Building a Whole-Program Type Analysis in Eclipse”

Mariana Sharp
Ohio State University

ABSTRACT

Eclipse has the potential to become a widely-used platform
for implementation and dissemination of various static analy-
ses for Java. In order to realize this potential, it is important
to understand the challenges for building high-quality sta-
tic analyses in Eclipse. This paper discusses some of these
challenges in the context of the TACLE plug-in for whole-
program type analysis and call graph construction. In par-
ticular, we argue that the treatment of the standard Java
libraries should be an important concern for static analysis
builders. Our experiments indicate that it may be necessary
to use pre-computed summary information for the libraries,
in order to improve the scalability of whole-program analy-
ses for Eclipse. The experience described in this paper could
be beneficial for static analysis researchers who use Eclipse
as the infrastructure for their analysis implementations.

1. INTRODUCTION

In the last few years, Eclipse has become an attractive
platform for research and distribution of static program analy-
ses for Java. This is largely due to Eclipse’s ability to pro-
vide solutions to several recurring problems that analysis
researchers have to address in their projects:

e Off-the-shelf infrastructure: The builders of a sta-
tic analysis are typically faced with the challenge of
finding a suitable infrastructure which provides the
necessary services (e.g., parsing, intermediate repre-
sentation, etc.) for implementing a program analysis.
The infrastructure choice can have a significant im-
pact on the progress and success of a research project.
Eclipse provides a mature, free, open-source platform
for implementing various static analyses.

e Analysis comparison and integration: Researchers
often cannot perform experimental comparison of two
or more competing algorithms, because analysis imple-
mentations are not portable due to their different un-

*This work was supported by an IBM Eclipse Innovation Grant.

eclipse’05, October 16-17, 2005, San Diego, CA
Copyright 2005 IBM 1-59593-342-5/05/0010...$5.00

Jason Sawin
Ohio State University

Atanas Rountev
Ohio State University

derlying infrastructures. Similarly, it is very common
for a research group X to have an in-house implemen-
tation of some analysis which could be beneficial for
the analysis developed by another research group Y;
however, since X’s implementation is not portable to
Y’s environment, the potential synergy between the
two research projects remains unrealized. If Eclipse
is used as a common implementation environment for
static analyses for Java, widespread analysis compari-
son and integration will become much easier.

e Realistic analyses: It is not uncommon for analy-
sis creators to “cut corners” when building prototype
implementations of their algorithms, by ignoring var-
ious conceptual and engineering issues. This is often
justifiable in the early stages of the work, or when the
ignored issues are trivial. However, such simplifica-
tions may (and often do) abstract away critical details
that have significant effect on the real-world practical-
ity and usefulness of the resulting analyses. FEclipse
provides a natural proving ground for demonstrating
that a proposed analysis can operate in the context
of a realistic development environment, in which the
analysis is only one component of a large system with
numerous complicated constraints and interactions.

e Technology transfer: The ultimate goal of static
analysis research is to improve programmer produc-
tivity and software quality. The transfer of technology
from research to practice is an important and challeng-
ing problem for this research community. By imple-
menting and distributing their work in Eclipse, analy-
sis builders have the exciting opportunity to reach a
wide audience of Eclipse users, and to achieve real-
world impact for their research.

In order to realize the potential of Eclipse to become the
platform of choice for static analysis research for Java, it
is essential to investigate the challenges for building high-
quality analysis implementations in Eclipse, and to find ef-
fective solutions for these challenges. This paper is a step
in this direction. We outline our experience with building
a whole-program analysis for Java, some of the issues we
had to address, and an investigation of possible solutions to
these issues. This experience will be useful for other analysis
researches that are currently building (or will be building in
the future) whole-program analyses for Java in Eclipse.

The analysis described in this paper was implemented
as part of the ongoing work on the TACLE Eclipse plug-
in (presto.cse.ohio-state.edu/tacle). The goal of the

TACLE project is to build a public implementation of sev-
eral algorithms for type analysis and call graph construction
for Eclipse. We describe our experience with one of these
algorithms: rapid type analysis (RTA) [1]. Even though this
analysis is conceptually simple, it illustrates some of the fun-
damental issues that need to be addressed by the builders
of whole-program analyses in Eclipse. In particular, our ex-
periments show that the treatment of the standard Java li-
braries is an important engineering decision that should be a
central concern for analysis builders. We describe three ap-
proaches for handling of the standard libraries during RTA,
and present a preliminary empirical comparison between
these approaches. These results provide useful guidance
for implementing more complicated whole-program analy-
ses, where the handling of the standard Java libraries will
be even more important than it is for RTA.

2. THE TACLE PROJECT

Type analysis for object-oriented software answers the fol-
lowing question: what types of objects could an expression e
refer to? A simple answer could be obtained by considering
e’s compile-time type and all of its subtypes in the program.
However, extensive empirical evidence shows that the ”all-
subtypes” answer is often too conservative. There is a large
body of work on type analyses for object-oriented languages;
most of it is summarized in [2, 8]. The main motivation for
this work is the key role of type information as an ”enabler”
of other static analyses for object-oriented languages.

A typical use of type analysis is the generation of a pro-
gram’s call graph, where type information is needed to de-
termine the target methods at virtual calls. The call graph
is essential for any form of interprocedural static analy-
sis, and plays an important role in program understanding
tools, compiler optimizations, verification techniques, and
test coverage tools. Type analysis (especially its more pre-
cise versions based on points-to analysis) is also useful for
many other commonly-used techniques—for example, analy-
sis of side effects, def-use analysis, and escape analysis.

Despite the large number of research papers and projects
dedicated to type analysis, the use of such analyses still
remains confined to a small community of experts. The goal
of the TACLE project is to build a type analysis for Java
that is seamlessly integrated with Eclipse and is carefully
engineered for real-world use by non-experts. The project
will provide other researchers (that are not experts in type
analysis) with an off-the-shelf implementation of a practical
and easy-to-use type analysis and call graph construction. In
the best case, this will increase the attractiveness of Eclipse
as a research platform for static analysis for Java, and will
enable a variety of other analyses to be implemented and
ultimately made available to the Eclipse community.

The long-term goal of the TACLE project is to develop type
analyses with the properties described below. We strongly
believe that these properties are also very desirable for other
static analyses implemented in Eclipse, and that analysis
builders should consider them as high-priority goals.

e Incremental analysis: Existing type analyses are
typically designed to work in ”batch mode”: they are
initiated by a client, analyze the whole program from
scratch, and at the end produce a solution. However,
in Eclipse the analysis should work in ”incremental
mode”, similarly to the auto-build feature of JDT.

This feature rebuilds a project automatically every
time a file is saved; this is done in the background
without user intervention. The type analysis should be
integrated with this model: it should run continuously
in the background, and should maintain a solution for
the latest build that was saved on disk. The analysis
will recompute its solution incrementally every time a
file is saved. This recomputation should reuse as much
as possible from the previous solution.

e Pre-analysis of libraries: Among researchers on
type analysis for Java, it is common knowledge that
a large portion of the analysis running time is spent
processing the relevant parts of the standard libraries.
However, most existing approaches still analyze these
libraries from scratch for every analyzed program. To
make our plug-in practical, it is critical to reduce this
cost by pre-analyzing the libraries. This could be done
once when the plug-in is deployed in the user’s Eclipse
installation. The computed information can be stored
on disk and read when TACLE is started at run time.

e Partial programs: Existing type analyses are typi-
cally designed as whole-program analyses: they take as
input a main method and all code transitively reach-
able from that method. However, in Eclipse it should
be expected that users may be developing partial pro-
grams (e.g., class libraries). The analysis in TACLE
will be designed to handle such partial programs. Our
previous work [6] defined a solution to this problem, by
creating an artificial main method that ”simulates” the
possible flow of object references between the analyzed
code and unknown future code. We will incorporate
this solution in TACLE.

e Source code analysis: Type analyses for Java are
typically performed on bytecode or on some represen-
tation that is constructed from bytecode. Such low-
level representations are appropriate for use in opti-
mizing compilers. However, in Eclipse the analysis
should work at the level of the source code, by tak-
ing as input the abstract syntax tree (AST) for that
source code. Our goal is to produce an analysis that
can be used by software productivity tools that analyze
or transform the source code. For example, if another
researcher were to use our analysis as part of some
algorithm for program slicing or for code refactoring,
he/she would require information about expressions in
the source code. Eclipse ASTs provide a common in-
frastructure for our analysis and for other static analy-
ses for Java.

At present, we have focused on the second objective: ef-
fective pre-analysis of the standard Java libraries. As of now,
we are still considering whole-program analysis which is not
incremental and which does work on partial programs; the
handling of these issues is left for our future work.

3. WHOLE-PROGRAM RTA

Rapid Type Analysis (RTA) [1] takes as input a complete
program and produces type information and a call graph
for that program. The analysis constructs a set Reachable
of methods that are reachable from the main method of
the program, and a set Instantiated of class types that are
instantiated in reachable methods. Initially, Instantiated is

empty and Reachable contains the main method. Whenever
amethod m is added to Reachable, the body of the method is
processed to (1) update set Instantiated, due to expressions
new X, and (2) update set Reachable, based on the call sites
inside m. The virtual call sites in m are resolved based
on the current set of types in Instantiated. If later some
class type is added to Instantiated and this type implies
additional target methods at already-processed call sites,
these new target methods are added to Reachable.

A possible implementation of RTA for Eclipse is the fol-
lowing. Start with the main method of the program. When
a method is added to Reachable, the AST of the surrounding
class is built and processed by the analysis. Of course, the
AST can be reused the next time a method from the same
class becomes reachable. In addition to the main method,
set Reachable is also initialized with all methods that are
executed at JVM startup; in our case, this list was obtained
using the hprof JVM command line option. Similarly, the
set of all classes instantiated during JVM startup is used
to initialize Instantiated; again, the hprof JVM option was
used to obtain this list. Note that the set of executed meth-
ods and instantiated classes at JVM startup could differ
between JVM implementations (e.g., across different JVM
vendors, and across different platforms). If a JVM imple-
ments the JVMPI profiling interface, a simple profiling agent
can be executed at TACLE-installation time to obtain this in-
formation.

There are several other analysis issues that are not dis-
cussed in this paper for the sake of brevity. These include
the handling of static initializers; initializers of static fields;
initializers of instance fields; default constructors; methods
start and run of threads; dynamic class loading; reflection;
native methods.

3.1 Version 1. AST-Based Analysis

The outline of RTA from above describes one possible im-
plementation for RTA in TACLE. A key issue for this imple-
mentation is the need to build and repeatedly use AST's for
all classes that contain reachable methods, including library
classes. As a result, the analysis has to construct hundreds
of ASTs, and has to keep them in memory until the entire
RTA solution is completed. For example, even for a simple
hello-world program, RTA reports 4353 reachable methods
in 692 classes. These methods are considered reachable by
the analysis due to the effects of JVM startup code, and the
implementation has to build the corresponding ASTs.

Not all of the library classes have publicly available source
code (in Sun’s J2SE 1.4.2 for Windows, which we used for
experimentation). Thus, AST-based RTA is not possible
even for a trivial program. Nevertheless, in order to get bet-
ter understanding of the cost of AST building and storage,
we considered all 692 classes from the hello-world program,
and constructed the ASTs for all top-level classes (i.e., non-
nested classes) for which source code was available. (The
AST for a top-level class contains as subtrees the ASTs for
its nested classes.) A total of 308 ASTs were built. The
running time for AST construction was around 10 seconds.?
The total memory needed to store the ASTs was in the order
of 140 MB. Note that these memory requirements are in ad-

!These numbers will be even larger in our final implementation
of RTA; the current implementation does not consider all possible
effects of dynamic class loading, reflection, and native methods.

20n a PC with 3 GB memory and a 2.8 GHz Pentium 4 processor.

dition to the memory needed for the internal data structures
of the JVM and Eclipse.

These results indicate that the cost of AST building and
storing may be substantial (or even prohibitive) for large
programs that make extensive use of the Java libraries. If a
few thousand library classes need to be processed by RTA,
the time for AST construction could be in the order of
minutes, and the memory usage could be in the order of
gigabytes. In the next section we present experimental re-
sults that provide additional insights into this issue.

These AST-related issues are not unique to RTA; for the
other type analyses we plan to implement in TACLE (e.g.,
points-to analysis based on [5, 3]), AST construction time
and memory usage could become limiting factors for analysis
scalability. Of course, this is also true for any whole-program
static analysis in Eclipse which requires access to the fine-
grain information available in ASTs. In particular, for more
complicated analyses with long running times and significant
memory requirements, it will be highly desirable to avoid
AST building and traversal for library classes.

3.2 Verson 2. Summary-Based Analysis

One technique for avoiding (some of) the cost of AST
construction is to pre-analyze the standard Java libraries,
compute summary information about them, store this sum-
mary on disk, and later use it when performing AST-based
analysis of client code (i.e., non-library code). The one-time
summary construction cost could be incurred at the time
TACLE is installed in the user’s Eclipse environment. The
summary can be reused multiple times, once for each exe-
cution of RTA on a client program. Each time a client is
analyzed, the ASTs for non-library code are built as in ver-
sion 1, but the information for library classes is obtained by
reading the summary information from disk. It is unneces-
sary to read the entire summary; rather, the summary-based
analysis of the client code can read on-demand the relevant
subsets of the summary.

The library summary should contain all and only infor-
mation that affects the subsequent analysis of client code.
In the case of RTA, the summary contains:

e the name of each library class and interface, together
with the names of its immediate supertypes

e the signature of each library method, together with
the name of the corresponding enclosing class

e the details for each call site in the library, including the
compile-time target method, the compile-time receiver
type (for virtual calls), and the enclosing method

e the instantiated class and the enclosing method for
each allocation expression new X in the library

The summary can be constructed by building and travers-
ing the ASTs of library classes. Alternatively, if the source
code for the library is not available (as is the case for our
experiments), bytecode analysis can be used to create the
summary. Our implementation uses Soot [9] to process the
bytecode in the JAR files for the standard Java libraries.

The format of the summary information is an engineering
decision that should consider the need for a compact rep-
resentation, as well as the need for easy and fast reading
during the analysis of the client code. We currently employ
a rather simplistic representation, and summary size is 17.2
MB on disk, corresponding to about 10000 classes and 80000

methods. Of course, we plan to investigate alternative rep-
resentations (e.g., compression using java.util.zip), and
to measure their effect on the running time of the analysis.

It is important to note that more complicated (and expen-
sive) static analyses can benefit significantly from perform-
ing some of the analysis work in advance, at summary cre-
ation time. For example, for the implementation of points-to
analysis in TACLE, we plan to compute partial analysis re-
sults for the library and to include them as part of the sum-
mary. The one-time work of library summary creation can
reduce the cost of all subsequent executions of the analysis
on many client programs. A general approach for summary
creation is outlined in [7, 4]. This approach is applicable to
a wide range of program analyses, and will be used in our
future work in TACLE. We believe that other static analy-
sis researchers that implement their analyses in Eclipse will
also benefit from using this or a similar technique.

3.3 Version 3. Incomplete Solution

Depending on the intended uses of the static analysis solu-
tion, it may be acceptable (or even desirable) to compute an
incomplete solution. Suppose, for example, that the RTA-
computed call graph will be used for program understand-
ing and visualization, and a tool user is interested only in
calling relationships that involve at least one non-library
method (i.e., an incomplete call graph). Based on this in-
tended use of the RTA solution, the summary can be op-
timized in various ways, in order to reduce summary size
and RTA running time. One particularly simple example is
the following: suppose that a library call site c¢ is definitely
monomorphic (e.g., because the compile-time receiver type
for c is a final class). Furthermore, suppose that the target
method of ¢ does not make any calls and does not instantiate
any classes. It is clear that information about ¢ can be re-
moved from the summary. As a result of this optimization,
call graph edges between library methods will be missing
from the solution computed by RTA; however, edges involv-
ing non-library methods will be preserved. This idea can
be generalized in several directions. For example, repeated
applications of this technique could remove additional call
sites, since an earlier removal could “empty” the body of
a method, thus making it eligible for the optimization. As
another example, the removal could happen even for poly-
morphic call sites, as long as all possible target methods are
definitely in the library.

Our experiments, presented in the next section, use these
techniques to create an optimized summary. The results
from these experiments illustrate that even these simple op-
timizations can have positive effects on summary size and
analysis running time. In particular, summary size was re-
duced from 17.2 MB to 16.7 MB, and the number of call
sites was reduced from about 200 thousand to about 158
thousand. The time to optimize the summary was about 40
seconds, including the time to read the summary from disk.
This one-time cost is insignificant since it is incurred once,
at plug-in deployment time.

Of course, the above example is just one optimization from
a large set of possibilities. In the general case, the antici-
pated uses of the analysis solution determine what consti-
tutes “acceptable incompleteness” in the solution. This, of
course, is true for any whole-program static analysis, not
just RTA. The incomplete solution can be thought of as a
projected version of the “real” solution. This intuition can

Program Cls | Meth | ASTNodes || ReachMeth
proxy 13 102 5821 4671
fractal 25 178 8538 6753
echo 17 177 9828 7024
jtar-1.21 54 198 16687 6850
javacup-0.10j 32 329 16784 4731
jlex-1.2.6 24 149 20375 4585
jflex-1.4.1 73 484 33444 7154
mindterm-1.1.5 67 589 44872 7487
muffin-0.9.3a 125 797 44998 4541
sablecc-2.18.2 | 244 | 1758 64561 6270

Table 1: Analyzed programs.

be formalized theoretically by defining a projection function
which maps the complete solution to an incomplete one.
Different applications will require different projection func-
tions. We are currently investigating projection functions
that are appropriate for the points-to analysis in TACLE.
Other static analyses that will be implemented in Eclipse
(by other researchers or by us) should also be designed with
particular projection functions in mind. This will remove
redundancies from the library summary and will reduce the
running time of the summary-based analysis of client code.

4. EXPERIMENTAL STUDY

This section presents the results from a small-scale experi-
mental study of the three versions of RTA described earlier.
The experiments were executed on a PC with a 2.8 GHz
Pentium 4 processor and 3 GB memory, using J2SE 1.4.2
for Windows and Eclipse 3.0. The JVM heap (JVM option
Xmx) was set to the highest possible value of 1.5 GB. The
measurements are the median values out of three runs. We
used a partial implementation of RTA which does not con-
sider all possible effects of dynamic class loading, reflection,
and native methods. Nevertheless, even for this implemen-
tation, the comparison between the different versions of RTA
provides useful insights.

The programs used in the experiments are shown in Ta-
ble 1. The source code for each program is publicly avail-
able; this code was used to create an Eclipse project, which
was then analyzed with TACLE. The program were obtained
from various on-line Java projects. The number of classes
and methods are shown in the first two columns of Table 1.
Column “ASTNodes” shows the total number of AST nodes
in the ASTs constructed from all classes in the program (i.e.,
the classes from the first column).

The last column in the table shows the number of meth-
ods that were reported by RTA as reachable. This number
includes both library and non-library methods. Clearly, for
these data programs, most of the analysis work will be done
in the libraries, and the running time will be dominated by
the cost of processing the reachable library methods.

Table 2 shows the results of running three versions of RTA.
The first version (“w/ summary”) uses the library summary
for all library classes—that is, no ASTs are ever built for
library code. The second version (“w/ optimiz”) uses an
optimized summary from which some call sites are removed,
as described in Section 3.3. The third version (“w/ AST”)
provides estimates of the cost of AST construction and stor-
age. Since we could not construct ASTs for all library classes
(due to unavailable source code), we ran the summary-based
version and “simulated” the actions of an AST-based analy-
sis: every time the summary-based analysis determined that

Program | w/ summary w/ optimiz w/ AST
Time | Mem | Time | Mem | Time | Mem
proxy 8.2 26.1 7.2 25.1 | 102.2 | 233.3
fractal 20.2 38.5 18.9 36.9 | 127.1 | 302.4
echo 15.7 39.3 14.3 37.7 | 128.0 | 323.8
jtar 21.1 53.3 19.5 51.7 | 129.4 | 322.0
javacup 9.9 34.6 10.6 33.5 | 102.9 | 223.0
jlex 8.8 30.0 8.4 28.9 | 105.5 | 218.8
jflex 23.6 56.3 23.5 54.9 | 132.8 | 321.5
mindterm 22.8 59.9 214 58.4 | 132.1 | 337.8
muffin 8.8 27.8 8.0 26.7 | 103.3 | 214.7
sablecc 69.7 89.0 66.1 86.1 | 158.4 | 276.2

Table 2: Running time (sec) and memory (MB).

some method m is reachable, the AST for m’s class was con-
structed (or reused, if it had been constructed in the past),
and the method’s AST was traversed in a manner similar
to that of an AST-based analysis. Of course, this was done
only for classes with available source code; thus, the results
represent a lower bound on the cost of an AST-based analy-
sis. In all three versions, the ASTs were kept alive until the
completion of the analysis, and were not released for garbage
collection. This was done to obtain better understanding of
the amount of heap memory required for AST storage.
The columns labeled “Time” show the running time of the
analysis in seconds, and columns “Mem” show the memory
usage of the analysis in MB. The results clearly indicate
that AST building for library classes results in increased
running time and memory usage. The experiments also show
that the simple optimizations from Section 3.3 can reduce
running time. While this is a small-scale preliminary study,
it confirms the motivation for summary-based analysis. For
more expensive analyses, in which the summary contains
partial analysis results, it is likely that the savings for a
summary-based analysis will be even more significant.

5. RELATED WORK

The problems related to practical analysis implementa-
tions are not unique to analyses built in Eclipse. How-
ever, since the number of static analysis researchers using
the Eclipse infrastructure continues to grow steadily, it is
critical to have in-depth understanding of the challenges for
implementing high-quality analyses. The work described in
this paper is a step in this direction.

The closest related work to TACLE is the publicly available
Eclipse plug-in that is based on the popular Soot frame-
work for Java [9]. The Spark component of Soot [3] per-
forms points-to analysis, which is a particular form of type
analysis. Spark uses state-of-the-art algorithms for points-
to analysis, but unfortunately has some drawbacks. First,
it is designed to operate in batch mode: an analysis client
starts the analysis from scratch, and the analysis algorithms
are not incremental. We believe that incremental analyses
running in the background are essential in Eclipse, in order
to provide a tool user with immediate access to up-to-date
analysis information. Second, Spark re-analyzes the relevant
library classes every time it is invoked. This repeated work is
a major contributor to the overall running time of the analy-
sis; we strongly believe that for this and similar analyses,
using library summary information is a necessity in order
to be able to analyze large program. Finally, the analysis
in Spark takes as input Jimple, which is a low-level inter-
mediate representation constructed from bytecode. One of

10

our design goals for TACLE is to have type analyses that
are tightly integrated with the AST representation of the
source code. This is especially important for incremental
analyses, where AST modifications should trigger updates
of the analysis solution.

6. CONCLUSIONSAND FUTURE WORK

Practical implementations of static analyses in Eclipse will
require solutions to various challenging problems. One such
problem is the handling of the standard Java libraries, as
well as other class libraries used by an application. We have
investigated an approach based on library summary infor-
mation. For RTA this approach produces significant savings
due to the reduced cost of AST construction and storage.
We expect that for more complicated type analyses (e.g.,
points-to analyses based on [5, 3]), the savings will be even
more substantial.

The summary-based implementation of RTA is available
at presto.cse.ohio-state.edu/tacle. In the near future,
we will add to TACLE (1) an implementation of a whole-
program summary-based points-to analysis, and (2) a whole-
program summary-based side-effect analysis. The long-term
goals of the project are to make these analyses incremental,
to enable summary-based analysis in the presence of multi-
ple libraries (not just the standard libraries), and to allow
analysis of partial programs with unknown clients (as op-
posed to analysis starting from main).

7. REFERENCES

[1] D. Bacon and P. Sweeney. Fast static analysis of C++
virtual function calls. In Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
324-341, 1996.

[2] D. Grove and C. Chambers. A framework for call graph
construction algorithms. ACM Transactions on
Programming Languages and Systems, 23(6):685-746, Nov.
2001.

[3] O. Lhoték and L. Hendren. Scaling Java points-to analysis
using Spark. In International Conference on Compiler
Construction, LNCS 2622, pages 153—169, 2003.

[4] A. Rountev. Component-level dataflow analysis. In
International SIGSOFT Symposium on Component-Based
Software Engineering, LNCS 3489, pages 82—89, 2005.

[5] A. Rountev, A. Milanova, and B. G. Ryder. Points-to
analysis for Java based on annotated constraints. In
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 43—55, 2001.

[6] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class
analysis for testing of polymorphism in Java software. IEEE
Transactions on Software Engineering, 30(6):372-387, June
2004.

[7] A. Rountev, B. G. Ryder, and W. Landi. Data-flow analysis
of program fragments. In ACM SIGSOFT Symposium on
the Foundations of Software Engineering, LNCS 1687, pages
235-252, 1999.

[8] B. G. Ryder. Dimensions of precision in reference analysis of
object-oriented programming languages. In International
Conference on Compiler Construction, LNCS 2622, pages
126-137, 2003.

[9] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,

P. Pominville, and V. Sundaresan. Optimizing Java bytecode
using the Soot framework: Is it feasible? In International
Conference on Compiler Construction, LNCS 1781, pages
18-34, 2000.

