
Coverage Criteria for Testing of Object
Interactions in Sequence Diagrams

Atanas Rountev, Scott Kagan, and Jason Sawin

Ohio State University
{rountev, kagan, sawin}@cse.ohio-state.edu

Abstract. This work defines several control-flow coverage criteria for
testing the interactions among a set of collaborating objects. The cri-
teria are based on UML sequence diagrams that are reverse-engineered
from the code under test. The sequences of messages in the diagrams are
used to define the coverage goals for the family of criteria, in a manner
that generalizes traditional testing techniques such as branch coverage
and path coverage. We also describe a run-time analysis that gathers
coverage measurements for each criterion. To compare the criteria, we
propose an approach that estimates the testing effort required to sat-
isfy each criterion, using analysis of the complexity of the underlying
sequence diagrams. The criteria were investigated experimentally on a
set of realistic Java components. The results of this study compare dif-
ferent approaches for testing of object interactions and provide insights
for testers and for builders of test coverage tools.

1 Introduction

Object-oriented software presents a variety of new challenges for testing, com-
pared to testing for procedural software [1]. For example, programs contain com-
plex interactions among sets of collaborating objects from different classes. It is
not sufficient to test a class in isolation—testing the interactions between in-
stances of different classes is of critical importance [2, 1, 3]. A variety of tech-
niques can be employed to test different aspects of object interactions. Several
existing approaches for such testing [3, 4, 5, 6, 7] are based on UML interaction di-
agrams. UML defines two kinds of semantically-equivalent interaction diagrams:
sequence diagrams and collaboration diagrams [8, 9]. In this paper we discuss
only sequence diagrams; Figure 1a contains an example of such a diagram.

A sequence diagram shows the messages that are exchanged among several
objects, as well as other control-flow information (e.g., if-then conditions that
guard messages). Such diagrams capture important aspects of object interac-
tions, and can be naturally used to define testing goals that must be achieved
during testing. The testing requirements are related to certain elements of the
diagrams. For example, it may be required to exercise all relationships of the
form “object X send message m to object Y”. More aggressive approaches con-
sider not only individual messages, but also sequences of messages—for example,

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 282–297, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Coverage Criteria for Testing of Object Interactions in Sequence Diagrams 283

all possible start-to-end message sequences in a diagram. Section 2 discusses in
detail the previous work that proposes such approaches.

With the help of reverse-engineering tools, sequence diagrams can be ex-
tracted from existing code. Design recovery through reverse engineering is nec-
essary during iterative development [10] and for evolving systems in which the
design documents have not been updated to reflect code changes. Commercial
tools already provide some functionality for such reverse engineering, both for
class diagrams and for sequence diagrams. In addition, several static analyses
proposed in the literature have considered various aspects of reverse engineering
of sequence diagrams [11, 12, 13, 14]. Reverse-engineered sequence diagrams are
a natural source of program-based coverage criteria for testing of object inter-
actions. If a reverse-engineering tool is used to construct a sequence diagram,
a coverage tool can use this diagram as a basis for defining and measuring of
coverage metrics during subsequent testing. Such a diagram reflects precisely the
up-to-date state of the code, and therefore can be used for early and frequent
testing.

The first goal of our work is to define a family of coverage criteria for ob-
ject interactions based on reverse-engineered sequence diagrams. The criteria are
generalizations of traditional control-flow criteria such as branch coverage and
path coverage, and are defined in terms of the sequences of messages exchanged
among a set of collaborating objects. Some of these criteria have appeared in
previous work. However, there have been no attempts to define a unifying frame-
work for such criteria and to use it for systematic investigation and comparison
of different techniques for testing of object interactions. The work presented in
this paper defines such a framework. At the center of the proposed approach
is a data structure which we refer to as interprocedural restricted control-flow
graph (IRCFG). This data structure represents in a compact manner the set of
message sequences in a sequence diagram, and can be easily constructed as part
of the reverse engineering of such a diagram. The IRCFG allows us to define
systematically the family of test coverage criteria.

Our second goal is to design a run-time analysis based on the IRCFG. The
run-time analysis observes the behavior of the code while tests are being exe-
cuted, and gathers coverage measurements with respect to each criterion. Au-
tomated coverage measurements are essential for any program-based coverage
criterion, and the run-time analysis is an important complement to the criteria.

The third goal of this work is to perform a comparison of the different criteria.
We aim to obtain an estimate of the effort required to achieve high coverage for
each criterion, and to compare these estimates. For each criterion c, we propose
an approach which determines a lower bound pc on the number of start-to-end
IRCFG paths that guarantee the highest possible coverage for c. If for a given
sequence diagram the value of pc is very high, this indicates that the effort
required to achieve high coverage for c may be prohibitive, and therefore weaker
criteria should be used. Having such estimates provides valuable insights about
the differences between the criteria, which in turn could allow better planning
and management of the testing process.



284 A. Rountev, S. Kagan, and J. Sawin

The fourth goal of the work is to perform an experimental study that deter-
mines the values of pc for different criteria on a set of realistic software com-
ponents. Our experiments use 18 components from various Java libraries. The
comparison of pc across a diverse set of components provides insights into the
inherent relationships between the different coverage criteria, and into the effort
required to achieve high coverage for these criteria.

2 Testing and Sequence Diagrams

Several testing approaches proposed in the literature consider testing of object
interactions based on sequence diagrams (or the semantically-equivalent collab-
oration diagrams). Binder [3] considers the set of all start-to-end paths in a
sequence diagram, and defines a criterion for choosing a subset of paths to be
covered during testing. The criterion requires coverage that is similar to tra-
ditional branch coverage: each decision outcome within the diagram must be
covered by at least one start-to-end path. For example, if a message is sent un-
der some condition c, the set of test cases should ensure that at least one path
covers the case when c is true, and at least one path covers the case when c
is false. We will refer to this criterion as the all-branches criterion; a precise
definition of this approach is presented later in the paper.

Consider the sequence diagram in Figure 1a. This diagram represents the
set of possible behaviors when message m1 is sent to object a. Conditions c1,
c2, and c3 guard certain messages: for example, m6 is sent to b only if c3 is
true. A start-to-end path in the diagram can be represented by the temporal
sequence of messages that are exchanged between objects. For example, one
such path is (m1,m2,m4,m6,m2,m3,m4). To satisfy the all-branches criterion, testing
must execute enough start-to-end paths to cover all conditional behavior. One
possible set of paths that satisfies this requirement is p1 = (m1, m2, m3, m4, m5),
p2 = (m1, m2, m4, m6, m2, m3, m4), and p3 = (m1, m2, m4, m6, m2, m4, m5).

Other testing approaches consider not only individual messages and their
guarding conditions, but also entire sequences of messages. Jorgensen and Erick-
son [15] consider testing that exercises method-message paths and atomic system
functions. A method-message path is a sequence of events of the form “method
m1 invokes method m2; during this invocation, m2 invokes m3; during this invo-
cation, m3 invokes method m4 . . .”. For example, in Figure 1a, the left-to-right
sequence of messages (m1,m6,m2,m3) corresponds to a message-method path. In
the subsequent discussion, we will use the more common term call chain to refer
to such a sequence. An atomic system function, as defined in [15], is equivalent
to the set of all start-to-end message sequences in a sequence diagram.

Abdurazik and Offutt [4] consider collaboration diagrams created during de-
sign, and define an approach for static checking and testing of the interactions
among the diagram objects. Their technique requires coverage of start-to-end
sequences of messages in the diagrams. Basanieri and Bertolino [16] define a
testing approach that considers all message sequences in a sequence diagram
and applies the category-partition method to choose the appropriate test data



Coverage Criteria for Testing of Object Interactions in Sequence Diagrams 285

for exercising these sequences. Fraikin and Leonhardt [6] describe the SeDiTeC
tool for testing based on sequence diagrams. Their approach requires coverage of
all possible sequences of messages in a set of related sequence diagrams. The dia-
grams are augmented with information about expected input and output values
for method invocations, and these values are checked during test execution.

Briand and Labiche [5] consider functional system testing based on use cases
and sequence diagrams (or collaboration diagrams) constructed during object-
oriented analysis. Each scenario within a use case corresponds to a start-to-end
path in the sequence diagram for that use case. They construct a regular ex-
pression that represents all start-to-end message sequences (i.e., all scenarios),
and require coverage of all such sequences during testing. Wu et al. [7] propose
an approach for testing of component-based software which uses UML collab-
oration/sequence diagrams and statecharts. One of the suggested techniques
requires testing of all possible sequences of messages in a collaboration diagram.

3 Criteria for Reverse-Engineered Sequence Diagrams

The testing approaches discussed in the previous section are based on interaction
diagrams that are constructed during analysis or design, before the correspond-
ing implementation code is written. In general, there is no guarantee that design
activities will produce a complete set of diagrams for all interactions in the sys-
tem. An incomplete set of diagrams is a weak basis for comprehensive testing
of object interactions. Another potential problem is that during code construc-
tion, the implementation often diverges from the original design. For example,
in iterative development, tools for reverse engineering of design artifacts from
the code are often necessary to make the design documents consistent with the
actual implementation.

This paper considers sequence diagrams that are constructed automatically
from existing code, using static analyses for reverse engineering [11, 12, 13, 14].
Problems due to incomplete or outdated diagrams can be avoided with the use
of reverse-engineered diagrams. Such diagrams can be constructed automatically
from the latest version of the code, and for all relevant parts of the system.
Furthermore, since the diagrams are created from the code, a coverage tool can
easily determine what kinds of code instrumentation will be necessary in order
to obtain run-time coverage metrics during test execution.

The approaches from Section 2 (with the exception of Binder’s work [3]) have
a common element: the requirement that all message sequences in an interaction
diagram should be covered. This requirement is either used as a stand-alone
coverage criterion, or as part of more general testing goals. When considered
in the context of reverse-engineered sequence diagrams (rather than diagrams
created during analysis or design), the requirement for all-paths coverage raises
concerns similar to the ones from traditional CFG path coverage. Typically, CFG
path coverage is considered to be infeasible in practice due to the potentially
large number of paths. A similar question can be asked for testing of object
interactions: is it practical to require coverage of all start-to-end paths in a



286 A. Rountev, S. Kagan, and J. Sawin

reverse-engineered sequence diagram? In fact, the reason Binder considers the
weaker all-branches criterion is because, as he states, “the number of paths can
easily reach astronomical numbers” [3].

This section presents a formal definition of three coverage criteria that are
weaker versions of the all-paths criterion; one of them is the all-branches crite-
rion. The criteria provide several options with different tradeoffs between test-
ing effort and test comprehensiveness. Having such options is important in the
presence of resource constraints for the testing process. Depending on these con-
straints, different criteria for systematic testing of object interactions can be
employed. The criteria are generalizations of traditional control-flow-based cri-
teria such as CFG branch coverage and CFG path coverage. We first define the
notion of an interprocedural restricted control-flow graph (IRCFG), which can be
thought of as the equivalent of a CFG for a sequence diagram. Figure 1b shows
the IRCFG for the diagram from Figure 1a. Paths through the IRCFG corre-
spond to sequences of messages in a sequence diagram. The proposed coverage
criteria for object interactions are then defined formally based on the IRCFG.

3.1 Interprocedural Restricted Control-Flow Graph

An IRCFG contains a set of restricted CFGs (RCFGs), together with edges
which connect these RCFGs. Each RCFG corresponds to a particular method
and is similar to the CFG for that method, except that it is restricted to the flow
of control that is relevant to message sending. In Figure 1b, each RCFG is shown
within a rectangular box. For example, the top RCFG in the figure corresponds to
method m1, which is invoked as a result of sending message m1 to object a. A node
in the RCFG for some method m represents a method invocation in the body of
m. For example, the node labeled m2 in the top RCFG in Figure 1b corresponds
to some call to m2 in the body of method m1. In the reverse-engineered diagram
from Figure 1a, this call is represented by the message m2 sent from a to c. The
RCFGs also contain artificial nodes start and end. The start node represents
the moment when the run-time execution enters the method, and the end node
represents the moment when the flow of control returns back to the caller.

RCFG edges, shown with solid arrows in Figure 1b, represent the sequencing
relationships between nodes. In Figure 1a, after the execution enters method m1,
method m2 is invoked. This is represented by the edge (start,m2) in the RCFG
for m1. After this invocation of m2 completes, either m6 is invoked by m1, or m1
completes without invoking m6. These two possibilities are represented by RCFG
edges (m2,m6) and (m2,end) respectively. Sometimes we will refer to RCFG edges
as intraprocedural edges. RCFGs are connected with interprocedural edges, shown
in Figure 1b with dashed arrows. An interprocedural edge connects an RCFG
node n with a start node that corresponds to some method that could be invoked
by n. Note that due to polymorphism, there could be multiple interprocedural
edges coming out of n. The interprocedural edges define a tree in which the
nodes are RCFGs; we will refer to that tree as the RCFG tree.

Clearly, all information in the IRCFG is entirely based on the structure of the
corresponding sequence diagram. Since we consider sequence diagrams that are



Coverage Criteria for Testing of Object Interactions in Sequence Diagrams 287

Fig. 1. Sample sequence diagram and the corresponding IRCFG

constructed from existing code using some reverse-engineering static analysis,
it should be straightforward to construct the IRCFG by augmenting the static
analysis. Our implementation (described later) uses this approach: it extends an
existing reverse-engineering analysis to construct the IRCFG.

3.2 Coverage Criteria

The IRCFG introduced in the previous section serves two purposes. First, it al-
lows precise formal definition of coverage criteria for the corresponding sequence
diagram. Second, it is the basis for a run-time analysis that measures the cov-
erage achieved during testing. In this section we focus on the definition of the
criteria; the run-time analysis is outlined in Section 4.

The all-paths criterion, which we will refer to as All-IRCFG-Paths, requires
coverage of the entire set of complete IRCFG paths. Each complete path is a
start-to-end traversal of the IRCFG. An example of such a path is

(startm1, m2, startm2, m4, startm4, endm4, m5, startm5, endm5, endm2, endm1)



288 A. Rountev, S. Kagan, and J. Sawin

Let p be a sequence of RCFG nodes in which the first and the last node are
start and end in the root RCFG, respectively. We will refer to p as a complete
IRCFG path if it has the following property. Consider some node ni in p, and
let R be the enclosing RCFG for ni. If the next node after ni in the sequence p
is node nj , then one of the following must hold:

Case 1. If ni is the start node of R, there must exist an intraprocedural RCFG
edge (ni, nj) in R

Case 2. If ni is not the start or the end node of R, then
– there exists an interprocedural edge (ni, nj), where nj is the start node

of some child of R in the RCFG tree, or
– there are no interprocedural edges starting at ni, and (ni, nj) is an in-

traprocedural edge in R
Case 3. If ni is the end node of R, then the parent of R in the RCFG tree

contains an intraprocedural edge (nk, nj), and there is an interprocedural
edge from nk to the start node of R

The second alternative in Case 2 represents a situation when the body of the
method invoked by ni is not included in the diagram. For example, it is common
to “stop” the reverse-engineered diagrams at library methods; in this case there
is no interprocedural edge coming out of ni.

It is important to note that not all complete IRCFG paths necessarily corre-
spond to feasible run-time executions. Of course, this is a standard issue for any
program-based criterion that uses some abstracted model of the tested code. For
example, in traditional CFG path coverage, some CFG paths may be infeasible
and complete coverage may not be possible. Even though it is impossible to
completely eliminate infeasibility, there is a wide range of effective static analy-
sis techniques that can reduce significantly the degree of infeasibility in program
models such as CFGs and IRCFGs. For example, points-to analyses (e.g., [17])
can produce very precise calling-context-sensitive information about the calling
relationships between methods, and branch correlation analysis (e.g., [18]) can
identify certain classes of infeasible CFG paths. Static analyses for reverse engi-
neering of sequence diagrams can employ such techniques to identify infeasible
subpaths in the diagrams and in their corresponding IRCFGs. The investigation
of this issue is beyond the scope of this paper, and the subsequent discussion
assumes that all IRCFG paths are feasible.

An interesting question is how many complete IRCFG paths exist in a given
IRCFG. Consider the example in Figure 1b. The invocation of m2 from m1 could
lead to four distinct IRCFG subpaths. Similarly, the invocation of m6 from m1
may proceed along four distinct subpaths. Therefore, there are 16 complete IR-
CFG paths in which m1 calls m2 and m6. When we also consider the case in which
m6 is skipped, the total number of paths becomes 20. This example illustrates
one fundamental concern with the All-IRCFG-Paths criterion: the number of
paths could easily grow exponentially.

Next, consider all RCFG paths in an IRCFG. An RCFG path is a sequence
of RCFG nodes within some RCFG R, beginning with the start node of R and
finishing with the end node of R. Each pair of adjacent nodes in the path must



Coverage Criteria for Testing of Object Interactions in Sequence Diagrams 289

correspond to an intraprocedural edge in R. For example, for the root RCFG in
Figure 1b, there are two such paths: (start,m2,end) and (start,m2,m6,end). A
complete IRCFG path could cover several RCFG paths. For example, consider
again path

(startm1, m2, startm2, m4, startm4, endm4, m5, startm5, endm5, endm2, endm1)

This complete path covers the following RCFG paths: (startm1, m2, endm1) in
the root RCFG, (startm2, m4, m5, endm2) in the left child of the root, and the
trivial start-end paths in the two leftmost leaves.

The All-RCFG-Paths criterion requires testing to exercise enough complete
IRCFG paths to cover all RCFG paths. In Figure 1b, coverage for this criterion
can be achieved with five (but not fewer) complete IRCFG paths. Coverage of
all RCFG paths is similar to traditional CFG path coverage. Of course, unlike a
CFG, an RCFG represents only a subset of the flow of control within a method
(e.g., conditions that are irrelevant for calls are ignored). Furthermore, the cri-
terion takes into account the calling context of a method. For example, for m2
there are two RCFGs in Figure 1b—corresponding to call chains (m1,m2) and
(m1,m6,m2)—and each start-to-end path in each of the two RCFGs should be
covered.

Another potential source of exponential growth is the fact that the number
of RCFG paths could be exponential in the size of the RCFG. We can eliminate
this source by defining a criterion that requires coverage of all RCFG edges
rather than all RCFG paths. This All-RCFG-Branches criterion is equivalent to
Binder’s approach discussed in Section 2. For our running example, the criterion
can be satisfied with three complete IRCFG paths.

It is possible to define an additional simplification that leads to an even
weaker (and easier to achieve) criterion. Consider the case when the tree contains
several RCFGs for the same method, and each graph is associated with different
calling contexts for the corresponding method. If we require coverage of each
RCFG edge regardless of the calling context, this defines a coverage criterion that
is a simplified version of All-RCFG-Branches. In essence, we consider each unique
RCFG edge regardless of how many times it occurs in the IRCFG, and require
at least one occurrence to be covered by a complete IRCFG path. The new
criterion will be denoted by All-Unique-Branches. For Figure 1b, this criterion
can be satisfied by two complete IRCFG paths—for example,

(startm1, m2, startm2, m3, startm3, endm3, m4, startm4, endm4, m5, startm5,
endm5, endm2, endm1) and (startm1, m2, startm2, m4, startm4, endm4, endm2,
m6, startm6, m2, startm2, m4, startm4, endm4, endm2, endm6, endm1)

The preceding discussion defines four different coverage criteria based on
the IRCFG. Clearly, these criteria form a subsumption hierarchy. (Criterion ci

subsumes criterion cj if complete coverage for ci also achieves complete coverage
for cj .) The criteria were defined under the assumption that each RCFG is
acyclic. If an RCFG contains a cycle, the number of RCFG paths is of course
infinite. Due to space limitations, the handling of this case is discussed in detail
elsewhere [19].



290 A. Rountev, S. Kagan, and J. Sawin

4 Run-Time Coverage Analysis

This section defines a coverage analysis for All-RCFG-Paths, All-RCFG-Branches,
and All-Unique-Branches. We are in the process of building a coverage tool for
these criteria, and this paper describes the design of the run-time analysis al-
gorithm used in the tool. For brevity, the description outlines the ideas behind
the algorithm without providing an in-depth discussion of all relevant details. At
present we have no plans to implement coverage tracking for All-IRCFG-Paths,
because the experimental results presented later in the paper raise questions
about the practicality of this criterion.

The code instrumentation required to perform the run-time tracking is fairly
straightforward. Immediately before each call site, we insert instrumentation to
identify the method that is about to be invoked. We also insert instrumentation
immediately after each call site, in order to know at run time that the invoca-
tion has just completed. The run-time events triggered by the instrumentation
are used to traverse the IRCFG while the tests are being executed. The anal-
ysis maintains a “current” RCFG node which reflects the current state of the
run-time execution. Immediately before a call site is about to make a call, the
corresponding interprocedural edge in the IRCFG is traversed downwards and
the current node is changed to the start node of the RCFG for the called method.
The execution within the callee method proceeds until the flow of control reaches
the exit of that method. At this point of time, the current node in the coverage
analysis is end in the RCFG for the callee. The return to the caller triggers an
instrumentation event which shows that the call has just completed. As a result,
the current node becomes the corresponding RCFG node in the caller method.

Based on the current RCFG node in the analysis, it is easy to compute cover-
age metrics for All-RCFG-Branches and All-Unique-Branches. To compute path
coverage for All-RCFG-Paths, we use a variation of an approach for intraproce-
dural path profiling proposed by Ball and Larus [20]. Their technique assigns a
unique integer path id to each distinct start-to-end path in a CFG. Instrumenta-
tion at CFG edges is used to update the value of a run-time integer accumulator.
At CFG exit the accumulator contains the id of the executed path. We can use a
similar technique for RCFG path tracking: each RCFG has an associated accu-
mulator, which is initialized every time the flow of control enters the start node
of the graph.

5 Minimum Number of Paths

In this section we define techniques for estimating the testing effort inherent in
each of the four criteria discussed earlier. Given some IRCFG, for each criterion
c we want to compute a lower bound on the number of complete IRCFG paths
whose run-time coverage would guarantee the best possible coverage for c. This
bound is an indication of how many complete IRCFG paths a tester may need
to consider for coverage in order to satisfy c.



Coverage Criteria for Testing of Object Interactions in Sequence Diagrams 291

IRCFG Paths. First, what is the total number of complete IRCFG paths in a
given IRCFG? The computation of the number of paths can be done in bottom-
up fashion on the RCFG tree. Starting from the leaves, we can compute the
number of IRCFG subpaths in each subtree. Consider some RCFG R in the tree,
and suppose that we have already computed the number of IRCFG subpaths for
each of the subtrees rooted at R’s children. To compute the number of subpaths
for the subtree rooted at R, we can traverse R in topological sort order. During
the traversal, when we visit an RCFG node n in R, we compute the number
p(n) of all IRCFG subpaths from the start node of R to n. In the beginning of
the traversal, p(startR) = 1 for the start node of R. For each visited node n, we
have

p(n) =
∑

(n′,n)∈R

p(n′) × q(n′)

Here n′ is an intraprocedural predecessor of n and q(n′) =
∑

R′ p(endR′) where
the sum is over all RCFG R′ that are called by n′ (i.e., there is an interprocedural
edge from n′ to the start node of R′). In the case when there are no such R′, let
q(n′) = 1.

In this computation, for each intraprocedural edge (n′, n) in R, we consider
the number of IRCFG subpaths p(n′) from the start of R to n′. For each RCFG
R′ that is called by n′, we examine the value p(endR′) computed earlier for the
end node of R′. There are a total of p(n′)×p(endR′) IRCFG subpaths that start
at the beginning of R, lead to n′, continue downwards into R′, and eventually
return back to n in R. The total number of complete IRCFG paths is the value
p(n) computed for the end node of the root RCFG.

RCFG Branches. To find the minimum number of complete IRCFG paths
that contain all RCFG edges, we define an integer linear programming problem.
Consider some hypothetical set S of complete IRCFG paths. For each RCFG
edge e, let the integer value v(e) ≥ 0 represent the number of times e is covered
by all paths in S (i.e., the edge frequency of e in S). For each call node n in
the IRCFG, we define equation E1:

∑
e∈In(n) v(e) =

∑
e∈Out(n) v(e). Here In(n)

denotes the set of all intraprocedural edges (n′, n), and Out(n) is the set of all
intraprocedural edges (n, n′′). Equation E1 shows that the number of times n is
entered by paths in S is equal to the number of times n is exited.

For each call node n that has outgoing interprocedural edges, we also need
to model the execution of the corresponding children RCFGs. This is done by
equation E2:

∑
e∈In(n) v(e) =

∑
e∈Call(n) v(e). Here Call(n) denotes the set of

all interprocedural edges (n, start) entering the children RCFGs. Equation E2
encodes the fact that the number of times n is covered by S is equal to the number
of times the children graphs are covered by S. We also model the execution
frequencies of the edges coming out of each start node, using equation E3: v(e′) =∑

e∈Out(start) v(e), where e′ is the single interprocedural edge entering start .
For the All-RCFG-Branches criterion, we define a system that combines E1,

E2, and E3 with the following equation: v(e) ≥ 1 for each edge e in each RCFG.
Given this system, we solve a linear programming problem that minimizes the



292 A. Rountev, S. Kagan, and J. Sawin

objective function
∑

e∈Out(startroot ) v(e), where startroot is the start node of the
root RCFG. This value represents the total number of times the start node is
traversed by S, which is equal to the size of S. Let p∗ be the minimum value for
the objective function, as computed by a linear programming solver. It can be
proven that p∗ is the minimum number of complete IRCFG paths that contain
all RCFG edges.

Unique Branches. When considering unique RCFG edges, E1, E2, and E3
are combined with equation v(e1) + v(e2) + . . . + v(ek) ≥ 1. Here ei are RCFG
edges that are equivalent: they belong to different RCFGs for the same method,
and all of them represent transitions between equivalent pairs of RCFG nodes.
It can be proven that a linear programming problem with the same objective
function as before produces the minimum number of complete IRCFG paths
that contain each unique RCFG edge.

RCFG Paths. Recall that an RCFG path is a start-to-end sequence of
intraprocedural edges inside an RCFG. Let SR denote the set of all such paths
in some RCFG R. For each edge e ∈ R, let w(e) be the number of times e
occurs in SR. Suppose we combine E1, E2, and E3 with the following equation:
v(e) ≥ w(e) for each edge e in each RCFG. Using the same objective function
as before, it can be proven that a linear programming solver will produce the
minimum number of complete IRCFG paths that cover all RCFG paths.

To construct the system, we need to compute w(e). Given an RCFG R, the
values of w(e) for all e ∈ R can be computed in time linear in the size of R. First,
a topological sort order traversal is used to compute the number p′(n) of paths
from the start node of R to any node n ∈ R. Clearly, p′(n) is equal to the sum of
p′(m) for all predecessor edges (m, n) ∈ R. Similarly, using a traversal in reverse
topological sort order, we can compute the number p′′(n) of paths from n to the
end node of R. For an edge e = (ni, nj), the value w(e) = p′(ni) × p′′(nj).

6 Experimental Study

The approach described in this paper was implemented as part of the ongoing
work on the Red tool for reverse engineering of sequence diagrams. The goal
of this tool is to provide high-quality support for reverse engineering of UML
sequence diagrams from Java code and for testing based on such diagrams. The
tool uses several static analyses, including call graph construction [21, 17], call
chain analysis [22], control flow analysis [13], and object naming analysis [14].
IRCFG construction was implemented as a straightforward extension of these
existing analyses. The lower bounds described in Section 5 were computed with
the lp solve linear programming solver (groups.yahoo.com/group/lp solve).

The 18 subject components used in the study are listed in Table 1. The com-
ponents come from a variety of domains and typically represent parts of reusable
libraries. Columns labeled “Methods” show the number of non-abstract methods
in each component. For each component, we considered the set of methods that
would normally be used to access the functionality provided by that component.
For each such method we constructed an IRCFG starting at the method (i.e., the



Coverage Criteria for Testing of Object Interactions in Sequence Diagrams 293

Table 1. Subject components

Component Methods IRCFGs Component Methods IRCFGs
checked 15 3 pushback 20 11
bigdecimal 33 26 vector 38 22
gzip 41 11 boundaries 74 13
io 86 12 zip 118 38
decimal 136 30 date 136 37
calendar 152 60 collator 157 17
message 176 59 math 241 156
jflex 313 93 sql 350 22
mindbright 488 161 bytecode 625 333

root RCFG was for this method). Red uses a parameter k to control the length
of call chains in the reverse-engineered diagrams. Given some k, the number of
messages in call chains is restricted to be at most k—that is, the depth of the
corresponding RCFG tree is at most k, where the depth for the root is 0. We ran
all experiments with the value k = 3. RCFGs were created only for component
methods: if a component method called code external to the component, the cor-
responding RCFG node did not have a child RCFG. This restriction is part of
the design of Red, and it allows a tool user to define a “scope of interest” and to
ignore code that is outside of this scope. Columns “IRCFGs” show the number
of IRCFGs that had non-trivial flow of control: at least one RCFG node had two
or more outgoing edges. The total number of such IRCFGs for all components
was 1104.

For each IRCFG counted in columns “IRCFGs” in Table 1, we determined
the minimum number of complete IRCFG paths for the different criteria, as
described in Section 5. Table 2 shows the distribution of these numbers for the
entire set of 1104 IRCFGs. Each column shows the percentage of IRCFGs for
which the minimum number of complete IRCFG paths was in the corresponding
range. For example, the last column shows the percentage of IRCFGs that had
a minimum number of complete paths greater than 1000.

The results from Table 2 lead to some interesting observations. In a substan-
tial number of cases, the number of complete IRCFG paths is rather large. In
fact, for several IRCFGs this number is very large (e.g., more than a million).
Thus, even for the limited diagram depth of k = 3, and with the limited scope
of the diagrams to component-only code, in many cases the All-IRCFG-Paths
criterion is clearly impossible to achieve in practice. These results confirm exper-
imentally Binder’s intuition [3] that the number of all start-to-end paths may be
too large. The use of less demanding coverage criteria is one way to address this
problem. Our results indicate that the three other criteria require less testing
effort, and therefore are useful alternatives to All-IRCFG-Paths. For example,
for All-Unique-Branches, almost all IRCFGs have a minimum number of paths
that is ≤ 100, and for half of the IRCFGs this number is ≤ 5. The results suggest
that each criterion provides a different tradeoff between testing effort and test



294 A. Rountev, S. Kagan, and J. Sawin

Table 2. Minimum number of IRCFG paths

Criterion 1–5 6–10 11–100 101–1000 >1000
IRCFG-Paths 29.1% 10.3% 16.8% 10.2% 33.6%
RCFG-Paths 40.8% 14.9% 27.4% 2.6% 14.2%
RCFG-Branches 45.5% 19.6% 31.9% 2.9% 0.2%
Unique-Branches 49.9% 22.1% 27.4% 0.5% 0.0%

Table 3. Reduction in the number of paths

Ratio 1 (1, 2] (2, 10] (10, 103] > 103

IRCFG−Paths
RCFG−Paths 35.1% 13.0% 12.7% 20.2% 19.0%
RCFG−Paths

RCFG−Branches 51.3% 26.2% 7.6% 13.2% 1.7%
RCFG−Branches
Unique−Branches 65.6% 23.5% 10.8% 0.2% 0.0%

comprehensiveness, and therefore a tester may benefit from having tool support
for each criterion.

For each IRCFG counted in columns “IRCFGs” in Table 1, we computed the
ratios between the minimum number of paths for different pairs of criteria, as
shown in the first column of Table 3. Each of the remaining columns in that table
shows the percentage of IRCFGs for which the ratio was in the corresponding
range. For example, the last number of the first row in the table shows that for
19% out of the 1104 IRCFGs, the minimum number of complete IRCFG paths
for All-RCFG-Paths is more than 1000 times smaller than the total number of
complete IRCFG paths. The results in Table 3 are an indication of the reduction
of testing effort when replacing a stronger criterion with a weaker one. All pairs of
criteria exhibit substantial degrees of reduction, and the most significant change
is from All-IRCFG-Paths to All-RCFG-Paths.

The results of the study can be summarized as follows. First, there is strong
indication that the number of start-to-end paths in reverse-engineered sequence
diagrams is often quite large, and therefore simpler (and easier to achieve) criteria
should be available as options to testers. Second, the remaining three criteria
appear to be good candidates for such options because they provide different
tradeoffs for testing effort and comprehensiveness.

7 Related Work

As discussed in Section 2, several testing approaches are based on interaction
diagrams that are constructed during analysis or design [3, 15, 4, 16, 6, 5, 7]. Our
work applies similar techniques to diagrams that are constructed automatically
from existing code. We define a spectrum of coverage criteria that could provide
a tester with several options for the targeted test coverage.

The IRCFG used in our approach is based on two popular data structures:
interprocedural CFG [23] and calling context tree [24]. An interprocedural CFG



Coverage Criteria for Testing of Object Interactions in Sequence Diagrams 295

contains the CFGs for individual procedures, as well as edges connecting these
CFGs. Unlike an IRCFG, an interprocedural CFG contains nodes for all state-
ments in the procedures, and the edges between the individual CFGs do not
form a tree. In a calling context tree, a node represents a procedure and the
chain from the node to the tree root represents a call chain for that procedure.
Similarly, the RCFGs in our approach form a tree that represents call chains.

Binder’s all-branches approach [3] is based on a flow-graph representation of a
sequence diagram which is similar to an RCFG. The discussion of the approach
is limited to a single method, while our IRCFG combines information about
several methods and their calling relationships. Briand and Labiche [5] represent
an UML activity diagram with a directed graph in which paths correspond to
sequences of use case that are considered for testing. The sequence diagram for
a use case is represented by a regular expressions that captures the possible
sequences of messages in the diagram. In order to automate the construction of
the regular expression, the authors suggest modeling the sequence diagram with
a labeled graph in which labels correspond to messages, similarly to our use of
the RCFGs.

The traversal of the RCFG tree during the run-time analysis is similar to the
dynamic profiling analyses from [24, 22]: in both cases, the sequence of methods
on the run-time call stack is “simulated” by the analysis. The coverage of intra-
RCFG paths uses the efficient techniques for path profiling from [20], with the
appropriate modifications to ignore statements irrelevant to calls. Melski and
Reps [25] present a general approach for interprocedural paths profiling which
may be possible to adapt in order to obtain run-time coverage information for
complete IRCFG paths.

8 Conclusions and Future Work

This work presents a family of control-flow-based coverage criteria for testing
of object interactions in reverse-engineered sequence diagrams, together with a
corresponding run-time coverage analysis. The experimental study highlights the
inherent difficulty of criteria based on sequences of messages (i.e., path coverage).
The study also indicates that less demanding criteria (e.g., based on branch
coverage) may be a more practical choice for testing of object interactions. In
our future work we plan to measure the coverage for these criteria that is achieved
by real-world test suites, and to investigate the test weaknesses exposed by the
different coverage statistics.

References

1. Binder, R.: Testing object-oriented software: a survey. Journal of Software Testing,
Verification and Reliability 6 (1996) 125–252

2. Perry, D., Kaiser, G.: Adequate testing and object-oriented programming. Journal
of Object-Oriented Programming 2 (1990) 13–19



296 A. Rountev, S. Kagan, and J. Sawin

3. Binder, R.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley (1999)

4. Abdurazik, A., Offutt, J.: Using UML collaboration diagrams for static check-
ing and test generation. In: International Conference on the Unified Modeling
Language. (2000) 383–395

5. Briand, L., Labiche, Y.: A UML-based approach to system testing. Journal of
Software and Systems Modeling 1 (2002)

6. Fraikin, F., Leonhardt, T.: SeDiTeC—testing based on sequence diagrams. In:
International Conference on Automated Software Engineering. (2002) 261–266

7. Wu, Y., Chen, M.H., Offutt, J.: UML-based integration testing for component-
based software. In: International Conference on COTS-Based Software Systems.
(2003)

8. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley (1999)

9. Fowler, M.: UML Distilled. 3rd edn. Addison-Wesley (2003)
10. Larman, C.: Applying UML and Patterns. 2nd edn. Prentice Hall (2002)
11. Kollman, R., Gogolla, M.: Capturing dynamic program behavior with UML collab-

oration diagrams. In: European Conference on Software Maintenance and Reengi-
neering. (2001) 58–67

12. Tonella, P., Potrich, A.: Reverse engineering of the interaction diagrams from C++
code. In: IEEE International Conference on Software Maintenance. (2003) 159–168

13. Rountev, A., Volgin, O., Reddoch, M.: Control flow analysis for reverse engineer-
ing of sequence diagrams. Technical Report OSU-CISRC-3/04-TR12, Ohio State
University (2004)

14. Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered se-
quence diagrams. In: International Conference on Software Engineering. (2005) to
appear.

15. Jorgenson, P., Erickson, C.: Object-oriented integration testing. Communications
of the ACM 37 (1994) 30–38

16. Basanieri, F., Bertolino, A.: A practical approach to UML-based derivation of
integration tests. In: 4th International Quality Week Europe. (2000)

17. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and
Methodology (2004) to appear.

18. Bodik, R., Gupta, R., Soffa, M.L.: Refining data flow information using infeasible
paths. In: ACM SIGSOFT International Symposium on Foundations of Software
Engineering. (1997) 361–377

19. Rountev, A., Kagan, S., Sawin, J.: Coverage criteria for testing of object inter-
actions in sequence diagrams. Technical Report OSU-CISRC-12/04-TR68, Ohio
State University (2004)

20. Ball, T., Larus, J.: Efficient path profiling. In: IEEE/ACM International Sympo-
sium on Microarchitecture. (1996) 46–57

21. Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for Java based on
annotated constraints. In: Conference on Object-Oriented Programming Systems,
Languages, and Applications. (2001) 43–55

22. Rountev, A., Kagan, S., Gibas, M.: Static and dynamic analysis of call chains
in Java. In: ACM SIGSOFT International Symposium on Software Testing and
Analysis. (2004) 1–11



Coverage Criteria for Testing of Object Interactions in Sequence Diagrams 297

23. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In
Muchnick, S., Jones, N., eds.: Program Flow Analysis: Theory and Applications.
Prentice Hall (1981) 189–234

24. Ammons, G., Ball, T., Larus, J.: Exploiting hardware performance counters with
flow and context sensitive profiling. In: ACM SIGSOFT Conference on Program-
ming Language Design and Implementation. (1997) 85–96

25. Melski, D., Reps, T.: Interprocedural path profiling. In: International Conference
on Compiler Construction. LNCS 1575 (1999) 47–62


	Introduction
	Testing and Sequence Diagrams
	Criteria for Reverse-Engineered Sequence Diagrams
	Interprocedural Restricted Control-Flow Graph
	Coverage Criteria

	Run-Time Coverage Analysis
	Minimum Number of Paths
	Experimental Study
	Related Work
	Conclusions and Future Work

