
Static Reference Analysis for GUI Objects in Android
Software

Atanas Rountev
Ohio State University

rountev@cse.ohio-state.edu

Dacong Yan
Ohio State University
yan.379@osu.edu

ABSTRACT
The popularity of Android software has grown dramatically
in the last few years. It is essential for researchers in pro-
gramming languages and compilers to contribute new tech-
niques in this increasingly important area. Such techniques
require a foundation of program analyses for Android. The
target of our work is static object reference analysis, which
models the flow of object references. Existing reference anal-
yses cannot be applied directly to Android because the soft-
ware is component-based and event-driven.

An Android application is driven by a graphical user in-
terface (GUI), with GUI objects responding to user actions.
These objects and the event handlers associated with them
ultimately determine the possible flow of control and data.
We propose the first static analysis to model GUI-related
Android objects, their flow through the application, and
their interactions with each other via the abstractions de-
fined by the Android platform. A formal semantics for the
relevant Android constructs is developed to provide a solid
foundation for this and other analyses. Next, we propose a
constraint-based reference analysis based on the semantics.
The analysis employs a constraint graph to model the flow
of GUI objects, the hierarchical structure of these objects,
and the effects of relevant Android operations. Experimen-
tal evaluation on real-world Android applications strongly
suggests that the analysis achieves high precision with low
cost.

The analysis enables static modeling of control/data flow
that is foundational for compiler analyses, instrumentation
for event/interaction profiling, static error checking, security
analysis, test generation, and automated debugging. It pro-
vides a key component to be used by compile-time analysis
researchers in the growing area of Android software.

Categories and Subject Descriptors
F.3.2 [Logics and Meaning of Programs]: Semantics of
Programming Languages—Program analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CGO ’14, February 15 - 19 2014, Orlando, FL, USA
Copyright 2014 ACM 978-1-4503-2670-4/14/02...$15.00.
http://dx.doi.org/10.1145/2544137.2544159

General Terms
Algorithms, experimentation, measurement

Keywords
Android, GUI analysis, reference analysis

1. INTRODUCTION
The popularity of Android software has grown dramati-

cally in the last few years. Android is the most widely used
smartphone platform [10]. Tablets and e-book readers based
on Android are also becoming popular. The widespread use
of these devices poses significant demands on software per-
formance and quality. However, developer expertise and re-
search advances are still immature compared to older areas
of computing. It is essential for researchers in programming
languages and compilers to contribute new techniques in this
increasingly important area of the computing landscape.

The development of automated tools for performance op-
timization, profiling, error checking, security analysis, and
testing/debugging requires a foundation of program anal-
yses for Android. The target of our work is static object
reference analysis, which models the flow of object refer-
ences in the program. Reference analysis for object-oriented
languages [19] (also referred to as pointer analysis) has been
studied extensively due to its essential role as a prerequisite
for many other static analyses. For example, interproce-
dural control-flow analysis for object-oriented software re-
quires information about the object references that can be
observed at polymorphic calls. Another typical example is
data dependence analysis, which requires object reference
information.

Existing reference analyses cannot be applied directly to
Android applications. Although the underlying language is
Java, Android software is built using a component-based ap-
proach where the platform manages the lifetime, behavior,
and data of application components. Furthermore, the soft-
ware is event-driven: an Android application is driven by
a graphical user interface (GUI), with GUI-related objects
responding to user actions (e.g., pressing a button). The set
of GUI objects and the event handlers associated with them
ultimately determine the possible flow of control and data
in the application. To the best of our knowledge, at present
there does not exist any work on static analyses to model
the details of this GUI-driven control/data flow.
Proposed analysis We propose the first static analysis
to model the set of GUI-related Android objects, their flow
through the application, and their interactions with each

other via the abstractions defined by the Android platform.
A number of features make this analysis different from a
traditional reference analysis. First, the creation of GUI
objects is often implicit, based on external declarative infor-
mation. The correct modeling of this creation is essential
for the proposed analysis. Second, there is a hierarchical
structure of GUI objects; this structure affects the run-time
behavior and must be modeled statically. In addition, GUI
objects are typically accessed via object ids, which requires
tracking of such ids and modeling the effects of their use.
Finally, it is critical to track the association between a GUI
object and the event handlers that respond to user actions
on this object.
Motivation The creation, propagation, and interactions
of GUI-related objects directly affect the application’s run-
time behavior. They define the control flow, and in partic-
ular the possible GUI events that drive the application, and
the invocations of handlers for these events. They also de-
termine aspects of the data flow: for example, text entered
by the user (e.g., a password) is obtained with the help of a
particular GUI object and flows from it, via the event han-
dler, to the rest of the application. Static analysis to model
this control/data flow is foundational for compiler analyses,
instrumentation for event/interaction profiling, static error
checking, security analysis, test generation, and automated
debugging. A body of existing work can directly benefit
from our analysis, including static error checking (e.g., [28,
18, 17]), run-time exploration for dynamic analyses for pro-
filing, energy analysis, security analysis, responsiveness anal-
ysis, and systematic testing (e.g., [7, 16, 23, 1, 25, 24, 12, 2]),
static security analysis (e.g., [4, 9, 5, 11, 15, 8]), and reverse
engineering (e.g., [26]). These connections are discussed in
Section 6.
Contributions The contributions of this work are

• A formal semantics for GUI-related Android constructs.
This semantics provides a solid foundation for the de-
velopment of this and other analysis algorithms.

• A constraint-based static analysis. The analysis em-
ploys a constraint graph to model the flow of GUI-
related objects, the hierarchical structure of these ob-
jects, and the effects of relevant Android operations.

• An experimental evaluation on real-world Android ap-
plications. The results strongly suggest that the anal-
ysis achieves high precision with low cost.

These contributions provide a key component for an anal-
ysis infrastructure to be used by compile-time analysis re-
searchers in the increasingly important area of Android soft-
ware.

2. BACKGROUND AND EXAMPLE
Figure 1 shows an example derived from ConnectBot [6],

an SSH client with more than one million installations ac-
cording to app market statistics. ConsoleActivity defines
an activity. An activity class is an application class that
is a direct or transitive subclass of android.app.Activity.
Activity objects (referred to as “activities”) are the core ap-
plication components, and they are managed by the plat-
form through various callbacks. When an activity is started
(by another activity or by an external application), the plat-
form creates the activity object and invokes the onCreate

callback method defined at lines 8–16.

1 class ConsoleActivity extends Activity {
2 ViewFlipper flip;

3 View findCurrentView(int a) {
4 ViewFlipper b = this.flip;
5 View c = b.getCurrentView(); // FindView
6 View d = c.findViewById(a); // FindView
7 return d; }

8 void onCreate() {
9 this.setContentView(R.layout.act_console); // Inflate
10 View e = this.findViewById(R.id.console_flip); // FindView
11 ViewFlipper f = (ViewFlipper) e;
12 this.flip = f;
13 View g = this.findViewById(R.id.button_esc); // FindView
14 ImageView h = (ImageView) g;
15 EscapeButtonListener j = new EscapeButtonListener(this);
16 h.setOnClickListener(j); // SetListener }

17 void addNewTerminalView(TerminalBridge bridge) {
18 LayoutInflater inflater = ... // helper object
19 View k = inflater.inflate(R.layout.item_terminal); // Inflate
20 RelativeLayout m = (RelativeLayout) k;
21 TerminalView n = new TerminalView(bridge);
22 n.setId(R.id.console_flip); // SetId
23 m.addView(n); // AddView
24 ViewFlipper p = this.flip;
25 p.addView(m); // AddView } }

26 class EscapeButtonListener implements OnClickListener {
27 ConsoleActivity cact;

28 EscapeButtonListener(ConsoleActivity q) {
29 this.cact = q; }

30 void onClick(View r) {
31 ConsoleActivity s = this.cact;
32 View t = s.findCurrentView(R.id.console_flip);
33 TerminalView v = (TerminalView) t;
34 // send ESC key to terminal associated with v } }

act_console.xml:
<RelativeLayout ... >

<ViewFlipper android:id="@+id/console_flip" ... />
<RelativeLayout android:id="@+id/keyboard_group" ... >

<ImageView android:id="@+id/button_esc" ... />
...

</RelativeLayout>
...
</RelativeLayout>

item_terminal.xml
<RelativeLayout ... >

<TextView android:id="@+id/terminal_overlay" ... />
</RelativeLayout>

Figure 1: Example based on ConnectBot [6].

An activity presents to the user a window with GUI ele-
ments, defined with the help of views. A view class v is a di-
rect or transitive subclass of android.view.View. Instances
of such classes represent GUI widgets that can be observed
and manipulated by the user (e.g., buttons), as well as logi-
cal groups of such objects. A developer may (but does not
have to) introduce application-specific view classes. The ex-
ample uses standard view classes ViewFlipper, ImageView,
and RelativeLayout, as well as an application-defined view
class TerminalView.
ImageView displays an image; in this example, it is used to

show the icon of an ESC button for an SSH terminal. Rela-
tiveLayout is a container for a set of children views, and it
itself is not directly visible to the user. ViewFlipper is a con-
tainer that can animate between several children views, by
flipping between children (e.g., flipping could happen when
the user swipes across the touchscreen). TerminalView is
an application class providing the GUI for an SSH terminal

window; the source code of this class is not shown in the
figure. The two XML files act_console and item_terminal

shown at the bottom of the figure define hierarchies of GUI
widgets based on this set of classes.
Layouts Line 9 reads a GUI layout definition from XML
file act_console and instantiates a hierarchy of views. An-
droid best practices suggest that the definition of the vi-
sual layout be separated from the code. A layout defini-
tion describes a hierarchical structure of views. Using stan-
dard tools, these definitions are compiled to Java code. For
each layout, there is a unique integer id defined by a fi-
nal static field in an automatically-generated class R.layout
(e.g., R.layout.act_console and R.layout.item_terminal).
The values of these ids are used as parameters to several
layout inflaters. A layout inflater is a method that, given
a layout id, “inflates” the definition to a view hierarchy. In
general, the parameter of an inflater call can be an integer
variable that is (transitively) assigned a layout id. In the
example, the inflater call at line 9 associates the new hier-
archy with the activity, while the inflater call at line 19 just
returns the root view.

A layout definition describes a tree. An inner node rep-
resents a container view (e.g., RelativeLayout), which is a
wrapper around children views. The leaf nodes represent ba-
sic GUI components (e.g., ImageView and TextView). Some
nodes may have string ids. For each such view id in the defi-
nition there is a corresponding integer field in class R.id: for
example, fields R.id.console_flip, R.id.keyboard_group,
and R.id.button_esc correspond to the view ids defined in
act_console.
Operations on views In onCreate, lines 10 and 13 con-
tain find-view calls. Such calls use a view id to search for
a view in a given hierarchy—in this case, the hierarchy as-
sociated with the activity. In addition, line 16 contains a
set-listener call, which associates a listener (i.e., handler) of
click events with the ImageView representing an ESC but-
ton. The handling of a click event (method onClick at lines
30–34) will be discussed shortly. Both find-view operations
and set-listener operations are modeled by our analysis, in
order to represent statically the propagation of views and
the control/data flow due to event handlers for these views.

Method addNewTerminalView (lines 17–25) updates the
GUI when a new SSH terminal is opened. Calls to this
method occur in the rest of the code of ConsoleActivity;
for brevity, this code is not shown in the example. The call at
line 19 inflates a layout defined by XML file item_terminal

and returns the root RelativeLayout. Line 21 shows a
programmatically-created instance of TerminalView. This
class (a subclass of View) is not defined or instantiated by
the Android platform but rather by the application. At line
22, the id is explicitly set through a set-id operation, and at
line 23 the new terminal view becomes a child of the inflated
RelativeLayout through an add-child operation. At line 25
the RelativeLayout becomes a child of the ViewFlipper

due to another add-child operation. As several SSH termi-
nals are opened, each call to addNewTerminalView extends
the hierarchy rooted at the ViewFlipper with a new subtree
of widgets. The flipper allows the user to flip through the
multiple terminals, using swiping motions.

This method illustrates several challenges for the pro-
posed static analysis. First, the program can freely mix
inflated views and programmatically-created views. Second,
the parent-child relationships between views can be estab-

lished either through inflation or through explicit add-child
operations (lines 23 and 25). Similarly, view ids can be set
during inflation or via set-id calls (line 22). Changes to chil-
dren and ids can in turn affect find-view operations. Con-
sider the call at line 32 in event handler onClick, which
handles a click event on the ESC button defined by view
id button_esc. This handler calls helper method findCur-

rentView(int), which queries the flipper about which of its
children is currently visible; this is done by the find-view call
at line 5. These children are the RelativeLayouts created
at line 19 and added as children at line 25; the effects of
these two operations need to be modeled properly in order
to handle correctly the call at line 5. Furthermore, another
find-view call at line 6 searches the hierarchy rooted at the
RelativeLayout for a view with the given id. This behavior
is affected by the set-id operation at line 22, the add-child
operation at line 23, and the interprocedural propagation of
the view id to parameter a.
Event handlers GUI objects in the application can be
associated with event handlers. Consider the ESC button,
defined by view id button_esc and represented at run time
by an instance of ImageView. This instance is created by
the inflater call at line 9 and retrieved by the find-view call
at line 13. Click events on this GUI widget are handled by
the listener object created at line 15. This listener is reg-
istered with the GUI object through the set-listener call at
line 16. The event handling happens in method onClick

(lines 30–34). This method’s signature is defined in inter-
face android.view.View.OnClickListener and is used for
the callback methods invoked by the Android platform when
a click event occurs. A parameter of the callback is the view
r on which the event occurred—in this case, the ImageView

for the ESC button. This example illustrates that a static
analysis of GUI objects should account for (1) the associ-
ation between a GUI object and its listener objects, and
(2) the implicit flow of the GUI object as a parameter of
callbacks to event handler methods.

3. SEMANTICS OF RELEVANT ANDROID
CONSTRUCTS

The creation and propagation of views, together with their
interactions with activities and listeners, define a critical
component of the run-time behavior of Android applications.
These interactions affect the control flow—for example, they
define the set of possible GUI events at each moment of the
execution (based on the available views), the event-handling
code for them, and the effects of this handling (e.g., starting
new activities, sending data over the network, etc.). The
data flow is also directly affected: for example, text entered
by the user is associated with a particular view and flows
from that view to the corresponding listener, and from there
to other components of the application.

Static analysis to model this run-time behavior is highly
desirable as foundation for compiler analyses, instrumen-
tation for profiling of GUI-driven events and interactions,
static error checking, security analysis, test generation, and
automated debugging. (Some of these analyses are discussed
in Section 6.) To the best of our knowledge, at present there
does not exist such a static analysis. Our goal is to develop
semantic foundations and analysis algorithms for solving this
problem. We propose a principled solution, starting with a
definition of the semantics of relevant Android constructs

ξc ∈ Loc heap locations
ρ ∈ Env = Var → Loc environments
η ∈ Heap = Loc × Field → Loc heaps

EJxK(ρ, η) = ρ(x)
EJx.fK(ρ, η) = η(ρ(x), f)
EJnew cK(ρ, η) = ξc
〈x := e, ρ, η〉 → 〈ρ[x 7→ EJeK(ρ, η)], η〉
〈x.f := y, ρ, η〉 → 〈ρ, η[(ρ(x), f) 7→ ρ(y)]〉

〈z := x.m(y), ρ, η〉 → 〈(sm; z := rm),
ρ[thism 7→ ρ(x), pm 7→ ρ(y)], η〉

Figure 2: Semantic domains and functions.

(this section) and using it to define a constraint-based anal-
ysis for it (next section).

3.1 Syntax and Semantics of JLite

This subsection describes JLite, a subset of Java that
contains all essential language features needed to present
the proposed reference analysis for Android software.
Syntactic entities A program contains a set of Java
classes. (“Class” will be used to refer to both classes and in-
terfaces.) The following syntactic categories are considered:
classes c ∈ Class, methods and constructors m ∈ Method ,
fields f ∈ Field , statements s ∈ Stmt , and locals/formals
x, y, z, p, r ∈ Var . Each method m has a name, formal pa-
rameters thism and pm, and an artificial return variable
rm. Each method’s body is a statement s, defined by s ::=
s1; s2 | x := new c | x := y | x := y.f | x.f := y | z := x.m(y).
In a minor abuse of notation, here c and m denote the name
of class c and method m. Since we are interested in an anal-
ysis that abstracts away the intraprocedural control flow—
as typically done in reference analysis for Java—conditional
statements and loops are omitted. Each variable is of refer-
ence type. An assignment to return variable rm represents
a possible return value of method m.
Operational semantics Figure 2 shows the domains and
functions used to define the semantics of JLite. A heap
location ξc is labeled with the class c it instantiates. An
environment ρ defines values for locals, formals, and return
variables; the values are heap locations. For simplicity of
presentation, we formulate the semantics in the absence of
recursion (i.e., the elements of Var provide unique names
for stack locations), and we also assume that all stack and
heap locations are properly initialized before being read. A
heap η represents the values of fields of heap objects.

Semantic function E : Expr → Env×Heap → Loc provides
the meaning of an expression e ∈ Expr . In the rule for
EJnew cK, ξc is a new location that does not occur in ρ or
η. The standard rules for sequencing (s ::= s1; s2) are not
shown. For a method call, formals thism and pm of m
obtains their values from the corresponding actuals. The
body sm ofm, followed by propagation ofm’s return variable
rm, are executed in the updated environment. For brevity,
the presentation assumes that each call is statically resolved
to a unique target method.

3.2 Syntax and Semantics of ALite

Next we describe ALite, an extension of JLite that in-
troduces the relevant Android constructs. An input pro-

gram contains a set Class of Java classes with the syntactic
structure described earlier. Some of these classes are ap-
plication classes, while others are provided by the Android
platform. The analysis aims to model explicitly the com-
plex high-level semantics of Android, rather than analyzing
the low-level semantics of platform code; thus, the bodies of
methods in platform classes are not included in the input
program. The following categories are of particular interest:
a ∈ ActivityClass, v ∈ ViewClass, and h ∈ ListenerClass.
As discussed in Section 2, an activity class a is an applica-
tion class that is a subclass of Activity, and a view class
v is a subclass of View. A listener class h implements event
handlers associated with views, as discussed later.

3.2.1 Layout Definitions
To represent the effects of layout definitions, the syn-

tax of statements can be extended with s ::= . . . | x :=
R.layout.f | x := R.id.f to reflect the occurrences of lay-
out ids and view ids in the code. XML layout information
can be abstracted as follows. A set of id ∈ Z defines layout
ids and view ids. A layout/view id is the integer value of
a constant field from class R.layout/id (e.g., 0x7f030000).
A node in a layout definition is (v, id) where v is a view
class. There could be several nodes that are instances of the
same v (e.g., several buttons in a layout). A layout edge
shows a parent-child relationship between views. For exam-
ple, for act_console in Figure 1, one of the layout edges
is from parent (RelativeLayout, keyboard group) to child
(ImageView, button esc). A layout definition is a set of lay-
out edges that form a rooted tree.
Semantics To express the effects of layout inflation, we
first generalize the environment and the heap:

Env = Var → Loc ∪ Z
Heap = Loc × Field → Loc ∪

View × {vid} → Z ∪
View × {children} → P(View)

The value of a stack location x ∈ Var can now be a lay-
out/view id. An assignment x := R.layout.f updates ρ(x)
with the appropriate layout id (and similarly for view ids).

Set View ⊂ Loc denotes all instances of all view classes in
the heap. An artificial field vid for a view refers to the cor-
responding view id. Another artificial field children refers
to the set of children views. The effects of inflating a layout
can be captured by inflater semantic functions:

IN : Z→ Env ×Heap → P(View × Z)
IE : Z→ Env ×Heap → P(View ×View)

For layout id id l, IN Jid lK(ρ, η) is a set of pairs (ξv, id), one
for each layout node (v, id). Here ξv is a new heap loca-
tion representing an instance of view class v, and id is the
corresponding view id. For the inflation of layout edges,
IEJid lK(ρ, η) defines pairs (ξ, ξ′) that correspond to layout
edges. The semantics of an inflater call is

[Inflate1] 〈z := x.m(y), ρ, η〉 → 〈ρ[z 7→ ξroot], η′〉

where ξroot is the view at the root of the hierarchy, since
the return value of the inflater call is that root. In the up-
dated heap η′, for each newly-created view ξ, fields vid and
children are initialized based on IN Jρ(y)K and IEJρ(y)K.
The object referred to by x is a helper object provided by
the platform to implement the inflation. For example, at
line 19 in Figure 1, variable inflater refers to this helper.

For this call, IN Jitem terminalK produces (ξ1, no_id) and
(ξ2, terminal_overlay), where ξ1 is a new instance of Rel-
ativeLayout and ξ2 is a new instance of TextView. (Here
no_id is a special value used to denote the absence of a view
id.) Using rule Inflate1, heap η′ has ξ1.children = {ξ2},
ξ1.vid = no id, and ξ2.vid = terminal overlay; in addi-
tion, ρ(k) = ξ1.

3.2.2 Operations on Views
Views created through inflation or through explicit in-

stantiation (new v) can be subjected to several operations
defined by the Android platform. Correct modeling of the
semantic effects of these operations is essential for our anal-
ysis.
Associations with activities A view can be associated
with an activity. When the activity is active, this view and
the view hierarchy rooted at it define the GUI content dis-
played to the user. As discussed shortly, this association
allows hierarchy elements to be accessed programmatically
through the activity. The relevant operations are as follows.
First, inflater method Activity.setContentView(int) can
be invoked on an activity, with the parameter being the
layout id. As a result, the root of the inflated view hierar-
chy becomes associated with the activity, rather than being
returned from the call. The natural generalization of the
semantics is Heap = . . . ∪ Activity × {root} → View where
root is an artificial field for the activity. The semantic rules
are extended as expected

[Inflate2]〈x.m(y), ρ, η〉→〈ρ, η[. . .][(ρ(x), root) 7→ ξroot]〉

where ρ(x) ∈ Activity and [. . .] represents the heap updates
due to inflation, similarly to rule Inflate1. For example,
at line 9 in Figure 1, ρ(this) is an activity object ξ1, and
ξ1.root = ξ2 where ξ2 is the RelativeLayout at the root
of the new act_console layout instance. Note that similar
inflation operations exist for objects other than activities
(e.g., for dialogs) and can be modeled in the same manner.

A call to Activity.setContentView(View) can be used
to create an association between an activity and an existing
view. The parameter is a view that could come from several
sources—for example, it could be programmatically created,
or it could be looked up from an inflated view hierarchy. The
semantic effects are

[AddView1]〈x.m(y), ρ, η〉 → 〈ρ, η[(ρ(x), root) 7→ ρ(y)]〉

The same approach applies to similar operations on non-
activity objects (e.g., dialogs).
Associations with other views The parent-child rela-
tionship between two views can be established during lay-
out inflation, as discussed earlier. Another mechanism is to
explicitly invoke an add-child operation. Several methods
with the name addView can be used for this purpose; lines
23 and 25 in Figure 1 show two examples. Abstracting such
calls as x.m(y) where x refers to the parent and y refers to
the child,

[AddView2] 〈x.m(y), ρ, η〉 →
〈ρ, η[(ρ(x), children) 7→ {ρ(y)} ∪ η(ρ(x), children)]〉

where ρ(x), ρ(y)∈View . The platform ensures that the new
hierarchy is well-formed—specifically, that the parent-child
relation corresponds to a tree and not to a more general
graph. For brevity, we do not express these constraints.
Associations with ids A view id is an integer identifier

associated with a view during inflation. A similar effect can
be achieved by using a set-id operation: a call to method
setId(int), as shown at line 22 in Figure 1. We use the
following rule for such a call:

[SetId] 〈x.m(y), ρ, η〉 → 〈ρ, η[(ρ(x), vid) 7→ ρ(y)]〉

Associations with event handlers A view can be asso-
ciated with several listeners, which are instances of classes
h ∈ ListenerClass. Each such h implements one or more
listener interfaces. For example, EscapeButtonListener in
Figure 1 implements interface View.OnClickListener and
defines a handler onClick for click events. The listeners at-
tached to a view determine which events will be handled
by the view, which in turn defines the possible flow of con-
trol in response to user actions. To capture these associa-
tions, the semantics is extended with Heap = . . . ∪ View ×
{listeners} → P(Listener) where listeners is an arti-
ficial field and Listener ⊂ Loc denotes all instances of all
listener classes in the heap. Set-listener operations are calls
x.m(y) where x is the view and y is the listener; one example
is shown at line 16 in Figure 1. The semantic rule is

[SetListener] 〈x.m(y), ρ, η〉 →
〈ρ, η[(ρ(x), listeners) 7→ {ρ(y)} ∪ η(ρ(x), listeners)]〉

Retrieval of views The view ids play a key role in find-
view operations. View.findViewById(int) searches the hi-
erarchy rooted at the view and returns the descendant view
with the given id. A similar operation can also be applied to
an activity, in which case the activity’s entire view hierarchy
is searched. The semantics is captured by

[FindView1] 〈z := x.m(y), ρ, η〉 →
〈ρ[z 7→ find(ρ(x), ρ(y))], η〉

where find(ξ0, id) = ξn if there exists a sequence ξ0, . . . , ξn

such that η(ξn, vid) = id and ξk+1 ∈ η(ξk, children) for all
k. When findViewById is invoked on an activity,

[FindView2] 〈z := x.m(y), ρ, η〉 →
〈ρ[z 7→ find(η(ρ(x), root), ρ(y))], η〉

There are also operations that, when invoked on a view,
retrieve some descendant view with a particular run-time
property. A typical example is method findFocus(), which
returns the descendant view that currently has focus. Sim-
ilarly, the call to getCurrentView() at line 5 of Figure 1
returns the child view that is currently visible. We repre-
sent such operations by

[FindView3] 〈z := x.m(), ρ, η〉 → 〈ρ[z 7→ findm(ρ(x))], η〉

where function findm abstracts the specifics of m’s run-time
behavior when invoked on view ρ(x).
Effects of callbacks The Android platform interacts with
the application classes through various callback methods.
One typical example is method onCreate (lines 8–16 in Fig-
ure 1), which is invoked on a ConsoleActivity object by the
platform code that manages the activity lifecycle. Another
example is callback method onClick (lines 30–34), which
is invoked to handle a click event. The general problem
of handling such callbacks in static analysis for Android is
challenging. While some techniques have been considered
in prior work (e.g., [9, 8]), at present there does not exist
a fully comprehensive and precise solution. In our work we
do not attempt to model all callbacks or their possible or-

derings: instead, we focus on two important categories that
directly affect GUI-related behavior. First, for an activity
class a, the implicit creation of an instance of a can be mod-
eled by t := new a. Any Android-defined callback to an
application method m on an instance of a can be modeled
as a call t.m(). For the example, we conceptually extend the
program with t:=new ConsoleActivity and t.onCreate(),
which is similar to the approach from [8]. In addition to
this modeling of activities, we also model the effects of call-
backs to handler methods for GUI events. This modeling is
conceptually equivalent to creating additional statements,
one per set-listener call. Recall that for a set-listener call
x.m(y), x refers to a view and y refers to a listener. The
declared type of variable y and the signature of m determine
the type of GUI event being handled. Let n be the Android-
defined signature of handlers for this event. The callback to
the handler can be modeled as y.n(x). For the running ex-
ample, set-listener call h.setOnClickListener(j) at line 16
corresponds to an additional statement j.onClick(h).

4. STATIC REFERENCE ANALYSIS
Given the abstracted language ALite, we aim to develop

a static analysis of the creation and propagation of views, as
well as their interactions with activities, listeners, and other
views. Specifically, the analysis

• defines static abstractions of run-time objects: views,
activities, and listeners

• models the flow of (references to) such objects to stack
variables and object fields

• determines the relevant structural relationships, in-
cluding (1) associations of views with activities and
listeners, and (2) parent-child relationships between
views

A similar problem for the plain-Java language JLite can
be solved using standard existing techniques. We consider
one such solution, based on the construction and analysis of
a constraint graph. A graph node corresponds to x ∈ Var
(a variable node), f ∈ Field (a field node), or an expression
new c (an allocation node; the set of these expressions will be
denoted by Alloc). Edges represent constraints on the flow
of values. For example, an assignment x := y is mapped
to an edge y → x, to encode the constraint that any value
that flows to y also flows to x. Similarly, x := new c is
mapped to new c→ x to represent the constraint that new c
is among the values that flow to x. Reachability from an al-
location node determines all locations to which references to
the corresponding run-time objects can flow. Such an anal-
ysis is usually referred to as a control-flow/calling-context-
insensitive, field-based reference analysis [19, 13], and is the
starting point for our analysis for Android. Various refine-
ments of this technique have been investigated (e.g., [13, 21,
20]); our analysis developments for Android are orthogonal
to these refinements and can be combined with them.

4.1 Constraint Graph
Figure 3 shows several constraint graph nodes and edges

for the running example. Some of the nodes have subscripts
referring to the line number from Figure 1 where the corre-
sponding element occurs for the first time. Additional nodes
and edges are shown in Figure 4; gray nodes represent views.

ConsoleActivity this9 q cact s this4

id:act_console Inflate9

id:console_flip FindView10

FindView13id:button_esc

e f flip

g h r

EscapeButtonListener15 j SetListener16

id:item_terminal Inflate19

TerminalView21 AddView23
p

SetId22

FindView6

n

k

m

AddView25

a bFindView5c

d t v

this31

Figure 3: Partial constraint graph for the running
example.

Nodes For every integer value in R.layout, there is a
layout id node id l ∈ LayoutId . Similarly, a view id node
idv ∈ ViewId corresponds to each value from R.id. Next,
an activity node act ∈ Activity is created for each activity
class, to represent instances of this class created implicitly
by the Android platform (such instances are never created
by new in the application code). Four id nodes, as well as the
activity node for ConsoleActivity, are shown in Figure 3.

A view inflation node view infl ∈ ViewInfl is introduced for
each layout node from XML layouts. This node represents
the view created during inflation—that is, the heap object
ξv created for a layout node (v, id), as defined by rules In-
flate1,2. If the same layout is inflated in several places in
the application, a “fresh” set of graph nodes is introduced at
each inflation site. Six view inflation nodes are illustrated
in Figure 4; a subscript x.y refers to the y-th object inflated
at line x from Figure 1. We also distinguish the subset of
allocation nodes ViewAlloc ⊂ Alloc that instantiate view
classes, and use viewalloc to denote such nodes. Similarly,
let Listener ⊂ Alloc be the subset of allocation nodes that
instantiate listener classes; elements of this set are denoted
by lst . In general, any object could be a listener, includ-
ing activities and views. To simplify the presentation we
assume that activities and views are not listeners, but our
implementation handles the general case.

The flow of nodes view ∈ View = ViewInfl ∪ ViewAlloc
and the associations of such nodes with act and lst nodes are
the core concern of the analysis. This requires modeling of
the operations described earlier. For each call z := x.m(y)
corresponding to one of the semantic rules, an operation
node op ∈ Op is added to the graph, and the nodes for
variables x, y, and z are connected to it. For example, for
the find-view operation d=c.findViewById(a) at line 6, the
graph contains a FindView node with incoming edges from
c and a, and an outgoing edge to d (shown in Figure 3).
Edges In addition to the JLite-based edges described
earlier, the constraint graph contains edges for Android fea-
tures. An assignment x := R.layout.f results in an edge
id l → x from the corresponding layout id node to the vari-
able node x. Similar edges are added for view id nodes idv.
For an activity node act , an edge is added from it to all
thism variable nodes, where m is a callback method that
could be invoked by the framework with this activity as the

id:act_console

Inflate9

EscapeButtonListener15

ViewFlipper9.2

id:item_terminal

Inflate19

RelativeLayout9.1ConsoleActivity
root layout id

inflater
child

RelativeLayout9.3

id:keyboard_group

 child

 view id

id:console_flip

 view id

ImageView9.4

child

listener id:button_esc

 view idRelativeLayout19.1

 child

TerminalView21 TextView19.2

id:terminal_overlay

 view id

 child
 child

layout id

inflater

 view id

Figure 4: Additional graph nodes and edges.

receiver object. For example, in Figure 3 there is an edge
from the activity node to parameter this9 of onCreate.

All edges described so far model the flow of values. We
also use edges n⇒ n′ to represent constraints on other rel-
evant relationships. For example, an edge view1 ⇒ view2

between two view nodes shows a parent-child relationship—
that is, the constraint view2 ∈ view1.children. An edge
view ⇒ idv indicates that the view is associated with this
view id (by rules Inflate1,2 and SetId). An edge view infl ⇒
id l connects the root of an inflated hierarchy with the lay-
out id of the layout that was inflated. Similarly, view infl ⇒
Inflate1,2 is introduced when the view is the root of the hi-
erarchy inflated by this Inflate operation node. An edge
act ⇒ view indicates that the view is the root of the hierar-
chy associated with the activity (as set up by rules Inflate2

and AddView1). Finally, view ⇒ lst shows that the view is
associated with this listener because of rule SetListener.
All these categories of edges are illustrated in Figure 4, with
edge labels added for clarity.

4.2 Constraint-Based Analysis
We define the analysis in terms of constraints over the

nodes and edges of the graph, with the help of two binary
relations. First, ancestorOf ⊆ View×V iew is the transitive
closure of the parent-child relation: view1 ancestorOf view2

if and only if there exists a path in the constraint graph
starting at view1, ending at view2, and containing only view
nodes and ⇒ edges. The second relation is flowsTo ⊆
(View ∪ LayoutId ∪ViewId ∪Activity ∪ Listener)× (Var ∪
Field ∪Op). This relation shows that the value represented
by the first node—a view, an id, an activity, or a listener—
flows to the variable, field, or operation represented by the
second node. Both relations can grow during the analysis.
For example, when two views flow to an AddView operation
node (corresponding to rule AddView2), a new parent-child
edge is added to the constraint graph, which in turn affects
ancestorOf . The basic inference rules for these two relations
are as follows:

n1 ∈ View ∪ LayoutId ∪ViewId ∪Activity ∪ Listener
n2 ∈ Var n1 → n2

n1 flowsTo n2

n2 ∈ Var ∪ Field n3 ∈ Var ∪ Field ∪Op
n2 → n3 n1 flowsTo n2

n1 flowsTo n3

view ∈ View

view ancestorOf view

view1 ancestorOf view2 view2 ⇒ view3

view1 ancestorOf view3

For example, in Figure 3, view id console_flip flows to op-
eration node FindView6 via variable node a, and view Ter-

minalView21 flows to SetId22 and AddView23 via n. Con-
sidering the parent-child edges in Figure 4, the root node
RelativeLayout9.1 is an ancestor of seven nodes.

The inference rules for the semantic rules are described
below. For example, for AddView1 we have

act flowsTo AddView1 view flowsTo AddView1

act ⇒ view

where act is the activity node. Similarly,

view1 flowsTo AddView2 view2 flowsTo AddView2

view1 ⇒ view2

assuming that view1 flows to the operation node AddView2

in the role of the parent. For example, TerminalView21 flows
to AddView23 in the role of the child (Figure 3). As de-
scribed shortly, RelativeLayout19.1 flows to this operation
in the role of the parent, via k and m. As a result, a parent-
child edge RelativeLayout19.1 ⇒ TerminalView21 is created
by the analysis, as shown in Figure 4.

For semantic rules SetId and SetListener we have

view flowsTo SetId idv flowsTo SetId

view ⇒ idv

view flowsTo SetListener lst flowsTo SetListener

view ⇒ lst

In Figure 3, both TerminalView21 and console flip flow
to SetId22. This leads to the creation of TerminalView21 ⇒
console flip (shown in Figure 4), which in turn affects re-
lation ancestorOf and the find-view operations.

For rules FindView1,2,3 the constraints are

view1 flowsTo FindView1 idv flowsTo FindView1
FindView1→n view1 ancestorOf view2 view2⇒ idv

view2 flowsTo n

act flowsTo FindView2 idv flowsTo FindView2
FindView2→ n act ⇒ view1

view1 ancestorOf view2 view2 ⇒ idv

view2 flowsTo n

view1 flowsTo FindView3
FindView3→ n view1 ancestorOf view2

view2 flowsTo n

For example, ConsoleActivity and id button_esc flow to
FindView13, and the outgoing edge is to variable g. Fur-
thermore, ConsoleActivity ⇒ RelativeLayout9.1 because
this view is the root of the hierarchy inflated by Inflate9

and associated with the activity. This root is an ancestor of
ImageView9.4, which has an edge to the same view id. Thus,
the analysis can conclude that ImageView9.4 flowsTo g. Later
this is used to determine that the view flows to SetListener16.

Recall that semantic rule FindView3 retrieves some de-
scendant view with a particular run-time property. The

static approximation is to assume that any descendant view
can be retrieved, as shown in the constraint rule for FindView3
operation nodes. Sometimes more restricted semantics ap-
plies: for example, for the call to getCurrentView() at line
5 in Figure 1, any child view can be retrieved, but not any
deeper descendant. Such refinements are not discussed, but
they are employed by our implementation.

For rules Inflate1,2, suppose that a layout id id l flows to
an Inflate operation node. In that case, the corresponding
layout is inflated and its root node is connected with the
inflater node and with the layout id (to capture the origin
of the inflated hierarchy). The rules are

id l flowsTo Inflate1 Inflate1→ n
view ⇒ Inflate1 view ⇒ id l

view flowsTo n

act flowsTo Inflate2 id l flowsTo Inflate2
view ⇒ Inflate2 view ⇒ id l

act ⇒ view

In the first case, the root is propagated to the left-hand
side variable at the inflater call. For example, Inflate19

has an outgoing edge to k, and the analysis determines
that RelativeLayout19.1 flows to k (and from there to sev-
eral other nodes). In the second case, the call associates
the activity with the root object: e.g., at Inflate9 an edge
ConsoleActivity⇒ RelativeLayout9.1 is created.

4.3 Analysis Algorithm and Implementation
To find a solution to the system of constraints, we em-

ploy a fixed-point algorithm. First, the analysis creates the
constraint graph edges that can be directly inferred from
program statements; all edges in Figure 3 fall in this cate-
gory. All methods in the application code are considered ex-
ecutable and thus analyzed. Polymorphic calls are resolved
using class hierarchy information. Calls to application meth-
ods result in constraint graph edges that represent param-
eter passing and return values. The abstracted semantics
refers to a small number of broad categories of relevant op-
erations (e.g., AddView, SetListener, etc.) which in real-
ity correspond to a wide variety of Android APIs. Some of
these APIs have semantic variations that are not discussed
here, but are handled by our implementation. Occurrences
of these APIs in the application code are recognized and
modeled appropriately in the flow graph. The effects of call-
backs from the Android platform are also modeled at this
time, as outlined at the end of Section 3. However, instead
of creating explicit statements, the analysis simply adds con-
straint graph nodes and edges to simulate the corresponding
semantic effects.

The next phase of the analysis uses graph reachability
to compute relationships that do not depend on operation
nodes; examples include act flowsTo n and id flowsTo n. In
addition, propagation paths that connect operation nodes
are computed: for example, in Figure 3, path Inflate19 →
k → m → AddView23 propagates the output of one oper-
ation node to the input of another, and its endpoints are
recorded for later use. Given the reachability information,
Inflate nodes are processed (based on reaching layout ids)
to create inflated view nodes and the parent-child edges for
them. Different variations of the inflater semantics are han-
dled as necessary, and edges to represent relevant semantic

effects (e.g., the association between an activity and a root
GUI object at Inflate2) are introduced.

In the final phase of the analysis, a fixed-point compu-
tation propagates views through the constraint graph based
on the computed propagation paths. For each node that has
a view as input or output, a set of reaching views is main-
tained and updated as necessary. Our implementation is
based on the Soot analysis framework [22]. Soot’s interme-
diate representation can be constructed either from source
code, or from the Dalvik bytecode specific to Android [3, 14].
Certain Android GUI features are not handled by the cur-
rent implementation (e.g., dialogs and fragments). Another
limitation is that native code is not analyzed, although we
have not observed native code that creates GUI objects or
registers listeners.

5. EXPERIMENTAL EVALUATION
The analysis was evaluated on the 20 Android applications

described in Table 1. Almost all programs have been used in
prior work [26, 24, 27, 18]. The table shows the number of
application classes and methods, as well as the breakdown
of constraint graph nodes. These measurements characterize
the relevant application features and provide motivation for
the proposed analysis of GUI-related behavior; the results
of the analysis are presented in Table 2.

Column “ids” shows the number of layout ids (L) followed
by the number of view ids (V). Based on the measurements
of layout ids as well as inflater nodes (column “Inflate”),
it is clear that XML layouts are widely used and must be
modeled in a static analysis. Another observation is that
the number of view ids is large, and their use must be ac-
counted for in a static analysis, especially because the num-
ber of find-view operations where these ids are used (column
“FindView”) is also rather large.

Column “views” shows the number of inflated (I) and ex-
plicitly allocated (A) view nodes. The large number of views
implies a complex GUI structure that requires careful mod-
eling (e.g., in order to generate representative input events
for profiling). Most views are inflated, but explicitly allo-
cated views are also present in 15 out of the 20 applications.
Explicit manipulation of the view hierarchy via add-child
operations (column “AddView”) occurs in all but four ap-
plications. Our analysis was specifically designed to handle
all these features. Event handlers (column “listeners”) and
the associated set-listener operations (column“SetListener”)
are commonly used by the applications. Static control/data
flow analysis for Android must account for the association
between views and the event handlers that respond to them.

Table 2 shows the running time of the analysis and mea-
surements of the computed solution. Even for the larger
programs, the analysis time is very practical. Column “re-
ceivers” shows the average number of view objects that are
receivers at operation nodes (e.g., FindView and AddView2).
Smaller numbers imply higher precision, with 1 being the
lower bound. For 16 out of the 20 programs, this aver-
age is less than 2. Similar observations can be made for
column “parameters”, which shows the average number of
views reaching an AddView node as a parameter. (The four
“-”entries correspond to programs without such operations.)
Column “results” shows how many views, on average, are re-
sults (i.e., outputs) from operations such as FindView . The
averages are less than 2 for all but one application, which
implies that the resolution of find-view operations is highly

App Classes Methods
Objects and ids Operations

activities ids (L/V) views (I/A) listeners Inflate FindView AddView SetId SetListener

APV 68 415 4 3/12 16/21 16 3 8 19 0 17
Astrid 1228 5782 43 95/223 769/46 181 71 435 63 1 188
BarcodeScanner 126 594 9 9/31 61/0 11 9 35 0 0 10
Beem 284 1883 12 17/50 126/0 12 17 52 0 0 26
ConnectBot 371 2366 11 19/45 140/7 26 20 63 5 1 30
FBReader 954 5452 31 23/111 201/9 43 22 118 13 0 42
K9 815 5311 33 35/153 385/8 54 39 218 11 2 91
KeePassDroid 465 2784 23 19/70 213/12 29 22 103 20 0 29
Mileage 221 1223 64 33/58 335/0 30 37 104 13 6 31
MyTracks 485 2680 35 25/118 2040/4 30 16 110 2 0 28
NPR 249 1359 15 19/88 274/9 17 20 149 22 0 41
NotePad 89 394 8 7/12 18/4 9 7 16 2 0 10
OpenManager 60 252 8 8/46 147/0 20 11 48 0 0 21
OpenSudoku 140 726 10 15/31 109/6 16 16 65 5 3 17
SipDroid 331 2863 12 6/36 75/4 11 6 42 3 0 12
SuperGenPass 65 268 3 4/9 37/0 12 4 11 0 0 11
TippyTipper 57 241 6 6/42 143/22 27 6 43 20 0 30
VLC 242 1374 10 35/91 264/11 45 38 139 9 1 59
VuDroid 69 385 5 2/3 11/6 4 3 5 4 0 4
XBMC 568 3012 24 28/151 467/23 88 27 249 14 0 69

Table 1: Analyzed applications and relevant constraint graph nodes.

App Time
Average number

receivers parameters results listeners

APV 0.39 1.00 1.00 1.44 1.00
Astrid 4.92 3.55 3.09 1.84 1.44
BarcodeScanner 0.65 1.24 - 1.11 1.07
Beem 1.17 1.04 - 1.08 1.00
ConnectBot 1.21 1.00 1.20 1.03 1.04
FBReader 3.28 1.54 1.25 1.65 1.23
K9 4.30 1.15 1.09 1.15 1.00
KeePassDroid 2.09 1.80 1.00 1.73 1.00
Mileage 0.41 2.55 1.38 2.09 1.47
MyTracks 1.55 1.12 1.00 1.92 1.24
NPR 0.87 1.89 1.00 1.66 4.94
NotePad 0.63 1.00 1.00 1.00 1.00
OpenManager 0.39 1.31 - 1.31 1.43
OpenSudoku 0.66 1.10 1.40 1.06 1.25
SipDroid 0.88 1.00 1.00 1.00 1.67
SuperGenPass 0.31 2.17 - 1.69 1.80
TippyTipper 0.18 1.15 1.00 1.00 1.34
VLC 1.15 1.13 1.11 1.14 1.00
VuDroid 0.30 1.00 1.00 1.00 1.00
XBMC 1.74 8.81 2.54 1.86 1.73

Table 2: Analysis running time (in seconds) and av-
erage number of objects in the solution for operation
nodes.

precise. Finally, column “listeners” shows how many listener
objects, on average, are associated with a view object at a
set-listener operation. As with the other measurements, this
number is typically small, indicating good precision.

In a further case study, we investigated the solutions for
four programs: APV, BarcodeScanner, SuperGenPass, and
XBMC. The first three were chosen because they are the easiest
to comprehend (i.e., with the smallest number of views) and
have non-singleton solution sets. XBMC was chosen because it
is an outlier for column “receivers”. By manually reasoning
about the application and all solutions sets, we determined
which solution elements are part of the “perfectly-precise”
static solution (i.e., the solution capturing all and only pos-
sible run-time behaviors). For APV, BarcodeScanner, and
SuperGenPass our solution achieves perfect precision. For
XBMC, the perfectly-precise measurements would be 3.59 for

“receivers”, 1.63 for “results”, and unchanged for the other
two columns. The imprecision is due to the calling-context-
insensitive nature of the analysis; applying existing tech-
niques for context sensitivity (e.g., [21, 20]) would lead to
an even more precise solution for this outlier.

The evaluation strongly suggests that real-world applica-
tions commonly use the Android features we aim to model,
and that our approach analyzes these features with high
precision and low running time. This makes the proposed
analysis a promising building block for a variety of other
analyses for Android, as described in the next section.

6. RELATED WORK
Early work by Chaudhuri [4] and follow-up work on the

SCanDroid security analysis tool [9] formalizes aspects of
the semantics and performs control-flow analysis and secu-
rity permissions analysis. This effort focuses on activities
and other Android components (e.g., background services).
These components communicate through intents—objects
that describe the operation to be performed—and the anal-
ysis models these intents and the inter-component control
flow based on them. The implementation is evaluated on
a number of synthetic examples. This work does not con-
sider what are the GUI objects, events, and handlers that
trigger the inter-component flow of control. For example,
ConsoleActivity from the running example starts several
other activities (through intents). This is done in event han-
dlers for GUI objects. These handlers are defined by listener
classes, outside of activity classes. To fully model the inter-
component flow of control, it is necessary to (1) establish
the association between the ConsoleActivity and the GUI
object, (2) determine the event handlers associated with this
GUI object, and (3) identify the new activities started by
these handlers. Later work on related security problems [5,
11, 15] has similar limitations.

The recent development of the A3E tool for automated
run-time exploration of Android applications [2] takes ad-
vantage of SCanDroid’s static analysis to achieve high cov-
erage. Such coverage is essential for a variety of dynamic
analyses for profiling, energy analysis, security analysis, re-

sponsiveness analysis, and systematic testing (e.g., [7, 16,
23, 1, 25, 24]). The analysis from SCanDroid is used to con-
struct a static activity transition graph, with nodes repre-
senting activities and edges showing the possible transitions
between them; this graph is then used to drive the run-time
exploration. It it unclear how this static analysis approach
handles the general case when arbitrary GUI objects are as-
sociated with an activity, their handlers (located outside of
the activity class) are registered via set-listener calls, and
those handlers trigger transitions to new activities. Simi-
lar considerations apply to a hybrid static/dynamic analysis
of UI-based trigger condition in Android applications [29],
where security-sensitive behaviors are triggered dynamically
based on a static model of activity transitions. The model
construction in this work is incomplete and can benefit from
the general solution provided by our approach.

A similar model, in which nodes represent UI screens and
edges show transitions based on GUI events, is used as input
to an automated test generation approach based on concolic
execution [12]. Essential information encoded in the model
is the set of tuples (activity a, GUI object v, event e, handler
method h), where v is visible when a is active, and event e on
v is handled by h. In this work the models are constructed
manually; the output of our analysis can be directly used to
automate the generation of these tuples.

Yang et al. [26] present a reverse-engineering tool that
combines static and dynamic analysis to construct a model
of the application’s GUI for testing purposes. The static
analysis component identifies the objects that can serve as
listeners, and determines the view ids of the GUI objects
associated with these listeners. The analysis does not model
the actual GUI objects (inflated or explicitly created), does
not capture the general flow of these objects through the
constructs described in Section 3, and does not account for
the flow of view ids. Using our analysis, the generality of
this reverse-engineering tool can be increased. Similar issues
exist in prior work on a static error checker for GUIs [28].
This tool is based on analysis of call paths that lead to op-
erations on GUI objects. The analysis takes into account
the objects created through inflation, but does not model
precisely the flow of views due to the operations outlined
in Section 3. Similar features and limitations can be seen
in another static checker for Android [18]. Employing our
analysis would lead to improved generality and precision for
these checkers.

Understanding GUI objects and their event handlers is
essential for various other analyses of Android applications.
For example, an existing static detector of energy-related
software defects [17] requires control-flow analysis of the pos-
sible execution orders of event handlers. In this work, pro-
grammer input is needed to specify these orders. Instead, it
may be possible to develop an automated approach based on
analysis of activities, GUI objects associated with them, and
handlers for these objects; our analysis provides the start-
ing point for such an approach. Another relevant example
is FlowDroid [8], a precise flow- and context-sensitive taint
analysis which performs extensive interprocedural control-
flow and data-flow analysis. As part of this approach, the
effects of callbacks are modeled by creating a wrapper main
method. Our handling of relevant callbacks conceptually
follows a similar approach, but without explicitly creating a
wrapper. In FlowDroid, placeholder GUI objects that may
flow into these callbacks are created in the wrapper method.

In addition, XML layout files are examined to identify po-
tential taint sources and connect them with the statements
that access them. It does not appear that the tool models
the constructs discussed in Section 3 and the corresponding
GUI-related flow. This analysis could be complemented by
our approach, which would add general modeling and track-
ing of GUI objects and their event handlers.

7. CONCLUSIONS
Building a foundation of static analyses for Android is es-

sential for new compile-time and run-time techniques and
tools in this increasingly important area of computing. We
propose the first static analysis to focus on GUI-related An-
droid objects. The analysis defines abstractions of views,
activities, and listeners. It models the flow of such objects,
the effects of Android operations, and the relevant structural
relationships, including associations of views with activi-
ties and listeners, and parent-child view relationships. Our
constraint-based algorithm exhibits high precision and low
cost. This analysis is an important building block for exist-
ing and future compiler analyses, profiling techniques, static
error checkers, security analyses, and testing approaches.

Acknowledgments
We thank the CGO reviewers for their valuable feedback.
This material is based upon work supported by the U.S.
National Science Foundation under grants CCF-1017204 and
CCF-1319695, and by a Google Faculty Research Award.

8. REFERENCES
[1] D. Amalfitano, A. R. Fasolino, P. Tramontana,

S. De Carmine, and A. M. Memon. Using GUI ripping
for automated testing of Android applications. In
International Conference on Automated Software
Engineering (ASE), pages 258–261, 2012.

[2] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of Android apps. In
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), 2013. To appear.

[3] A. Bartel, J. Klein, Y. L. Traon, and M. Monperrus.
Dexpler: Converting Android Dalvik bytecode to
Jimple for static analysis with Soot. In ACM
SIGPLAN International Workshop on the State Of the
Art in Java Program Analysis (SOAP), 2012.

[4] A. Chaudhuri. Language-based security on Android.
In ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS), pages
1–7, 2009.

[5] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in
Android. In International Conference on Mobile
Systems, Applications, and Services (MobiSys), pages
239–252, 2011.

[6] ConnectBot: SSH client for Android.
code.google.com/p/connectbot.

[7] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), pages 1–6, 2010.

[8] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel,
J. Klein, Y. le Traon, D. Octeau, and P. McDaniel.
Highly precise taint analysis for Android applications.
Technical Report TUD-CS-2013-0113, TU Darmstadt,
May 2013.

[9] A. P. Fuchs, A. Chaudhuri, and J. S. Foster.
SCanDroid: Automated security certification of
Android applications. Technical Report CS-TR-4991,
University of Maryland, College Park, 2009.

[10] Gartner, Inc. Press release, 2012.
www.gartner.com/newsroom/id/2237315.

[11] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
Android smartphones. In Network and Distributed
System Security Symposium (NDSS), 2012.

[12] C. S. Jensen, M. R. Prasad, and A. Møller. Automated
testing with targeted event sequence generation. In
ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), pages 67–77, 2013.

[13] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using Spark. In International Conference on
Compiler Construction (CC), pages 153–169, 2003.

[14] D. Octeau, S. Jha, and P. McDaniel. Retargeting
Android applications to Java bytecode. In ACM
SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), pages
6:1–6:11, 2012.

[15] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. le Traon. Effective inter-component
communication mapping in Android with Epicc. In
USENIX Security Symposium, 2013.

[16] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app? In European Conference
on Computer Systems (EuroSys), pages 29–42, 2012.

[17] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff.
What is keeping my phone awake? In International
Conference on Mobile Systems, Applications, and
Services (MobiSys), pages 267–280, 2012.

[18] E. Payet and F. Spoto. Static analysis of Android
programs. Information and Software Technology,
54(11):1192–1201, 2012.

[19] B. G. Ryder. Dimensions of precision in reference
analysis of object-oriented programming languages. In
International Conference on Compiler Construction
(CC), pages 126–137, 2003.

[20] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick
your contexts well: Understanding object-sensitivity.
In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages
17–30, 2011.

[21] M. Sridharan and R. Bodik. Refinement-based
context-sensitive points-to analysis for Java. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 387–400,
2006.

[22] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,
P. Pominville, and V. Sundaresan. Optimizing Java
bytecode using the Soot framework: Is it feasible? In
International Conference on Compiler Construction
(CC), pages 18–34, 2000.

[23] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos.
ProfileDroid: Multi-layer profiling of Android
applications. In International Conference on Mobile
Computing and Networking (MobiCom), pages
137–148, 2012.

[24] D. Yan, S. Yang, and A. Rountev. Systematic testing
for resource leaks in Android applications. In IEEE
International Symposium on Software Reliability
Engineering (ISSRE), pages 411–420, 2013.

[25] S. Yang, D. Yan, and A. Rountev. Testing for poor
responsiveness in Android applications. In Workshop
on Engineering Mobile-Enabled Systems (MOBS),
pages 1–6, 2013.

[26] W. Yang, M. Prasad, and T. Xie. A grey-box
approach for automated GUI-model generation of
mobile applications. In International Conference on
Fundamental Approaches to Software Engineering
(FASE), pages 250–265, 2013.

[27] P. Zhang and S. Elbaum. Amplifying tests to validate
exception handling code. In International Conference
on Software Engineering (ICSE), pages 595–605, 2012.

[28] S. Zhang, H. Lü, and M. D. Ernst. Finding errors in
multithreaded GUI applications. In ACM SIGSOFT
International Symposium on Software Testing and
Analysis (ISSTA), pages 243–253, 2012.

[29] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han,
and W. Zou. SmartDroid: An automatic system for
revealing UI-based trigger conditions in Android
applications. In ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM),
pages 93–104, 2012.

