
Comprehensive Accelerator-Dataflow Co-design
Optimization for Convolutional Neural Networks

Miheer Vaidya
University of Utah

Salt Lake City, Utah, USA
m.vaidya@utah.edu

Aravind Sukumaran-Rajam
Washington State University

Pullman, WA, USA
a.sukumaranrajam@wsu.edu

Atanas Rountev
Ohio State University

Columbus, Ohio, USA
rountev@cse.ohio-state.edu

P. Sadayappan
University of Utah

Salt Lake City, Utah, USA
saday@cs.utah.edu

Abstract—The design space of possible schedules for mapping
a Convolutional Neural Network layer onto a spatial accelerator
array, referred as the dataflow, is enormous. The co-design of key
architectural parameters (such as number of processing elements,
sizes of register files and scratchpad memories) along with the
dataflow to optimize the implementation of one or more CNN
stages makes the design space explosively larger. Several recent
efforts have addressed the design-space exploration problem for
CNN accelerators via heuristics or limited search strategies. In
this paper we develop the first optimization approach that uses
analytical modeling and the solution of constrained nonlinear
optimization problems for comprehensive algorithm-architecture
co-design optimization. Using the Timeloop accelerator modeling
framework, we demonstrate that the new optimization methodol-
ogy can enable significant improvements over prior accelerator
designs for both energy minimization and performance maximiza-
tion.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are key components
of deep neural network pipelines. Due to its importance and
its very compute-intensive nature, several hardware accelerator
designs have been proposed for CNNs [5], [6], [7], [9], [17],
as well as frameworks/methodologies for optimizing CNN on
accelerators [8], [11], [12], [13], [14], [18], [22]. The overall
design space is prohibitively large, when we consider both
the choice of architectural parameters (such as number of
processing elements (PE), sizes of register files, and sizes of
scratchpad memories) and the possible schedule of execution
of the arithmetic operations and movement of data within the
accelerator (referred as the dataflow). Thus, prior efforts have
been forced to make ad-hoc design choices or use heuristics.
In this work, we present the first comprehensive model-driven
co-design optimization approach that evaluates the full design
space of accelerator parameters and dataflows.

Several recent efforts (COSA [11], DMazeRuner [8], In-
terstellar [22], MAESTRO/GAMMA [13], [14], Timeloop
[18]) have sought to develop infrastructure for searching the
space of dataflows for a given set of accelerator parameters.
A few efforts (e.g., Confuxius [12]) have addressed the co-
design problem of optimizing across both the dataflow and

We thank the CGO reviewers for their valuable feedback, which helped to
improve the paper substantially. This work was supported in part by the U.S.
National Science Foundation through awards 1946752, 2018016, 2119677, and
2118737. The support and resources from the Center for High Performance
Computing at the University of Utah are gratefully acknowledged.

architectural parameters, but use heuristics search. Our work
takes a fundamentally different view of the problem and its
solution. We consider the full space of possible designs and
automatically generate a collection of constrained nonlinear
optimization problems to capture the cost of each point in the
space. The variables in our formulation of the optimization
problem include both variables affecting the dataflow (modeled
as tile sizes of multi-level tiled representation of a CNN loop
nest) as well as architectural parameters such as the number
of registers per PE, on-chip SRAM shared memory, and the
number of PEs. The nonlinear objective function can model
either energy or delay (or energy-delay product, although we do
not). By solving these optimization problems using an existing
nonlinear solver, we systematically identify optimal designs in
the entire design space. This approach can also be applied to
optimize the dataflow for a fixed architectural configuration,
by simply replacing the corresponding architectural parameters
with specific numerical constants instead of casting them as
variables in the generated nonlinear optimization problem.

The key insight driving this work is that although the
design space for {architecture} × {dataflow} is explosively
large, a systematic exploration of the entire design space is
feasible via automatic generation and solution of a collection
of constrained nonlinear optimization problems. We develop a
compile-time algorithm for generation of symbolic expressions
that model the volume of data movement for each array at
each level of the memory hierarchy. This is done via an inner-
to-outer traversal of an arbitrary permutation of tiling loops
in a multi-level tiled loop configuration to builds symbolic
expressions for data volume. The modeling of array footprints
as symbolic polynomial expressions of tile size parameters
is achieved via an analytical model that exploits the specific
form of array index expressions in the CNN computation.
Using an off-the-shelf solver (CVXPY [2]) the entire design
space can be searched comprehensively to find optimal design
points, in contrast to existing heuristic-based design exploration
approaches. Our results show that this new approach yields
significant improvements to energy efficiency and performance.
Contributions: The paper makes the following contributions:
• It develops a novel solution to the dataflow optimization

problem for CNN accelerators by formulating and solving
a constrained nonlinear (DGP - Disciplined Geometric
Programming) optimization problem that is solved by an

// Temporal loops over SRAM level Tiles
for (is=0;is<Ni;is+=Si)
for (ks=0;ks<Nk;ks+=Sk)
Abuf[0:Si,0:Sk] = A[is*Si:is*Si+Si,ks*Sk:ks*Sk+Sk];
for (js=0;js<Nj;js+=Sj)
Bbuf[0:Sk,0:Sj] = B[ks*Sk:ks*Sk+Sk,js*Sj:js*Sj+Sj];
Cbuf[0:Si,0:Sj] = C[is*Si:is*Si+Si,js*Sj:js*Sj+Sj];
// Spatial loops: Tiles across PEs, one per PE
for (ip=is;ip<is+Si;ip+=Qi)
for (jp=js;jp<js+Sj;jp+=Qj)
// Temporal loops over Register Tiles on each PE
for (ir=ip;ir<ip+Qi;ir+=Ri)
for (jr=jp;jr<jp+Qj;jr+=Rj)
Creg[0:Ri,0:Rj] = Cbuf[ir*Ri:ir*Ri+Ri,jr*Rj:jr*Rj+Rj];
for (kr=ks;kr<ks+Sk;kr+=Rk)
Areg[0:Ri,0:Rk] = Abuf[ir*Ri:ir*Ri+Ri,kr*Rk:kr*Rk+Rk];
Breg[0:Rk,0:Rj] = Bbuf[kr*Rk:kr*Rk+Rk,jr*Rj:jr*Rj+Rj];
Creg[0:Ri,0:Rj] += Areg[0:Ri,0:Rk]*Breg[0:Rk,0:Rj];

Cbuf[ir*Ri:ir*Ri+Ri,jr*Rj:jr*Rj+Rj] = Creg[0:Ri,0:Rj];
C[is*Si:is*Si+Si,js*Sj:js*Sj+Sj] = Cbuf[0:Si,0:Sj];

for (i=0;i<Ni;i++)
for (j=0;j<Nj;j++)
for (k=0;k<Nk;k++)
C[i][j] += A[i][k]*B[k][j];

(a) Matrix Multiplication Code

(d) Spatial and Temporal Mapping for Accelerator Dataflow

S

DRAM

SRAM

R R R R

R R R R

PE Array

Accelerator

(b) Accelerator Memory Hierarchy

A[][]
B[][]
C[][]

i

j

k

RjRi

Rk

Qj

QiSi

Sk

Sj

(c) Multi-Level Tiling of Iteration Space

Fig. 1. Matrix multiplication: illustration of accelerator dataflow as multi-level tiling

off-the-shelf convex solver (CVXPY).
• It develops a novel solution to the architecture-dataflow co-

design problem for CNN accelerators, optimizing across
parameters for per-PE register capacity, SRAM capacity,
and number of PEs, avoiding the need to solve the dataflow
optimization problem for various combinations of choices
for architectural parameters.

• It presents experimental results using a state-of-the-art
accelerator modeling framework (Timeloop) showing
that significant improvements to energy efficiency and
performance over prior designs are achieved by use of
the developed design-space exploration methodology.

II. OVERVIEW OF OPTIMIZATION APPROACH

In this section, we use the example of matrix-matrix
multiplication to provide a high-level overview of the key ideas
behind the model-driven approach to dataflow optimization and
architecture-dataflow co-design for CNN accelerators. Technical
details on the modeling are presented in Section III.
Illustrative example: matrix multiplication. We use the
simpler matrix multiplication computation to explain the main
ideas behind the new approach to comprehensive design space
exploration and optimization. For the CNN computation, the
analytical cost functions are more complex than for matrix
multiplication, but have a similar structure.

Fig. 1(a) shows the loop code for standard matrix-matrix
multiplication. To its left in Fig. 1(b) is shown an accelerator
with a 3-level memory hierarchy: an array of processing
elements (PEs) each with a set of R registers, a common
on-chip shared memory with capacity of S words, and off-chip
DRAM of sufficient capacity to hold all three operands.

The execution of the code in Fig. 1(a) on an accelerator
will require slices of data of the three matrices to be moved
between DRAM and the accelerator’s SRAM and between
SRAM to PE registers to perform the arithmetic MAC (Multiply
ACcumulate) operations. The schedule of data movement
between DRAM, buffers in SRAM, and registers is called
the accelerator’s dataflow and has a significant impact on the

energy, delay and EDP (Energy-Delay Product). The enormous
space of possible dataflows for a given nested loop computation
on a given accelerator array can be systematically analyzed
through the perspective of multi-level tiling. Fig. 1(c) depicts
a tiled view of the 3D iteration space of the operations for
the matrix-multiplication computation, corresponding to the
tiled pseudocode shown in Fig. 1(d). The iteration space of
N3 points is partitioned at the outermost level into a temporal
sequence of SRAM-level tiles. Each such tile is a contiguous
Si × Sj × Sk 3D slice of the iteration space such that the
required data slices for those iteration-space points can all fit
within the capacity S of the SRAM.

Each SRAM-level tile is collectively executed by the set
of P processing units, viewed as a logical 3D grid of size
Pi × Pj × Pk. The tile is partitioned uniformly across the
PEs and each PE covers a slice of the iteration space of size
Qi × Qj × Qk; here Qi = Si/Pi and similarly for Qj and
Qk. For simplicity, in the example we use Pk = 1 and thus
Sk = Qk. Each PE executes a sequence of register-level tiles
of size Ri ×Rj ×Rk.

The pseudocode in Fig. 1(d) uses Python convention:
indentation conveys the nesting structure of loops and a range
0:N denotes the set from 0 to N -1. At each level of the memory
hierarchy, an explicit copy of the tile’s data footprint must be
made into an appropriately-sized buffer from a larger buffer at
the next higher level in the hierarchy. The buffers in SRAM are
named Abuf , Bbuf , and Cbuf and the register-level buffers
are Areg , Breg , and Creg .

Analytical modeling of data movement. Before execution of
a tile, copy-in of the tile’s data footprint for the input and
in-out operands must be done from the next higher level of
the memory hierarchy. The copy-in/copy-out operation can be
hoisted out through loop iterators that are absent in an array’s
index expressions. For example, at the SRAM level tiles, the
innermost tile-loop is along j, which is not used in the indexing
expression for A. Hence, the copy into Abuf from A can be
moved above the js loop.

The total volume of data movement at each level in the
memory hierarchy for each matrix can be computed by
multiplying the volume of data associated with the copy-
in/copy-out operations with the product of the number of
surrounding loop iterations. For example, the volume of
data movement from DRAM to SRAM for each copy op-
eration (Abuf[0:Si,0:Sk]=A[is*Si:is*Si+Si,ks*Sk:ks*Sk+Sk])
is Si × Sk. The number of iterations of the surrounding ks
and is loops are Nk

Sk
and Ni

Si
, giving a total data movement

volume of Si × Sk × Nk

Sk
× Ni

Si
= NiNk. The volume of data

movement from DRAM to SRAM (denoted D → S) and from
SRAM to DRAM (denoted S → D) for the three matrices is
as follows:

DVolD→S
A = SiSk

Nk

Sk

Ni

Si
= NiNk

DVolD→S
B = SkSj

Nj

Sj

Nk

Sk

Ni

Si
=

NiNjNk

Si

DVolD→S
C = DVolS→D

C = SiSj
Nj

Sj

Nk

Sk

Ni

Si
=

NiNjNk

Sk

(1)

The volume of data movement between SRAM and registers
can be computed similarly. At this level, row-wise and column-
wise multicasting of data is feasible, and the volume is counted
as one word if the same word is loaded into registers by a set
of processors. For example, the same set of RiRk elements
is loaded into registers by Pj processors and is counted as
a multicast operation requiring a single read access of the
on-chip SRAM. The data movement volumes from SRAM to
registers (S → R) and from registers to SRAM (R→ S) are:

DVolS→R
A = RiRk

Sk

Rk

Qj

Rj

Qi

Ri

Si

Qi

Nj

Sj

Nk

Sk

Ni

Si
=

NiNjNk

Rj

Qj

Sj

=
NiNjNk

RjPj

DVolS→R
B = RkRj

Sk

Rk

Qj

Rj

Qi

Ri

Sj

Qj

Nj

Sj

Nk

Sk

Ni

Si
=

NiNjNk

RiPi

DVolS→R
C = DVolR→S

C = RiRj
Qj

Rj

Qi

Ri

Sj

Qj

Si

Qi

Nj

Sj

Nk

Sk

Ni

Si

=
NiNjNk

Sk

(2)
Dataflow optimization. Given problem size parameters (Ni,
Nj , Nk) and architectural parameters (number of processors
P , SRAM size S, number of registers R per processor,
energy per register access εR, SRAM access energy εS ,
DRAM access energy εD, energy per MAC operation εop),
the dataflow optimization problem for energy is to find the
tile-loop permutation and tile sizes (Ri, Rj , Rk, Qi, Qj , Qk,
Si, Sj , Sk) that minimize the total energy for execution. The
number of processors used is PiPjPk, where Pi = Si/Qi,
Pj = Sj/Qj , Pk = Sk/Qk.

Dataflow optimization can be formulated as follows:

minimize εtotal where
εtotal = (4εR + εop)Nops+

εR(DVolS→R + DVolR→S)+

εS(DVolS→R + DVolR→S + DVolS→D + DVolD→S)+

εD(DVolS→D + DVolD→S)
subject to
RiRj +RiRk +RjRk ≤ R
SiSj + SiSk + SjSk ≤ S
Si = PiQi, Sj = PjQj , Sk = PkQk

PiPjPk ≤ P
(3)

For clarity, Pi, Pj , and Pk are included as unknown variables,
although they can be eliminated via Pi = Si/Qi, etc. We use
DVolS→R to denote DVolS→R

A +DVolS→R
B +DVolS→R

C and
similarly for the remaining volume expressions.

The total energy is the sum of four components. The first
component represents the energy corresponding to the execution
of the MAC operations, and includes the energy for the MAC
unit and the register energy for reading of the three inputs and
writing back the result. The next three components account
for the energy associated with all data movements from/to
registers, from/to SRAM, and from/to DRAM, respectively:
total number of accesses is multiplied by the corresponding
energy per access. The minimization of total energy is subject
to capacity constraints. The sum of sizes of the data buffers at
the SRAM (SiSk for A, SjSk for B and SiSj for C) must be
less than the total SRAM capacity S, and a similar capacity
constraint must be satisfied for registers. The total number of
PEs used, PiPjPk cannot exceed the given number of PEs
(P) on the accelerator. The product PiPjPk is not required to
be equal to P , to allow for dataflows that do not necessarily
use every PE. The total energy should include network energy
for inter-PE data movement. In this work, we did not model
network energy because our experimental evaluation as well as
others [22] show this component to be non-dominant. However,
the modeling of energy for inter-processor data movement could
be included in a similar manner.

Thus a constrained nonlinear optimization problem is formu-
lated in terms of unknown symbolic values for tile sizes and
known constants for problem size parameters and architectural
parameters. The above formulation corresponded to a specific
permutation of tiling loops: ikj (outer-to-inner) for the SRAM-
level tile-loops and ijk for the register-level tile-loops. A
number of such constrained optimization problems can be
similarly formulated for other permutations of the tile-loops
(with significant pruning of the space of possible permutations,
as explained in the next section). These constrained nonlinear
optimization problem can be solved directly using off-the-shelf
solvers; in our work, we use CVXPY [2]. The formulation and
direct solution of constrained nonlinear optimization problems
for optimizing accelerator dataflow is a fundamental difference
between the work presented here and all prior work on this
problem that we are aware of.
Architecture-dataflow co-design optimization. Next,
consider architecture-dataflow co-design for the matrix-
multiplication example. The three main architectural
parameters are the number of processors (P), capacity of
shared on-chip SRAM memory (S), and the number of
registers per PE (R). The question of interest is: Given
a specific set of problem size parameters (Ni, Nj , Nk),
how should we choose architectural parameters and the
corresponding dataflow to minimize energy? Such a question
is of practical interest with CNNs because each CNN stage in
a DNN pipeline (e.g., ResNet50) has specific fixed sizes for
all tensors.

Several previous research efforts on accelerator co-design
optimization [8], [12], [22] have been based on either heuristic

searches or bounded “grid” search, where specific combina-
tions of architectural parameters are considered, and dataflow
optimization is performed for each of the selected choices
for architectural parameters. In contrast, we demonstrate
how architecture optimization for register/SRAM capacity and
number of PEs, together with dataflow optimization, can be
solved directly, without requiring an iterative search over a
number of specific architectural configurations.

The key to our single-shot approach to optimizing archi-
tectural parameters is that the per-access energy for registers
and SRAM memory can be well approximated by analytical
functions as follows:

εR = σRR

εS = σS
√
S

(4)

The per-access-energy for register files (for a fixed word size)
is linearly proportional to the number of registers, because
the number of comparators grows linearly with the number of
registers. The linear dependence is confirmed by the energy
model used in Accelergy [21] and Alladin [20]. Similarly, the
per-access energy for SRAM is quite well approximated by a
square-root dependence on the capacity. This is because of the
2D structure of the storage bits in an SRAM, and the energy
cost for the row/column decoders grows in proportion to the
square root of the memory capacity. Assessment with Cacti
[16] shows that this is a sufficiently accurate approximation
for our approach to accelerator co-design.

Given the models in Eq. 4 for εR and εS , adding them to the
system in Eq. 3 enables the direct solution to the architecture-
dataflow co-design optimization problem of simultaneously
optimizing for architectural parameters and tile parameters.

A fundamental constraint in choosing an accelerator’s
parameters is the total available chip area for the VLSI chip
realizing the accelerator design. While the actual silicon area of
a design cannot be determined until low-level VLSI design to
layout the chip is done, we can perform high-level accelerator
design-space exploration based on a simple linear model of
area for each hardware component: the per-register area AreaR,
the per-word SRAM area AreaS , and the area for a multiply-
accumulate unit AreaMAC :

(AreaR ×R+AreaMAC)× P +AreaS × S ≤ Areatotal (5)
We thus have the following nonlinear constrained optimization

problem for finding the best combination of tile sizes and
number of processors P for minimization of energy, for the
specific tile loop permutation shown in Fig. 1:

minimize εtotal where

εtotal = (4σRR+ εop)Nops+

σRR(DVolS→R + DVolR→S)+

σS
√
S(DVolS↔R + DVolS↔D)+

εD(DVolS→D + DVolD→S)

subject to

(AreaR ×R+ AreaMAC)× P + AreaS × S ≤ Areatotal

RiRj +RiRk +RjRk ≤ R

SiSj + SiSk + SjSk ≤ S
Si = PiQi, Sj = PjQj , Sk = PkQk

PiPjPk ≤ P
(5)

In this section, we used manual derivation of the analytical
cost expressions for matrix multiplication to explain our new
approach to dataflow optimization and architecture-dataflow
co-design for accelerators. The expressions for CNN can
be similarly derived but are more complex and the number
of tile-loop permutations is much larger. We next present
algorithmic details on how we automatically generate the
multiple constrained nonlinear systems of equations for CNNs.

III. ANALYTICAL MODELING FOR CNN OPTIMIZATION

In this section we elaborate on the details of the modeling
for optimizing CNN accelerators. Consider the CNN code in
Listing 1. Iterators n, k, c, r, s, h, w define a 7D iteration
space. The code uses x and y to denote strides, which are small
compile-time constants (convolution dilation can be handled
similarly, but for simplicity is not discussed). The modeling
of a multi-tiled version of this code, similar in structure to the
example from Fig. 1, is described below. Such modeling is done
at two levels. In the outer level of design exploration, different
permutations of the tiling loops need to be considered, as each
permutation can result in a different optimal dataflow and thus
different energy and delay. In the inner level of exploration,
given a particular permutation of tiling loops, a constrained
optimization problem is generated and solved to obtain concrete
values for tile sizes and architectural parameters. We first
describe how to automatically generate such an optimization
problem for a given permutation. Later in this section we
describe how the large space of possible permutations is pruned.

Before presenting details on the algorithm for generating
symbolic expressions for data volumes, we discuss a small
change in the notation used for the symbolic expressions.
Consider again the code in Fig. 1(c). Each level’s tile loop
steps through the tile origins by using a step size corresponding
to that level’s tile size (e.g., is+=Si). Alternatively, the code
could be written with all tile-loops using unit step sizes (e.g.,
is++), with each tile-loop enumerating the tile number at
that level. The loop bounds are modified accordingly (e.g., by
using Ni/Si instead of Ni). With this form of tiled code, the
tile size corresponding to any level of tiling is the product
of the trip-counts (i.e., number of iterations) of all tile loops
corresponding to that dimension nested within the current tile-
loop. For example, tile-loop is in Fig. 1(c) would have loops
ip and ir nested below it, and the tile size for is would be the
product of their trip-counts. Note that the trip-count for the
innermost loop is equal to its tile size. In the remainder of the
paper, we use this alternative form, with the trip-count at a
level being denoted using lower case letters and tile-sizes using
upper case letters—for example, for the is loop in Fig. 1(c),
the tile size would be Si and the trip-count would be si. The

f o r (n = 0 ; n < N; n ++)
f o r (k = 0 ; k < K; k ++)

f o r (c = 0 ; c < C ; c ++)
f o r (r = 0 ; r < R ; r ++)

f o r (s = 0 ; s < S ; s ++)
f o r (h = 0 ; h < H; h ++)

f o r (w = 0 ; w < W; w++)
Out [n] [k] [h] [w] +=

In [n] [c] [x*h+ r] [y*w+s]* Ker [k] [c] [r] [s]

Listing 1. CNN loops

constrained optimization problem will use the trip-counts as
variables, as opposed to the tile sizes.

A. Generating a Constrained Optimization Problem

Suppose we are given a sequence TIP of tile-iterator
permutations. Each element of TIP corresponds to a particular
level of tiling. For example, for the code shown in Fig. 1,
we have TIP = 〈is, ks, js〉, 〈ip, jp, kp〉, 〈ir , jr , kr〉. The first
element of TIP represents the outer-to-inner order of iterators
over SRAM tiles. The second element, which represents spatial
loops over PEs, is included only for completeness, since the
order of its iterators does not affect the modeled cost. The last
element represents the order of register tiles on a PE. For the
CNN computation, each element of TIP is a permutation of 7
iterators. Note that this representation, as well as the algorithm
described below, allow an arbitrary number of tiling levels and
arbitrary permutations at each level.

In order to auto-generate a constrained optimization problem,
the approach incrementally builds two kinds of symbolic
expressions. First, data footprint expressions, denoted by DF ,
are needed to generate the constraints of the optimization
problem. For example, it is necessary to create a ≤ constraint
that relates the seven SRAM-level tile sizes Sns , Sks , Scs , . . .
with the SRAM capacity S. To achieve this, the data footprints
of SRAM data tiles for In , Ker , and Out need to be determined
as symbolic expressions of the corresponding trip counts. These
expressions also give the sizes of the corresponding buffers
(similar to buffers Abuf , Bbuf , and Cbuf in Figure 1).

In addition, in order to construct the objective function
for the optimization problem, data access volume expressions
are needed. These expressions, denoted by DV below, are
the building blocks of the symbolic expression defining this
objective function. This symbolic expression has a structure
similar to the energy cost expression in Eq 3. For the rest of the
discussion, we only consider the energy cost; cost expressions
for delay can be constructed similarly.

Data footprint at the register level. The starting point
of the approach is the computation of DF expressions for
each array at the register level. For example, for array access
Out [n][k][h][w] and register loops with trip counts rn, etc., the
data footprint DFR

Out = rnrkrhrw. Similarly, for array access
Ker [k][c][r][s] we have DFR

Ker = rkrcrrrs.
Consider array access In[n][c][h + r][2 ∗ w + s]. For

concreteness, here we use stride-1 for the third data dimension
and stride-2 for the last one. In the third dimension, the
initial value of the index expression will be 0 and the final
value will be (rh − 1) + (rr − 1), leading to footprint extent

Algorithm 1: Data volume/footprint symbolic expres-
sions for one tensor and one tiling level

1 Function ConstructExpr(〈it1, . . . , itn〉, DF l−1):
2 DF l ← DF l−1

3 DV l ← DF l−1

4 CanHoist ← true
5 for k ← n to 1 do
6 cl ← trip-count for itk
7 cl−1 ← corresponding trip-count at lower level
8 if CanHoist then
9 if itk is present in tensor reference then

// innermost present iterator
10 CanHoist ← false

11 DF l ← replace(DF l, cl−1, clcl−1)

12 DV l ← replace(DV l, cl−1, clcl−1)
13 else

// before innermost present iterator
// no change to DF l and DV l

14 end
15 else
16 if itk is present in tensor reference then

// non-innermost present iterator
17 DF l ← replace(DF l, cl−1, clcl−1)

18 DV l ← multiply(DV l, cl)
19 else

// no change to DF l

20 DV l ← multiply(DV l, cl)
21 end
22 end
23 end
24 return DF l, DV l

of rh + rr − 1. For the last dimension, the accesses are
from 0 to 2(rw − 1) + (rs − 1) and we have extent of
2rw + rs − 2. The total footprint expression for this case
is DFR

In = rnrc(rh + rr − 1)(2rw + rs − 2). The handling of
the general case is done similarly.

Data footprint and data volume at higher tiling levels.
Next, we outline the approach to construct symbolic expressions
DF l and DV l at a tiling level l, given the footprint expression
DF l−1 at next lowest tiling level. The register level footprint
described earlier is DF 0. The computation is done separately
for each tensor. Algorithm 1 defines the approach and the
description below illustrates it with an example.

Data footprint. The algorithm considers the iteration permu-
tation 〈it1, . . . , itn〉 for tiling level l and models the effects of
each loop, starting from the innermost one itn and ending with
the outermost one it1. The construction of the data footprint
symbolic expression DF l determines the size of the buffer
needed at this tiling level, which is necessary both for code
generation and for constructing the capacity constraints in
the optimization problem. This construction starts with the
footprint DF l−1 at the lower level and then rewrites this
expression as it traverses the loops. If a loop has an iterator that

TABLE I
EXAMPLE OF ACCESS VOLUME DV 1 COMPUTATION FOR 〈w, n, k, h, c, s, r〉 PERMUTATION USING ALGORITHM 1

Step Iter In Out
DF0 rnrc(rh + rr − 1)(2rw + rs − 2) rnrkrhrw
1 r rnrc(rh + qrrr − 1)(2rw + rs − 2) 2rnrkrhrw
2 s qs(rnrc(rh + qrrr − 1)(2rw + rs − 2)) 2rnrkrhrw
3 c qcqs(rnrc(rh + qrrr − 1)(2rw + rs − 2)) 2rnrkrhrw
4 h qhqcqs(rnrc(rh + qrrr − 1)(2rw + rs − 2)) 2rnrkqhrhrw
5 k qkqhqcqs(rnrc(rh + qrrr − 1)(2rw + rs − 2)) 2qk(rnrkqhrhrw)
6 n qnqkqhqcqs(rnrc(rh + qrrr − 1)(2rw + rs − 2)) 2qnqk(rnrkqhrhrw)
7 w qwqnqkqhqcqs(rnrc(rh + qrrr − 1)(2rw + rs − 2)) 2qwqnqk(rnrkqhrhrw)

is present in the tensor reference, the expression is rewritten
to replace all occurrences of the previous level trip-count cl−1

with expression clcl−1 where cl is the corresponding trip-count
at the current level (lines 11 and 17 in the algorithm).

For a simple example, consider DF 1 for tensor Ker . As
discussed earlier, DF 0 = DFR

Ker = rkrcrrrs. Suppose the
loop order at level l = 1 is 〈w, n, k, h, c, s, r〉. The algorithm
first considers r and since this iterator is present in reference
Ker [k][c][r][s], the occurrences of rr are replaced with qrrr.
Next, occurrences of rs are replaced with qsrs, and so on. The
final expression is DF 1 = qkrkqcrcqrrrqsrs.

As another example, consider DF 1 for tensor In , where
the access expression is In[n][c][h + r][2 ∗ w + s]. We have
DF 0 = DFR

In = rnrc(rh + rr − 1)(2rw + rs − 2). When the
tile loop for r is processed by the algorithm, the expression
becomes rnrc(rh+qrrr−1)(2rw+rs−2). Next, the processing
of s results in rnrc(rh + qrrr − 1)(2rw + qsrs − 1). The final
expression is qnrnqcrc(qhrh + qrrr − 1)(2qwrw + qsrs − 1).

Data volume. To compute the data volume DV l, we need
to track the outermost loop level at which the data copy for a
tensor can be hoisted. From inner to outer loop, this is the first
loop for which the iterator is present in the tensor reference. In
the algorithm this is done with flag CanHoist , which becomes
false when further hoisting is not possible. At this point, the
occurrences of cl−1 are replaced with expression clcl−1. From
this point on, for all surrounding loops—regardless of whether
the iterator is present or absent—the trip-counts need to be
multiplied with the expression.

For example, for Ker and loop order 〈w, n, k, h, c, s, r〉,
the flag becomes true as soon as we encounter the innermost
loop r. The volume expression becomes rkrcqrrrrs. After
all surrounding loops are processed, the final expression is
DV 1 = qwqnqkqhqcqs(rkrcqrrrrs). But for tensor reference
Out [n][k][h][w] the copy operation can be hoisted up to the h
loop, since the innermost three loops do not contain iterators
that appear in the reference. The resulting data volume expres-
sion is DV 1 = 2qwqnqk(rnrkqhrhrw); factor 2 accounts for
the fact that there are both read and write operations for this ten-
sor. Finally, for tensor access expression In[n][c][h+r][2∗w+s],
we have volume expression rnrc(rh+ qrrr− 1)(2rw + rs− 2)
when the innermost loop r is processed, and final expression
DV 1 = qwqnqkqhqcqs(rnrc(rh + qrrr − 1)(2rw + rs − 2)) at
the end of the algorithm.

Table I provides a complete example of the steps (i.e.,

iterations of the loop at line 5) for computing DV 1 in the
example discussed above, for tensors In and Out .

Pruning the design space. We use the following pruning
techniques to significantly reduce the number of permutations
to be considered in solving the tile-optimization problem. First,
stencil-size parameters R and S take small odd numbers in
practice and it is infeasible to divide them into a number of
equal tiles. Hence tiling of these two loops is not considered.
Next, as explained earlier, the construction of the symbolic
expressions for data volume involves an inner to outer traversal
of tiling loops, with a trip-count getting added to the expression
after CanHoist becomes false . Once we reach a tile-loop at a
level such that CanHoist is false for all tensors, the relative
order of outer surrounding tile loops for that memory level
will not change the resulting expressions, i.e., we can prune
away all but one of the possible permuted configurations of
these loops. This allows a significant number of cases to be
pruned out. Finally, we further reduce the number of tile-loop
combinations by checking whether the cost functions for data
volume are symmetric with respect to parameters H and W
(i.e., they have the same strides) and pruning accordingly.

IV. SYSTEM DESCRIPTION

Cnn Layer

Specification
Dilation/Channels/Strides/

Batch

Technology

Parameters
Area/Energy of primitive

components

Optimization

Criterion
Energy/Delay

Symbolic Cost

and Constraint

computation

Disciplined
Geometric
Optimization
Problem

CVXPY

(SCS)

Timeloop
Like
specification

Conversion to

Integer Solution

Real Solution

Timeloop Model
Candidate
Timeloop
Mappings

Final Area, Energy,
DelayEvaluation

Fig. 2. Design space exploration with Thistle

Fig. 2 provides a high-level view of our optimizer, referred to
as Thistle. The input includes: (1) CNN layer specification, (2)
technology parameters, and (3) optimization criterion. The CNN
layer specification defines problem parameters, e.g. batch size,

Si = si*pi*Ri;
Sj = sj*pj*Rj;
Sk = sk*pk*Rk;
for (id=0; id < di; ++id)

for (kd=0; kd < dk; ++kd)
load_to_sram(A[id*Si:(id+1)*Si][kd*Rk:(kd+1)*Sk])
for (jd=0; jd < dj; ++jd)

load_to_sram(C[id*Si:(id+1)*Si][jd*Rj:(jd+1)*Sj])
load_to_sram(B[kd*Sk:(kd+1)*Sk][jd*Rj:(jd+1)*Sj])
for (is=0; is < si; ++is)

for (js=0; js < sj; ++js)
for (ks=0; ks < sk; ++ks)

forallY (ip=0; ip < pi; ++ip)
forallX (jp=0; jp < pj; ++jp)

load_to_reg(C_sbuf[ip*Ri:(ip+1)*Ri][jp*Rj:(jp+1)*Rj])
forall (kp=0; kp < pk; ++kp)

load_to_reg(A_sbuf[ip*Ri:(ip+1)*Ri][kp*Rk:(kp+1)*Rk])
load_to_reg(B_sbuf[kp*Rk:(kp+1)*Rk][jp*Rj:(jp+1)*Rj])
for (ir=0; ir < Ri; ++ir)

for (jr=0; jr < Rj; ++jr)
for (kr=0; kr < Rk; ++kr)

C_reg[ir][jr] +=
A_reg[ir][kr] +
B_reg[kr][jr]

// Here, Ri*pi*si*di = Ni; Rj*pj*sj*dj = Nj; Rk*pk*sk*dk = Nk
// Ri=Rj=Rk=pi=pj=sk=di=dj=dk=4 the rest are 1.

mapping:
- factors: K=4 J=4 I=4

permutation: J K I
target: DRAM
type: temporal

- factors: K=4 J=1 I=1
permutation: K J I
target: SRAM
type: temporal

- factors: K=1 J=4 I=4
permutation: K J I
splitX: 2
target: SRAM
type: spatial

- factors: I=4 J=4 K=4
permutation: K J I
target: RegisterFile
type: temporal

problem:
shape:

data-spaces:
- name: A

projection:
- - - I
- - - K

- name: B
projection:
- - - K
- - - J

- name: C
projection:
- - - I
- - - J
read-write: true

dimensions:
- I
- J
- K

instance:
I: 64
J: 64
K: 64

for (i=0;i<64;i++)
for (j=0;j<64;j++)

for (k=0;k<64;k++)
C[i][j] += A[i][k]*B[k][j];

architecture:
name: ’ExampleArch'
subtree:
- attributes:

technology: 45nm
local:
- attributes:

read_bandwidth: 8
type: LPDDR4
word-bits: 16
write_bandwidth: 8

class: DRAM
name: DRAM

name: system
subtree:
- local:

- attributes:
depth: 1024
read_bandwidth: 80
word-bits: 16
write_bandwidth: 80

class: SRAM
name: SRAM

name: Chip
subtree:
- local:

- attributes:
depth: 64
read_bandwidth: 4
word-bits: 16
write_bandwidth: 4
meshX: 4

class: regfile
name: RegisterFile

- attributes:
datawidth: 16
meshX: 4

class: intmac
name: MACC

name: PE[0..15]
version: 0.3

(a) Timeloop architecture specification

(b) Timeloop problem specification

(d) Timeloop mapping

(c) Equivalent problem in C notation

(e) Equivalent tiled and permuted version in C notation

Fig. 3. Timeloop input specification

output feature-map dimensions, number of input and output
channels, strides, and dilation. The specification closely relates
to the input YAML format used by Timeloop (discussed later in
this section). The technology parameters include various area
and energy parameters for components such as MAC units,
registers, and SRAM/DRAM. In our evaluation we obtain
technology parameters from Accelergy [21], Cacti [16], and
Alladin [20]. The optimization criterion can be either energy or
delay. Depending on the criterion used, Thistle formulates and
solves appropriate constrained nonlinear optimization problems.

As described earlier, the symbolic cost and constraint
computation takes in the aforementioned specifications and
produces Disciplined Geometric Programs [1] that encode
constraints and the objective function to be optimized. CVXPY
[2] is used to solve the constrained optimization problems.

We convert the real solution provided by the solver to an
integer solution which satisfies constraints of various memory
capacities (e.g. sizes of SRAM usually being powers of two)
and tile sizes as perfect divisors of problem sizes. For the
memory capacity variables, we choose N closest powers of
two near the real solution for those variables. For instance, if the
real solution is 12 for register capacity and N is 2, we choose
8, 16 as two candidates for register-capacity. We compute all
the divisors of each problem extent. We start from the SRAM
level tile-size variables. and select the n closest divisors to
the corresponding real solutions for each of the variables. At
this point, instead of considering all the divisors of problem
extents, we only consider divisors of SRAM level candidates

for a given variable. We repeat the process to subsequently
choose n candidates for the processor level tile-sizes and the
register level tile-sizes.

We use the cross product of these candidates and filter out
any candidate solutions that: (1) violate divisibility constraints,
(2)) violate area constraints, or (3) do not meet a minimum
threshold on resource utilization. Typically we chose n to be
2 or 3 to avoid explosion of valid candidate solutions. The
candidate solutions provided after conversion to integer solution
are evaluated using Timeloop-model and the best candidate is
chosen.

Timeloop [18] includes architectural estimation tools which
accept a problem description, an architectural description
and either a dataflow specification (mapping) or a dataflow
constraints specification. The Timeloop mapper offers various
search strategies to explore the search space of possible
mappings. In our evaluation we use the default search strategy.

A Timeloop problem description includes: (1) a set of
problem dimensions, i.e., a set of variables denoting a dense
iteration space, (2) a set of data spaces, i.e., the arrays involved
in the problem and the array access expressions, and (3) a
problem instance with fixed problem parameter values.

Fig. 3(b) shows the Timeloop problem description for matrix
multiplication C[i][j] = A[i][j]×B[k][j]. The equivalent loop
code is denoted in Fig. 3(c). The dimensions part denotes the 3D
iteration space consisting of I, J, and K dimensions. The data
spaces part describes the arrays involved in the computation
and the iterators used to access them. The read-write attribute

specifies that buffers corresponding to the array C are both
read and written in this process. The instance part specifies
the maximum values for iterators I, J, and K.

Fig. 3(d) describes the tiling and loop permutation for the
problem in Fig. 3(b), while the equivalent loop code is shown
in Fig. 3(e). Here target specifies which memory level in the
memory hierarchy will be accessed by a given set of loops.
The register level loop permutation (target: RegisterFile) is
KJI. Timeloop uses an innermost-to-outermost convention, so
the iterator permutation would be 〈i, j, k〉. The temporal type
signifies that these are sequential loops. The factors denote
the trip counts of the loops for the given level. In case of
RegisterFile, the trip counts for I, J, K are 4. The parallel loops,
of type spatial, and the corresponding tile sizes are associated
with higher memory levels by convention. The spatial block of
mapping targeting SRAM specifies that the PE array is located
below the SRAM (and above register file). The upper blocks
similarly denote sequential loops executed by the PE array
at the SRAM and DRAM level. The product of all factors
for a given dimensions equals the total problem extent of the
dimension, 64 in this example.

Fig. 3(a) provides a sample architecture specification. This
architecture is similar to the three level memory hierarchy
shown in Fig. 1(b). The nested tree denoted using YAML
describes the memory hierarchy from the DRAM level down
to the ALUs. Each memory level can be associated with read
and write bandwidths supported by that level. Here word-bits
denotes the number of bits in the primitive word; the example
uses 16 bit words. The depth attribute denotes the depth of a
memory level and corresponds to the size of that level. Each
memory level has a class which is used by Accelergy to perform
area and energy estimations. A name in array format such as
PE[0..15] denotes duplicated instances of a sub-tree—in this
instance, a total of 16 PEs, each with its own 16 bit integer
MACC unit and register file.

Timeloop Mapper is a multi-threaded search space explorer.
It spawns a given number of threads and each thread explores
parts of search space until (1) it exceeded a specified maximum
number of trials (timeout), or (2) it finds n consecutive non-
optimal points compared to the current best solution (victory
condition). In our evaluation, we provide much higher values
than the default ones for both timeouts and victory conditions:
100000 for each, and termination after 3 hours.

V. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of the
effectiveness of the developed optimization methodology for
dataflow-accelerator co-design optimization. We start with the
architectural parameters of Eyeriss [6], a well known CNN
accelerator that was designed and fabricated as a VLSI chip.

In our experimental evaluation, we ask the following
question: How much improvement in energy efficiency and
performance is feasible over the Eyeriss design if we perform
comprehensive {architecture} × {dataflow} design space
exploration, while limiting the total area for the architectural
components to that used by the original Eyeriss design?

TABLE II
CONFIGURATIONS OF CONV2D OPERATORS, K: # OUTPUT CHANNELS; H,

W: INPUT IMAGE HEIGHT AND WIDTH; C: #INPUT CHANNELS; R/S KERNEL
SIZE; BATCH SIZE = 1; KERNEL STRIDE = 1/2 (2 IF MARKED WITH * AFTER

RS, 1 OTHERWISE)

Yolo Resnet
Layer K C H R K C H R

W S W S
1 32 3 544 3 64 3 224 7*
2 64 32 272 3 64 64 56 3
3 128 64 136 3 64 64 56 1
4 64 128 136 1 128 64 56 3*
5 256 128 68 3 128 64 56 1*
6 128 256 68 1 128 128 28 3
7 512 256 34 3 256 128 28 3*
8 256 512 34 1 256 128 28 1
9 1024 512 17 3 256 256 14 3

10 512 1024 17 1 512 256 14 3*
11 28269 1024 17 1 512 256 14 1*
12 512 512 7 3

TABLE III
ARCHITECTURE PARAMETERS USED

Parameter Value Unit
Area per MAC 1239.5 µm2

Area per register 19.874 µm2

Area per SRAM word 6.806 µm2

Energy per int16 MAC 2.2 pJ
Register energy-constant 9.06719× 10−3 pJ/word
SRAM energy-constant 17.88
Energy per dram-access 128 pJ

We use all the convolutional layers of two DNN pipelines:
Resnet-18 [10] and Yolo-9000 [19] for the evaluation. Table
II shows the characteristics of the CNN stages in these DNN
pipelines. We use both the DNN pipelines in evaluating energy
efficiency and performance (delay minimization). In all the
evaluations, the design parameters generated by Thistle are
used to generate a Timeloop architecture specification (similar
to that shown in Fig. 3(a)) and a Timeloop mapping (similar to
that in Fig. 3(d)). Thus, while Thistle’s architecture-dataflow co-
design optimization is based on our generated models, the final
reported energy/performance metrics are based on Timeloop’s
simulation of the architecture/dataflow produced by Thistle and
not on Thistle’s estimation of those metrics.

We use the architectural design parameters of the Eyeriss
accelerator [6] as a baseline: 168 processors, 512 registers
per processor, and 128 Kbytes of shared scratchpad SRAM
memory. The original Eyeriss chip [6] was fabricated using
65nm VLSI technology. Since the closest VLSI technology
for which architectural parameters were available in Accelergy
[21] (used by the Timeloop accelerator modeling framework),
we performed our evaluation using parameters for 45nm
technology, as shown in Table III.

A. Energy Minimization

Energy optimization for Eyeriss architecture. Before assess-
ing the impact of combined architecture-dataflow design space
exploration on energy efficiency, we set up a baseline for
the comparison: we performed dataflow optimization using
the same architectural parameters as Eyeriss. We did this
using Thistle as well as Timeloop’s Mapper. Fig. 4 shows

the energy efficiency (picoJoules per multiply-accumulate) for
all convolutional stages of the Resnet-18 and Yolo-9000 DNN
pipelines. It may be seen that both Thistle and Timeloop’s
Mapper achieve similar energy efficiency, ranging between
20-30 pJ/MAC, with Thistle being slightly better.

Fig. 4. Energy comparison between Timeloop Mapper and Thistle for Eyeriss
architecture (lower is better). EnergyUp denotes TimeloopEnergy

ThistleEnergy
.

Layer-wise architecture-dataflow co-design optimization.
Next we explored architecture-dataflow co-design optimization
using Thistle. For each CNN layer, we solved a collection
of nonlinear optimization problems for different pruned
combinations of tile-loop permutations, each involving
the solution of an optimization problem similar to
that illustrated in Eq. 5 for matrix multiplication.
The best solution found by Thistle, of the form
〈architecture parameters, tileloop permutations, tilesizes〉,
was used to generate Timeloop input and the Timeloop model
was executed to generate the energy for execution of the CNN
stage on the specified accelerator architecture.

Fig. 5. Energy optimization: Eyeriss versus layer-wise optimized architecture
with same area (lower is better)

Fig. 5 compares the achieved energy efficiency via
architecture-dataflow co-design optimization with that of the
best dataflow to minimize energy for the original Eyeriss
architecture. It may be seen that a significant improvement
is achieved for most of the stages of both the Resnet-18 and

Fig. 6. Energy optimization: Eyeriss versus layer-wise optimal architecture
versus fixed architecture optimized for energy-dominant layer (lower is better)

Yolo-9000 DNN pipelines. In contrast to the 20-30 pJ/MAC
energy efficiency of the Eyeriss architecture, it is feasible to
achieve a much better energy efficiency of around 5 pJ/MAC
for most layers, and less than 10 pJ/MAC for all layers. For
architecture-dataflow co-design optimization, we only show
results based on Thistle in Fig. 5 because Timeloop Mapper can
only perform dataflow optimization and cannot optimize across
architecture parameters. The significant improvement in energy
efficiency made possible by exploring the architecture design
space underscores the importance of the new capability for
rapid combined architecture-dataflow optimization that Thistle
enables; we are unaware of any other accelerator optimization
framework that can do so.

Energy optimization with single architecture for all layers.
While the layer-wise optimization of the various stages of the
Resnet-18 and Yolo-9000 yielded very significant improvements
in energy efficiency over the original Eyeriss architecture, it is
practically infeasible to customize an accelerator architecture
for each layer of a CNN pipeline. We next assess the achievable
energy efficiency for the stages of these two DNN pipelines
under the constraint that a single common accelerator design
must be created for execution of all the stages. We consider
the stage consuming the most total energy among the indi-
vidually layer-wise optimized accelerator designs (across both
Resnet-18 and Yolo-9000) and use the architectural parameters
corresponding to that stage. We then use Thistle to perform
dataflow optimization for that fixed architecture. Fig. 6 shows
the results. Each chart (one for Resnet-18 and one for Yolo-
9000) shows three line graphs, plotting the energy efficiency
across the various conv2D layers for (1) Eyeriss architectural
parameters (blue line), (2) layer-wise optimized architecture
(green line), and (3) fixed architecture corresponding to
architecture optimization for energy-dominant layer (orange
line). It may be seen that even with the requirement for a
single accelerator design to execute all the stages, the energy
improvements over the fixed Eyeriss architecture are very
significant, with very few cases losing much in terms of energy
efficiency when compared with the layer-specific optimized
architecture.

Fig. 7. Throughput comparison between Timeloop Mapper and Thistle for
Eyeriss architecture (higher is better; theoretical maximum achievable IPC
(MAC Instructions Per Cycle) value is the number of processors = 168)

B. Delay Optimization

We can model delays associated with each component by
multiplying the number of events by the throughput associated
with the component. A difference from energy minimization
is that instead of the sum of contributions from different
components, the cost expression contains the maximum among
the delays associated with each component.

Figure 7 denotes the MAC Instructions Per Clock (IPC) for
the Eyeriss architecture, comparing optimized dataflows from
Thistle and Timeloop Mapper. Deviating from the trends in
the energy minimization results, the differences in achieved
throughput from dataflow optimization by Thistle and Timeloop
Mapper are more pronounced. (the line graph shows the
improvement in speedup, with the scale shown on the right of
the figure).

As for energy optimization, we performed layer-wise
architecture-dataflow co-design for throughput optimization,
identified the dominant-delay stage across all stages, and
performed dataflow optimization for that fixed architecture.
These results are shown in Fig. 8. The benefits of combined
architecture-dataflow co-design for throughput are often orders
of magnitude when compared to the fixed Eyeriss architecture.
The drop from the throughput possible for a layer-optimized
architecture to that achieved by a single architecture is also
much higher than we observed for energy optimization. This
is because energy optimization is not as sensitive to the total
number of PEs in the accelerator as is the throughput.

VI. RELATED WORK

Several prior efforts [3], [8], [12], [13], [14], [15], [18], [22]
have addressed the problem of optimizing CNN on accelerators.
dMazeRunner [8] provides an anlytical model to estimate
energy and performance and conducts a search over a pruned
search space. Interstellar [22] utilizes the Halide scheduling
language to describe the design of the accelerator, and finds
evergy-optimized designs by applying a pruned search guided
by domain-specific knowledge. Interstellar only models energy
optimization but does not model delay optimization.

Fig. 8. Delay optimization: Eyeriss versus layer-wise optimal architecture
versus fixed architecture optimized for delay-dominant layer

Timeloop [18] is a comprehensive framework that models
the energy/latency metrics of architecture mappings and has a
Mapper that searches for optimized mapping over the space.
We use TimeLoop as the accelerator modeling framework for
evaluating our accelerator-dataflow optimization methodology.

Maestro [14] is an accelerator modeling framework that
can evaluate the energy, latency, and throughput of a given
mapping configuration on a given accelerator architecture.
Several efforts have used the Maestro framework for dataflow
and/or accelerator architecture optimization. Confuciux [12]
uses reinforcement learning based search and genetic algorithms
to determine optimized resource assignments for architecture
parameters and dataflow. The GAMMA [13] system provides
multiple optimization methods to drive the exploration of
dataflow designs for a given accelerator architecture. Marvel
decouples the dataflow design space into two parts—on-chip
and off-chip—to accelerate design space exploration [4].

A key difference between the optimization approach we
develop in this paper and all these prior efforts is that they
all use a heuristic or iterative search through a bounded set of
dataflow/accelerator configurations. In contrast, our presented
approach formulates and solves a set of constrained non-linear
optimization problems to simultaneously optimize architectural
parameters for processor count, register count and SRAM
capacity, along with the dataflow mapping.

VII. CONCLUSION

We present an efficient and effective approach to architecture-
dataflow co-design for optimizing CNN on accelerator arrays.
The key new idea is that the enormous design space can be
comprehensively searched by automated synthesis and solution
of a collection of constrained nonlinear optimization problems
to find the combination of architectural parameters (number
of registers per processor, capacity of shared on-chip memory,
number of processing elements) and mapping choices (tile
sizes at the register and shared-memory levels, parallelized
dimensions, and tile loop permutations) that minimize energy
(or delay). The experimental results demonstrate that significant
improvement in energy efficiency and performance over prior
designs can be achieved by use of the developed methodology.

REFERENCES

[1] Akshay Agrawal, Steven Diamond, and Stephen Boyd. Disciplined
geometric programming. Optimization Letters, 13(5):961–976, 2019.

[2] Akshay Agrawal, Steven Diamond, and Stephen Boyd. Cvxpy: A
rewriting system for convex optimization. 2021.

[3] Alessio Burrello, Angelo Garofalo, Nazareno Bruschi, Giuseppe Tagli-
avini, Davide Rossi, and Francesco Conti. Dory: Automatic end-to-end
deployment of real-world dnns on low-cost iot mcus. IEEE Transactions
on Computers, 2021.

[4] Prasanth Chatarasi, Hyoukjun Kwon, Natesh Raina, Saurabh Malik,
Vaisakh Haridas, Angshuman Parashar, Michael Pellauer, Tushar Krishna,
and Vivek Sarkar. Marvel: A data-centric compiler for dnn operators on
spatial accelerators. arXiv preprint arXiv:2002.07752, 2020.

[5] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. Diannao: a small-footprint high-throughput
accelerator for ubiquitous machine-learning. In Proceedings of the
19th international conference on Architectural support for programming
languages and operating systems, pages 269–284, 2014.

[6] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE journal of solid-state circuits, 52(1):127–138,
2016.

[7] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao:
A machine-learning supercomputer. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 609–622. IEEE,
2014.

[8] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and
Aviral Shrivastava. Dmazerunner: Executing perfectly nested loops on
dataflow accelerators. ACM Transactions on Embedded Computing
Systems (TECS), 18(5s):1–27, 2019.

[9] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao:
Shifting vision processing closer to the sensor. In Proceedings of the
42nd Annual International Symposium on Computer Architecture, pages
92–104, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[11] Qijing Huang, Aravind Kalaiah, Minwoo Kang, James Demmel, Grace
Dinh, John Wawrzynek, Thomas Norell, and Yakun Sophia Shao. Cosa:
Scheduling by constrained optimization for spatial accelerators. In
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 554–566. IEEE, 2021.

[12] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. Confuciux:
Autonomous hardware resource assignment for dnn accelerators using
reinforcement learning. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 622–636. IEEE, 2020.

[13] Sheng-Chun Kao and Tushar Krishna. Gamma: automating the hw
mapping of dnn models on accelerators via genetic algorithm. In
2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pages 1–9. IEEE, 2020.

[14] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna,
Michael Pellauer, and Angshuman Parashar. Maestro: A data-centric
approach to understand reuse, performance, and hardware cost of dnn
mappings. IEEE micro, 40(3):20–29, 2020.

[15] Linyan Mei, Pouya Houshmand, Vikram Jain, Sebastian Giraldo, and
Marian Verhelst. Zigzag: A memory-centric rapid dnn accelerator design
space exploration framework. arXiv preprint arXiv:2007.11360, 2020.

[16] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi.
Cacti 6.0: A tool to model large caches. HP laboratories, 1:1–24, 2009.

[17] NVIDIA Deep Learning Accelerator. http://nvdla.org/.
[18] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin

Chen, Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek
Khailany, Stephen W Keckler, and Joel Emer. Timeloop: A systematic
approach to dnn accelerator evaluation. In 2019 IEEE international
symposium on performance analysis of systems and software (ISPASS),
pages 304–315. IEEE, 2019.

[19] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7263–7271, 2017.

[20] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling
large design space exploration of customized architectures. In 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pages 97–108. IEEE, 2014.

[21] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. Accelergy: An
architecture-level energy estimation methodology for accelerator designs.
In 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8. IEEE, 2019.

[22] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak,
Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, et al. Interstellar:
Using halide’s scheduling language to analyze dnn accelerators. In
Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 369–
383, 2020.

http://nvdla.org/

	Introduction
	Overview of Optimization Approach
	Analytical Modeling for CNN Optimization
	Generating a Constrained Optimization Problem

	System Description
	Experimental Evaluation
	Energy Minimization
	Delay Optimization

	Related Work
	Conclusion
	References

