhibit run-time violations of
SenPat 2, we performed additional studies of the decompiled code to

Detection of Energy Inefficiencies in Android Wear Watch Faces ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 4: Summary of display-related inefficiencies.

DisPat 1&2 GEMMA (90% Black,10% White)

#Static #Reported #Reported

67 47 42

determinewhether therewas legitimate sensor use in ambientmode.
An example of such use could be gathering heart rate statistics or
user motion statistics for fitness apps. However, we found only one
watch face in which the sensor use may be somewhat legitimate; in
all other cases, the sensors should have been turned off in ambient
mode. This one watch face writes the sensor information to the
device log using Log.d() calls. These logs could conceivably be
used by other apps on the device, but those apps would need a
special READ_LOGS permission to be granted by the user. It is not
clear that such logs would be of any use when the watch face is
deployed on users’ devices.

5.3 Display-Related Inefficiencies
Table 4 shows a summary of the static analysis reports, as well as a
comparison with GEMMA [36], for the energy inefficiencies due
to displays in ambient mode. Column “#Static” shows the number
of watch faces identified by our static analysis as having the two
display-related patterns described in Section 3.3. We denote these
patterns as DisPat 1 and DisPat 2. Recall that DisPat 1 means the
color set does not change when a watch face goes into ambient
mode. DisPat 2 means that the set of colors changes but contains
colors that are not black. We consider colors whose RGB values are
below 10 as black. Any color with greater RGB values is considered
not recommended in ambient mode. The number of reported poten-
tial inefficiencies is shown in column “#Reported” under “DisPat
1&2”. As discussed earlier, these static reports should be followed
by test execution and analysis of the actual display observed at
run time on the device (in our case, on the LG Watch Style). In
our experiment, 47 of 67 watch faces were observed to violate the
guidelines because they contained too many (>10%) non-black pix-
els in ambient mode. Note that we only consider pixels inside the
inscribed circle of a screenshot, since all screenshots are taken as
square images while the smartwatch we use in the experiment has
a round screen. Any pixel beyond the circle is ignored.

To further validate our results, we implemented estimates based
on the GEMMA approach [36]. Higher power consumption implies
higher energy use over a period of time; thus, we can use power
as an indicator of the energy-intensiveness of each watch face in
ambient mode. To obtain estimates of power consumption, we ana-
lyzed the ambient mode screenshots using our implementation of a
GEMMA-based technique. GEMMA [36] calculates the theoretical
power consumption of OLED displays for an app and provides sug-
gestions for power efficient color palettes. Other researchers have
used similar techniques [31, 63]. The power consumption for OLED
displays can be modeled as a linear function of the RGB values for
each pixel. GEMMA formulates the function as

TP =
X∑
x=0

Y∑
y=0

(
PR (Rx,y) + PG (Gx,y) + PB (Bx,y)

)

Table 5: Reports of display-related inefficiencies.

Package Name DisPat 1 DisPat 2 GEMMA

com.asus.facedesigner ✓ ✓
com.dylanp.navballwatchface ✓ ✓
com.epix.nicetimewatchface ✓ ✓
com.gashfara.surfwatchface ✓ ✓
com.goldenbrown.watches ✓ ✓

com.milesoberstadt.radialwatchface ✓
com.multidots.watchface ✓ ✓

com.nickschwab.android.wear.simplefaces ✓ ✓
com.qmzc.timagine.watchface.earth ✓ ✓
com.qmzc.timagine.watchface.flat ✓ ✓
com.qmzc.timagine.watchface.kiwi ✓ ✓
com.qmzc.timagine.watchface.maze ✓ ✓

com.raimund.bigsimple_ger ✓ ✓
com.raimund.retrolcd ✓ ✓
com.rocas.classicfree ✓ ✓

com.runderbin.blackclassicwatchface ✓
com.smartmadsoft.wear.face.everyday ✓ ✓

com.stmp.counterface ✓ ✓
com.syzygy.tarvos ✓ ✓

com.watch.richface.delta ✓ ✓
com.watch.richface.guard ✓ ✓

com.watch.richface.infinity ✓ ✓
com.watch.richface.smartdrive ✓ ✓

com.watch.richface.throttle ✓ ✓
com.watchwright.christmas ✓ ✓

com.watchwright.cross ✓ ✓
com.watchwright.us ✓ ✓

com.wearclan.watchface.face ✓ ✓
com.wearclan.watchface.lightsense ✓ ✓

com.wearclan.watchface.technomachine ✓ ✓
com.wearclan.watchface.vividthanksgiving ✓ ✓

de.uschonha.tinylaser ✓ ✓
eu.foxjunior.simpleandcleanwathfacefree ✓ ✓

eu.stettiner.dietwatch ✓ ✓
fi.fluid.watcherwear ✓
org.beatonma.io16 ✓

re.hofer.watchface.binary ✓
ru.devsp.apps.customwatch ✓ ✓

watch.richface.androidwear.armada2 ✓ ✓
watch.richface.androidwear.digitalvision ✓ ✓

watch.richface.androidwear.fury ✓ ✓
watch.richface.androidwear.ntouch ✓ ✓

watch.richface.androidwear.timegate ✓ ✓
watch.richface.androidwear.valiant ✓ ✓
watchface.lbriceno.com.binarynerd ✓ ✓

wear.android.cricking.crickingandroidwear ✓ ✓
wearable.android.ns.nl.wearabletest ✓ ✓

Here TP is the total power for a given screenshot. X and Y are
the total number of pixels in each dimension (in our case, restricted
to the round watch face area), x andy are coordinates of a pixel, and
PR (r), PG (д) and PB (b) are linear power consumption functions for
RGB values in a pixel. As observed by others [36, 63], blue pixels
consume nearly twice the power of red and green pixels, a pixel
with white color consumes more power than one with any other
color, and a black pixel has the lowest power consumption.

Recall that we report a watch face as exhibiting energy inefficien-
cies if the percentage of black pixels is below 90%. In terms of power,
this means a watch face is reported if its power consumption in
ambient mode is greater than the power consumption of an image
with 90% black pixels. The upper bound of the power consumed by
such an image occurs when the other 10% of pixels are all white, as
white is the most power-intensive color. We use this as a baseline
and calculate the power consumption estimate TPbase . Any watch
face whose TP estimate is larger than TPbase can be regarded as

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Hailong Zhang, Haowei Wu, and Atanas Rountev

a violation. Column “#Reported” under “GEMMA (90% Black,10%
White)” shows the total number of such watch faces.

Table 5 shows the package names of all watch faces reported
by the proposed analysis and by our implementation of GEMMA.
Columns “DisPat 1” and “DisPat 2” show whether the watch face is
reported by our approach as an instance of the pattern. A checkmark
in column “GEMMA” indicates a report by our GEMMA implemen-
tation. Our analysis report covers all cases that are reported by
GEMMA estimates. There are 5 reports by our analysis that theoret-
ically consume less power than TPbase and thus are not reported by
GEMMA estimates. They use colors other than black that are not
very energy-consuming—for example, red and green. Note that it
is easy to use the GEMMA-based criterion rather than the simpler
number-of-black-pixels criterion when deciding whether to report
pattern instances. In the public implementation of our approach, we
include both filters as possible choices for the users of our analyses.

Summary.Our results can be summarized as follows: static analy-
sis of potential energy inefficiencies inwatch faces can be performed
with low cost and high precision. The analysis output provides spe-
cific information about the underlying causes of inefficiencies (e.g.,
executions paths in the code) and can be used to generate test cases
to exhibit the problem at run time. Using this analysis, combined
with dynamic checks after test execution, we were able to identify
75 watch faces with energy-related inefficiencies.

6 RELATEDWORK

Android Wear characterization and uses. Liu and Lin [38] ex-
amine hardware and OS level characteristics of AW devices to
find execution inefficiencies and design flaws. Many researchers
have focused on the security issues of AW devices and apps. Do
et al. [11] present techniques to leak sensitive data from AW de-
vices. Mujahid [50] has conducted a study of permission and feature
mismatch of AW apps. Liu et al. [40] present side-channel attacks
to infer user inputs by exploiting sensors on devices. There also
exists several approaches from the HCI community, focusing on ap-
plication scenarios and user interface design. Shen et al. [61] detect
handshakes on AW devices to create secret keys for secure commu-
nication. SafeDrive [27] collects and analyzes behaviors of drivers
for distraction detection. Arduser et al. [2] use motion data collected
in AW smartwatches for text recognition. Reyes et al. [58] intro-
duce novel gestures based on user’s thumb movement. SHOW [34]
captures sensor data to deduce handwriting.

Energy analysis for Android and Wear. There is a large body
of work on energy issues for regular Android apps [3–7, 23, 25,
26, 30, 35, 41, 47, 51–55, 57, 65]. Several optimizations have been
proposed for OLED displays [31, 36, 63]. GEMMA [36] generates
color palettes using multi-objective optimization to produce energy-
friendly colors. We use GEMMA-based estimates in our reports and
experimental evaluation. For cases where display-related inefficien-
cies are reported by our hybrid static/dynamic approach, GEMMA
could be used to provide suggestions for improvements.

Banerjee et al. [4] introduced a dynamic analysis for detection
of energy hotspots and bugs in Android apps. Their follow-up
work [3, 5, 6] proposed techniques for debugging and fixing energy
inefficiencies, based on dynamically-generated GUI models. Dy-
namic analysis based on static GUI models has also been used for

exploring run-time inefficiencies [41], including sensor-related ones.
Static analysis has been employed to report missing-deactivation
energy defects [65] and to generate test cases for sensor-related
leaks [64]. The missing-deactivation patterns in our work have sim-
ilar structure, but these existing approaches are specific to regular
Android apps and cannot be applied directly to AW apps, including
watch faces which have their own distinct lifecycle and control flow.
Energy-related behaviors for Android have also been considered in
other contexts. Jabbarvand et al. [26] developed an approach to min-
imize the number of tests needed to uncover energy bugs. Follow-up
work on µDroid [25] defines a mutation testing approach to evalu-
ate the ability of a test suite to reveal energy inefficiencies. Cruz
and Abreu [10] studied the effects of performance-based guidelines
and practices on Android energy consumption, and highlighted the
need for energy-aware techniques.

There are several studies of energy use in wearable devices. Min
et al. [46] present an exploratory investigation of users’ expec-
tations, interactions, and charging behaviors when using smart-
watches. Poyraz and Memik [56] collect activities of 32 smartwatch
users in 70 days. They propose a power model to analyze the char-
acteristics of user behaviors, power consumption, and network
activities. Liu et al. [39] investigate the usage of push notifications,
apps, and network traffic for a comprehensive power model. Their
findings highlight the power consumption in ambient/dozing mode
because of its long duration. While these studies are general AW
characterizations, our work focuses on the detection of specific
energy inefficiencies of watch faces by static analysis and testing.

Testing and analysis ofAndroid apps. Linares-Vásquez et al. [37]
present a summary of the current state of frameworks, tools, and
services for automated testing for Android. Choudhary et al. [9], Li
et al. [32], and Sadeghi et al. [59] conduct similar studies. Fazzini
et al. [12] propose a technique for generating platform-independent
test scripts for Android apps. Li et al. [33] consider the evolution
of GUI test scripts for mobile apps. Zhang et al. [70] generate tests
using a static GUI model [66, 68]. Garcia et al. [14] leverage sym-
bolic execution to generate inter-component communication ex-
ploits. Sapienz [44] uses search-based testing to explore test se-
quences. CrashScope [49] uses a model-based approach to detect
and report crashes. Other representative tools include Axiz [45],
Dynodroid [42], EvoDroid [43], PATDroid [60], GATOR [66–68],
PUMA [24], SwiftHand [8], and TrimDroid [48].

7 CONCLUSIONS
With the increasing popularity of wearable devices, various chal-
lenges have emerged for both developers and software engineering
researchers. Our work focuses on Android Wear watch faces, which
are some of the most popular Wear apps. We propose a watch face
control-flow model, define energy inefficiency patterns for sensors
and displays, and implement static analysis and test generation to
identify them. The evaluation shows that the proposed approach
has low cost, high precision, and can successfully detect inefficien-
cies in a wide range of real-world watch faces.

Acknowledgments.We thank the FSE reviewers for their valuable
feedback. This material is based upon work supported by the U.S.
National Science Foundation under CCF-1319695 and CCF-1526459,
and by a Google Faculty Research Award.

Detection of Energy Inefficiencies in Android Wear Watch Faces ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] APKPure. 2018. APKPure: Free APKs online. https://apkpure.com.
[2] L. Arduser, P. Bissig, P. Brandes, and R. Wattenhofer. 2016. Recognizing text

using motion data from a smartwatch. In WristSense. 1–6.
[3] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury.

2017. EnergyPatch: Repairing resource leaks to improve energy-efficiency of
Android apps. In TSE. 1–20.

[4] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roy-
choudhury. 2014. Detecting energy bugs and hotspots in mobile apps. In FSE.
588–598.

[5] Abhijeet Banerjee, Haifeng Guo, and Abhik Roychoudhury. 2016. Debugging
energy-efficiency related field failures in mobile apps. In MOBILESoft. 127–138.

[6] Abhijeet Banerjee and Abhik Roychoudhury. 2016. Automated re-factoring of
Android apps to enhance energy-efficiency. In MOBILESoft. 139–150.

[7] Xiaomeng Chen, Abhilash Jindal, Ning Ding, Yu Charlie Hu, Maruti Gupta, and
Rath Vannithamby. 2015. Smartphone background activities in the wild: Origin,
energy drain, and optimization. In MobiCom. 40–52.

[8] W. Choi, G. Necula, and K. Sen. 2013. Guided GUI testing of Android apps with
minimal restart and approximate learning. In OOPSLA. 623–640.

[9] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated test input generation for Android: Are we there yet?. In ASE. 429–440.

[10] Luis Cruz and Rui Abreu. 2017. Performance-based guidelines for energy efficient
mobile applications. In MOBILESoft. 46–57.

[11] Quang Do, Ben Martini, and Kim-Kwang Raymond Choo. 2017. Is the data on
your wearable device secure? An Android Wear smartwatch case study. SP&E
47, 3 (2017), 391–403.

[12] Mattia Fazzini, Eduardo Noronha De A Freitas, Shauvik Roy Choudhary, and
Alessandro Orso. 2017. Barista: A technique for recording, encoding, and running
platform independent Android tests. In ICST. 149–160.

[13] Soot Framework. 2018. Soot analysis framework. https://sable.github.io/soot.
[14] Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek. 2017. Au-

tomatic generation of inter-component communication exploits for Android
applications. In FSE. 661–671.

[15] Gartner. 2017. Press release. https://www.gartner.com/newsroom/id/3790965.
[16] Google. 2017. Android Wear: What’s new & best practices (Google I/O ’17).

https://www.youtube.com/watch?v=97U6W-5iF_o.
[17] Google. 2018. The activity lifecycle. https://developer.android.com/guide/

components/activities/activity-lifecycle.html.
[18] Google. 2018. Always-on. https://designguidelines.withgoogle.com/

android-wear/patterns/always-on.html#always-on-style.
[19] Google. 2018. Best practices for accessing and using sensors. https://developer.

android.com/guide/topics/sensors/sensors_overview.html#sensors-practices.
[20] Google. 2018. Designing watch faces. https://developer.android.com/training/

wearables/watch-faces/designing.html.
[21] Google. 2018. MonkeyRunner. https://developer.android.com/studio/test/

monkeyrunner.
[22] Google. 2018. Optimizing watch faces: Move expensive operations outside the

drawing method. https://developer.android.com/training/wearables/watch-faces/
performance.html#OutDrawing.

[23] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. 2013. Esti-
mating mobile application energy consumption using program analysis. In ICSE.
92–101.

[24] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.
2014. PUMA: Programmable UI-automation for large-scale dynamic analysis of
mobile apps. In MobiSys. 204–217.

[25] Reyhaneh Jabbarvand and Sam Malek. 2017. µDroid: An energy-aware mutation
testing framework for Android. In FSE. 208–219.

[26] Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam Malek. 2016.
Energy-aware test-suite minimization for Android apps. In ISSTA. 425–436.

[27] Landu Jiang, Xinye Lin, Xue Liu, Chongguang Bi, and Guoliang Xing. 2018.
SafeDrive: Detecting distracted driving behaviors using wrist-worn devices.
IMWUT 1, 4 (Jan. 2018), 144:1–144:22.

[28] Jakob Körner, Lars Hitzges, and Dennis Gehrke. 2018. Goko store. https://goko.
me.

[29] O. Lhoták and L. Hendren. 2003. Scaling Java points-to analysis using Spark. In
CC. 153–169.

[30] Ding Li, Shuai Hao, William G. J. Halfond, and Ramesh Govindan. 2013. Calcu-
lating source line level energy information for Android applications. In ISSTA.
78–89.

[31] Ding Li, Angelica Huyen Tran, and William G. J. Halfond. 2015. Nyx: A display
energy optimizer for mobile web apps. In FSE. 958–961.

[32] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017. Static analysis of
Android apps: A systematic literature review. IST 88 (2017), 67–95.

[33] Xiao Li, Nana Chang, Yan Wang, Haohua Huang, Yu Pei, Linzhang Wang, and
Xuandong Li. 2017. ATOM: Automatic maintenance of GUI test scripts for
evolving mobile applications. In ICST. 161–171.

[34] Xinye Lin, Yixin Chen, Xiao-Wen Chang, Xue Liu, and Xiaodong Wang. 2018.
SHOW: Smart handwriting on watches. IMWUT 1, 4 (Jan. 2018), 151:1–151:23.

[35] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto,
Massimiliano Di Penta, and Denys Poshyvanyk. 2014. Mining energy-greedy
API usage patterns in Android apps: An empirical study. In MSR. 2–11.

[36] Mario Linares-Vásquez, Gabriele Bavota, Carlos Eduardo Bernal Cárdenas, Rocco
Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. 2015. Optimizing energy
consumption of GUIs in Android apps: A multi-objective approach. In FSE. 143–
154.

[37] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous,
evolutionary and large-scale: A new perspective for automatedmobile app testing.
In ICSME. 399–410.

[38] Renju Liu and Felix Xiaozhu Lin. 2016. Understanding the characteristics of
Android Wear OS. In MobiSys. 151–164.

[39] Xing Liu, Tianyu Chen, Feng Qian, Zhixiu Guo, Felix Xiaozhu Lin, Xiaofeng
Wang, and Kai Chen. 2017. Characterizing smartwatch usage in the wild. In
MobiSys. 385–398.

[40] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang. 2015. When
good becomes evil: Keystroke inference with smartwatch. In CCS. 1273–1285.

[41] Yepang Liu, Chang Xu, S. C. Cheung, and Jian Lu. 2014. GreenDroid: Automated
diagnosis of energy inefficiency for smartphone applications. TSE 40 (Sept. 2014),
911–940. Issue 9.

[42] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for Android apps. In FSE. 224–234.

[43] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented
evolutionary testing of Android apps. In FSE. 599–609.

[44] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for Android applications. In ISSTA. 94–105.

[45] K. Mao, M. Harman, and Y. Jia. 2017. Robotic testing of mobile apps for truly
black-box automation. IEEE Software 34, 2 (2017), 11–16.

[46] Chulhong Min, Seungwoo Kang, Chungkuk Yoo, Jeehoon Cha, Sangwon Choi,
Younghan Oh, and Junehwa Song. 2015. Exploring current practices for battery
use and management of smartwatches. In ISWC. 11–18.

[47] Chulhong Min, Youngki Lee, Chungkuk Yoo, Seungwoo Kang, Sangwon Choi,
Pillsoon Park, Inseok Hwang, Younghyun Ju, Seungpyo Choi, and Junehwa Song.
2015. PowerForecaster: Predicting smartphone power impact of continuous
sensing applications at pre-installation time. In SenSys. 31–44.

[48] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and SamMalek.
2016. Reducing combinatorics in GUI testing of Android applications. In ICSE.
559–570.

[49] K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome, and D. Poshy-
vanyk. 2016. Automatically discovering, reporting and reproducing Android
application crashes. In ICST. 33–44.

[50] Suhaib Mujahid. 2018. Determining and detecting permission issues of wearable
apps. Master’s thesis. Concordia University.

[51] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy Zaid-
man, and Andrea De Lucia. 2017. Software-based energy profiling of Android
apps: Simple, efficient and reliable?. In SANER. 103–114.

[52] Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu Tarkoma.
2013. Carat: Collaborative energy diagnosis for mobile devices. In SenSys. 1–14.

[53] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. 2012. Where is the energy
spent inside my app?. In EuroSys. 29–42.

[54] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang.
2011. Fine-grained power modeling for smartphones using system call tracing.
In EuroSys. 153–168.

[55] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff. 2012.
What is keeping my phone awake?: Characterizing and detecting no-sleep energy
bugs in smartphone apps. In MobiSys. 267–280.

[56] E. Poyraz and G. Memik. 2016. Analyzing power consumption and characterizing
user activities on smartwatches. In IISWC. 1–2.

[57] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen,
and Oliver Spatscheck. 2011. Profiling resource usage for mobile applications: A
cross-layer approach. In MobiSys. 321–334.

[58] Gabriel Reyes, Jason Wu, Nikita Juneja, Maxim Goldshtein, W. Keith Edwards,
Gregory D. Abowd, and Thad Starner. 2018. SynchroWatch: One-handed syn-
chronous smartwatch gestures using correlation and magnetic sensing. IMWUT
1, 4 (Jan. 2018), 158:1–158:26.

[59] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek. 2017. A tax-
onomy and qualitative comparison of program analysis techniques for security
assessment of Android software. TSE 43, 6 (2017), 492–530.

[60] Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2017. PATDroid:
Permission-aware GUI testing of Android. In FSE. 220–232.

[61] Yiran Shen, Fengyuan Yang, Bowen Du, Weitao Xu, Chengwen Luo, and Hongkai
Wen. 2018. Shake-n-Shack: Enabling secure data exchange between smart wear-
ables via handshakes. In PerCom. 1–10.

[62] Wearable software. 2018. Android Wear center. http://androidwearcenter.com.
[63] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond. 2015. Detecting display energy

hotspots in Android apps. In ICST. 1–10.

https://apkpure.com
https://sable.github.io/soot
https://www.gartner.com/newsroom/id/3790965
https://www.youtube.com/watch?v=97U6W-5iF_o
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://designguidelines.withgoogle.com/android-wear/patterns/always-on.html#always-on-style
https://designguidelines.withgoogle.com/android-wear/patterns/always-on.html#always-on-style
https://developer.android.com/guide/topics/sensors/sensors_overview.html#sensors-practices
https://developer.android.com/guide/topics/sensors/sensors_overview.html#sensors-practices
https://developer.android.com/training/wearables/watch-faces/designing.html
https://developer.android.com/training/wearables/watch-faces/designing.html
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/training/wearables/watch-faces/performance.html#OutDrawing
https://developer.android.com/training/wearables/watch-faces/performance.html#OutDrawing
https://goko.me
https://goko.me
http://androidwearcenter.com

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Hailong Zhang, Haowei Wu, and Atanas Rountev

[64] Haowei Wu, Yan Wang, and Atanas Rountev. 2018. Sentinel: Generating GUI
tests for Android sensor leaks. In AST. 27–33.

[65] Haowei Wu, Shengqian Yang, and Atanas Rountev. 2016. Static detection of
energy defect patterns in Android applications. In CC. 185–195.

[66] Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swami-
nathan, Dacong Yan, and Atanas Rountev. 2018. Static window transition graphs
for Android. JASE (June 2018), 1–41.

[67] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static control-flow analysis of user-driven callbacks in Android. In ICSE. 89–99.

[68] Shengqian Yang, Hailong Zhang, HaoweiWu, YanWang, Dacong Yan, and Atanas
Rountev. 2015. Static window transition graphs for Android. In ASE. 658–668.

[69] Hailong Zhang and Atanas Rountev. 2017. Analysis and testing of notifications
in Android Wear applications. In ICSE. 347–357.

[70] Hailong Zhang, Haowei Wu, and Atanas Rountev. 2016. Automated test genera-
tion for detection of leaks in Android applications. In AST. 64–70.

	Abstract
	1 Introduction
	2 Background and App Market Study
	2.1 Watch Face Lifecycle
	2.2 Running Example
	2.3 App Market Study

	3 Modeling of Control Flow and Energy Inefficiencies
	3.1 Refined Control-Flow Model
	3.2 Potential Inefficiencies Due to Sensors
	3.3 Potential Inefficiencies Due to Displays

	4 Static Analysis and Inefficiency Testing
	4.1 Sensor-Related Inefficiencies
	4.2 Display-Related Inefficiencies

	5 Evaluation
	5.1 Experimental Subjects
	5.2 Sensor-Related Inefficiencies
	5.3 Display-Related Inefficiencies

	6 Related Work
	7 Conclusions
	References

