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Abstract
Program profiling is widely used to measure run-time ex-
ecution properties—for example, the frequency of method
and statement execution. Such profiling could be applied
to deployed software to gain performance insights about
the behavior of many instances of the analyzed software.
However, such data gathering raises privacy concerns: for
example, it reveals whether (and how often) a software user
accesses a particular software functionality. There is growing
interest in adding privacy protections for many categories
of data analyses, but such techniques have not been studied
sufficiently for program event profiling.
We propose the design of privacy-preserving event fre-

quency profiling for deployed software. Each instance of the
targeted software gathers its own event frequency profile and
then randomizes it. The resulting noisy data has well-defined
privacy properties, characterized via the powerful machinery
of differential privacy. After gathering this data from many
software instances, the profiling infrastructure computes
estimates of population-wide frequencies while adjusting
for the effects of the randomization. The approach employs
static analysis to determine constraints that must hold in all
valid run-time profiles, and uses quadratic programming to
reduce the error of the estimates under these constraints. Our
experiments study different choices for randomization and
the resulting effects on the accuracy of frequency estimates.
Our conclusion is that well-designed solutions can achieve
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both high accuracy and principled privacy-by-design for the
fundamental problem of event frequency profiling.
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1 Introduction
The remote analysis of deployed software has been studied
in many contexts. For example, performance profiling of
a user’s execution behavior can be used to guide program
optimizations [1, 23, 28, 29, 38, 40] by considering selec-
tive optimization and feedback-directed code generation [3].
Other related uses of such remote analysis include debugging
[26, 34] and reproduction of field failures [11, 24]. In such
scenarios, profiling data is collected locally and then sent to
a remote server where it is analyzed by the developers of the
software. Prior work in this area has focused primarily on
the efficiency of data gathering (e.g., reducing overhead via
sampling). However, the focus of our work is orthogonal: we
aim to introduce privacy guarantees in the data collection
process, after the profiling data has been collected locally but
before sending it to the remote server. Data anonymization
by itself is not enough to provide strong privacy guarantees,
as even anonymized data could be combined with external
sources of information to carry out a number of privacy at-
tacks (e.g., person re-identification; linking of related data
from independent sources) [30, 31]. To provide a privacy-
by-design solution with well-defined privacy properties, we
employ differential privacy.
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Differential privacy (DP) [15, 16] is a foundational ap-
proach for providing quantifiable privacy guarantees in data
analysis, and is currently considered as the “gold standard”
for privacy-preserving analysis. Both industry [2, 20, 21, 42]
and government [12] have deployed DP solutions. There is
a rich body of work in this area [17, 47] but the use of DP
for software analysis has not been explored sufficiently. Our
goal is to study the problem of event frequency profiling
with differential privacy. At a basic level, one can use event
randomization to achieve such privacy. For example, several
existing DP techniques for data analysis are based on the
following general idea. Consider a set V of possible events
and suppose that one event v ∈ V is observed. Rather than
simply reportingv , a DP analysis will use some probability p
and will perform the following randomization: (1) with prob-
ability p, event v is reported; (2) for any other v ′ ∈ V \ {v},
event v ′ is reported with probability 1 − p. Based on the
selection of p, one can make quantifiable claims about the
level of privacy protection achieved by such randomization.

Challenges. Despite the large body of existing work on dif-
ferential privacy for general data analysis, attempts to apply
DP techniques to software event frequency profiling face sev-
eral unexplored challenges. The major such challenges are as
follows.C1: How can existing techniques for single-event DP
data analysis [5, 20, 43] be generalized to the types of event
traces that occur in software run-time frequency event pro-
filing? This challenge requires a solution that allows tunable
trade-offs between privacy and profiling accuracy, as well as
low-cost randomization techniques. C2: How can domain-
specific constraints on the frequency profiles be inferred
and embedded in the DP analysis? This challenge requires
program analysis techniques to extract a priori knowledge
about relationships between elements of the run-time profile,
as well as machinery to incorporate these relationship in the
DP profiling analysis. C3: What practical accuracy/privacy
trade-offs can be achieved for real-world software? While
theoretical bounds provide some indication of the inherent
properties of DP techniques, it is important to understand
the actual performance of these techniques and to provide
guidelines for their deployment in realistic scenarios. Such
understanding cannot be obtained from existing work.

Contributions. To answer these questions, we developed
an approach for DP software event frequency profiling.
(C1) Tunable and efficient DP trace analysis:We define
a parameterized randomization approach for traces of run-
time events. While prior work considers randomization of a
single event [5, 20, 43], we target quantifiable privacy guaran-
tees for entire event traces. In particular, we define a notion
of distance between traces and the corresponding distance-
based privacy properties, which enables tunable trade-offs
between privacy and accuracy. To achieve such properties,

we propose new randomization which, unlike prior expen-
sive event-by-event randomization [20, 50], applies efficient
randomization on the total trace frequencies.
(C2)Domain-specific consistency constraints:While DP
techniques have been designed for general data analysis, we
incorporate additional consistency constraints that reflect
domain-specific considerations. First, we ensure that the
(normalized) estimated frequencies are non-negative and
add up to 1. In addition, we consider constraints of the form
“the frequency of x will always be ≤ the frequency of y in
any run-time event trace”. Such run-time constraints often
exist due to the static properties of program code. We embed
both categories of constraints in a quadratic programming
optimization problem, which we then use to produce more
accurate frequency estimates. To infer the constraints for
the use case of method call frequency profiling, we define a
static analysis of call graphs and control-flow graphs. This
novel approach has two advantages: (1) it produces estimates
that are consistent with the structure of the true frequencies,
and (2) it reduces the error of the estimates by minimizing a
suitable objective function, subject to the consistency con-
straints.
(C3) Achievable privacy/accuracy trade-offs: To provide
insights into such trade-offs, we perform a study of method
call traces from Android apps. Our results clearly quantify
the inherent tension between privacy and accuracy. Specifi-
cally, they point out that privacy protections for traces that
are “far apart” come at the expense of significantly reduced
accuracy. However, a more detailed analysis of these results
reveals that for high-frequency events—in our studies, for
“hot” methods—the accuracy of frequency estimates is actu-
ally quite good. Furthermore, our experiments also indicate
that (1) the set of hot methods can be identified accurately
while providing significant privacy guarantees, (2) the “hid-
ing” of method presence/absence can be successfully accom-
plished for a very large number of infrequently-executed
methods, and (3) the domain-specific consistency constraints
significantly improve the accuracy of the estimates. These
results are the first to shed light on the achievable accuracy
of DP solutions for software event frequency profiling.

2 Background
2.1 Differential Privacy
DP can be applied to the collection and analysis of informa-
tion from individuals, in a manner that protects the privacy
of the individuals participating in this collection. This protec-
tion is of the following form: by observing the results of a DP
analysis, an adversarial entity will not be able to distinguish
between the real data that was included in the analysis input,
and any "neighboring" data in the universe of possible input
data. This is achieved by introducing random noise, and thus
the indistinguishability is probabilistic (as discussed shortly).
DP is attractive because it provides a comprehensive and
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quantifiable notion of privacy. Furthermore, DP analyses
may be able to guarantee that they are in compliance with
legal requirements for privacy protection [47]. It is impor-
tant to note that the indistinguishability protection holds
even when a privacy adversary has access to additional in-
formation outside the scope of the analysis being considered.
Intuitively, regardless of how much an adversary can learn
from other sources of information, she still cannot determine
(with high confidence) the specific private data that was used
as input to the DP analysis.
DP machinery has been studied in two scenarios: the cu-

rator model and the local model. The first scenario assumes a
trusted centralized data curator, while the second one does
not rely on such a trusted entity. In our work we consider
the local model: the private data collected by a local profiling
analysis on the user’s instance of the targeted software is not
released directly to the remote analysis server. Rather, the
private data is randomized before being sent to the server.
This approach protects the user not only from malicious
actors that intercept the communication with the server, but
also from the server itself (which is controlled by the devel-
opers of the software or by a third party working on their
behalf). The server maintainers themselves are protected:
even if there are malicious employees, security attacks, or
subpoenas by law enforcement, the data on the server cannot
be used to reliably infer the private data of the software user.

2.2 Frequency Oracle
For a concrete example of a classic DP analysis, we describe
the frequency oracle problem [5, 20]. Consider a finite do-
main of data itemsV . In our context this domain contains
some program code entities—for example, V is the set of
all methods/functions defined in the program’s source code.
The problem we consider in our work is a generalization of
this exemplar DP analysis, as described in Section 3.
Suppose there are n individuals participating in the data

collection. For convenience of notation, these individuals
are identified via integers i ∈ {1, . . . ,n}. Each individual has
a single data item vi ∈ V . The goal of the data collection
is to determine, for each element v of the data domain, the
frequency of v—that is, the number of individuals i with
vi = v . A frequency oracle is an algorithm that provides an
estimate of the frequency of v for any v ∈ V .

A locally-differentially-private (LDP) frequency oracle em-
ploys a randomization algorithm R : V → Z, often referred
to as the local randomizer. The role of R is to introduce ran-
dom noise to the local information of individual i . Specifi-
cally, instead of reporting vi to the analysis server, the DP
frequency oracle algorithm reports R(vi ). The server collects
all such randomized reports over the n individuals and uses
them to compute the frequency estimates for all v .
Randomizer R must ensure the indistinguishability prop-

erty, parameterized by the so-called privacy loss parameter

ϵ ≥ 0. Higher values of ϵ imply a higher risk to an indi-
vidual’s privacy. Consider any value z ∈ Z that could be
produced by R. For any v ∈ V and v ′ ∈ V , from the obser-
vation of z it should be impossible to determine, with high
confidence, whether the input of R was v or v ′. Specifically,
Pr[R(v) = z] and Pr[R(v ′) = z] should not differ by more
than a factor of eϵ . Here Pr[A] is the probability of event A.
This property should be interpreted as follows: even if

an outside entity knows the complete details of how R is
defined, by observing the output z of R this entity is not
able to conclude, with high probability, that the real data
of individual i was a particular vi as opposed to any other
element of V . The strength of this protection depends on ϵ :
small values result in strong protection, but also necessitate
the introduction of more noise, which affects the accuracy
of the frequency estimates.

Several LDP approaches for this problem [5, 20, 43] employ
randomized response, a survey technique first used in the
social sciences to eliminate evasive answer bias [46]. In its
simplest manifestation, for given input v the randomizer
will report v with some probability (derived from ϵ) and,
further, will report eachv ′ , v with another probability (also
derived from ϵ). After such collection over all individuals is
completed, a post-processing step scales back the population-
wide frequencies to account for the randomization effects.
Our work explores several generalizations for this approach.
In this exploration, the key question is this: how can the strong
privacy guarantees of DP be achieved by a software frequency
profiling analysis, with high accuracy and low cost?

3 Problem Statement for Our Work
Consider a software system deployed locally on the ma-
chines of n users. We will use i ∈ {1, . . . ,n} to denote these
users. Suppose that software developers are interested in
the execution frequency of certain run-time events—for ex-
ample, events of the form “v was executed”, where v is a
method/function in the software code. Let V denote the set
of all such events. In our setup V is decided by the soft-
ware developers before the software is deployed, and some
run-time mechanism (e.g., instrumentation) is used to ob-
serve occurrences of such events while the deployed software
is running. For each software user i , the execution of that
user’s deployed software instance produces a trace of events
vi1, . . . ,v

i
k that are observed and recorded by the analysis

infrastructure. The frequency of each v ∈ V in this trace is
recorded locally as fi (v). Without DP, these local frequen-
cies are simply reported to the remote analysis server, which
computes and reports to the software developers a global
frequency G(v) =

∑
i fi (v) for each v .

This general problem statement captures a wide range
of classic profiling problems, for example, node/edge profil-
ing at various levels of granularity. However, the collection
and reporting of this “raw” data raises concerns about the
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privacy of software users. First, the events themselves may
convey sensitive information: for example, the frequency of
calls to functions to log into a remote server, to connect
to a VPN, or to change a password. Second, such infor-
mation can be used to classify user’s interest and habits,
which could later be (mis)used for behavior analytics or tar-
geted advertisement [48]. Finally, and very importantly, the
rapidly increasing power of data mining and machine learn-
ing, together with the dramatic increase of user-specific data
available from various sources, makes it possible to make
increasingly-powerful inferences about an individual from
the various data streams she produces in her daily life. Even
if certain categories of data gathering appear to be harmless
on their own, it is hard to predict how they would inter-
act with future unanticipated additional data sources and
analyses. Not surprisingly, both society in general and leg-
islative bodies in particular are paying close attention to
these privacy issues. From the technical perspective, design-
ing privacy-preserving analyses and “future-proofing” them
against unpredictable privacy attacks is an important and
challenging problem.

Differential privacy is a principled framework to address
such privacy concerns and to provide privacy guarantees
against both known and unknown (i.e., future) data analyses.
For our problem, rather than reporting local frequencies
fi (v) to the remote server, the analysis reports randomized
versions of these frequencies, derived in a way that ensures
DP properties. While per-user information is now noisy,
the global frequency estimates Ĝ(v) inferred by the analysis
server are accurate estimates of the true global frequencies
G(v). This section describes the details of this problem.

3.1 Problem Statement
Consider a software user i and her trace of events Ti =
vi1, . . . ,v

i
k . Without loss of generality, assume that k is de-

cided before software deployment and is the same for all
i . A way to represent the local frequency information is as
vector Fi of |V| integers—that is, as a histogram with |V|

bins, where each bin is the frequency of somev , and the sum
of bin values is k . Given the local vector Fi based on trace
Ti , a non-private solution reports Fi to the server, where a
vector G =

∑
i Fi of true global frequencies is reported.

A DP solution applies a randomized algorithm R to the
local trace Ti , as described in Section 4.1. We will use R(Fi )
as shorthand for the frequency vector of this randomized
trace. R(Fi ) is a vector of |V| integers, but they do not have
to add up to k . This noisy vector is reported to the server and
used, together with similar vectors from all other software
users, to compute a vector Ĝ of global frequency estimates
(described in Section 4.2). The randomizer R is the same for
all software users and is fully designed by the developer
before software deployment. It is assumed that the details of
R are known by any potentially-adversarial entities. Broadly,

such entities include anyone who could observe the vector
R(Fi ) reported to the server (and, in the extreme, the server
is also considered to be potentially adversarial).

3.2 Privacy Guarantee
The privacy guarantees we define are based on the notion of
indistinguishability outlined earlier. Specifically, given some
privacy loss parameter ϵ , consider a pair of traces T and T ′

and their frequency vectors F and F ′. Then for any vector Z ,
we want to ensure that the probabilities Pr[R(F ) = Z ] and
Pr[R(F ′) = Z ] do not differ by more than a factor of eϵ . As we
demonstrate in our experiments, it is essential to decide for
which pairs of T and T ′ such protection should be achieved.
In particular, we show that if indistinguishability is desired
for all possible pairs of traces, too much noise needs to be
added and the resulting accuracy of estimates is very low.
To capture this essential trade-off between privacy and

accuracy, we define restricted indistinguishability which ap-
plies to pairs of traces that are “close” to each other. This
technique is motivated by existing work on the theoretical
properties of distance-based indistinguishability [10]. Con-
sider two tracesT andT ′, each containing k events. Our defi-
nition is based on a threshold t of the difference between the
traces: specifically, the number of trace positions 1 ≤ j ≤ k
such that event T [j] is different from event T ′[j]. We define
a distance between traces d(T ,T ′) as the number of such j.

Definition 3.1. R is ϵ-t-differentially private if ∀T ,T ′,Z , it
is true that d(T ,T ′) ≤ t implies Pr[R(F )=Z ]

Pr[R(F ′)=Z ] ≤ eϵ .

If a pair’s difference exceeds the threshold t , the random-
ization still provides privacy protection, but with a weakened
(i.e., larger) value of ϵ , scaled by the ratio between the trace
distance and t . When t = k , indistinguishability holds for
all possible pairs of traces. By varying the value of t , we
can explore trade-offs between privacy and accuracy. For
real-world deployment of DP solutions in remote software
profiling, such trade-offs are essential. Later we also discuss
the practical considerations for choosing the threshold t .
Note that the above definition also implies a form of in-

distinguishability for individual events in a trace: for any
v , if the real frequency is F (v), an observer cannot distin-
guish with high probability F (v) from F (v) − t and F (v) + t .
Though she can still draw conclusions about v , the strength
of these conclusions will be weakened based on the threshold
t . Still, an adversary can still make various inferences from
the randomized data: e.g., “with high probability, eventv was
more frequent than event v ′”. In future work, it would be
interesting to consider other notions of distance and indistin-
guishability that provide protection against such inferences.

3.3 Example
To illustrate the meaning behind this definition, we use a
simple example. Suppose V = {a,b} and k = 5. There are
25 = 32 possible traces and six unique frequency vectors:
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5 0

)
,
(
4 1

)
, . . . ,

(
0 5

)
where the first element is the

frequency of a and the second one is the frequency of b.
Next, we outline a possible definition of the randomizer;

a detailed description will be provided later in Section 4.1.
Suppose we choose ϵ = ln 9, as done in prior work [20], and
t = 1. The randomizer uses a probability p = e

ϵ
2t /(1+ e

ϵ
2t ) to

randomize each event in the trace. In this example, e
ϵ
2t = 3

and thus p = 0.75. For this R, when event a is observed,
the following two rules are applied. First, with probability
p = 0.75, a’s count is incremented (and thus, with probability
0.25 this observation of a does not modify the count of a). In
addition, for this observation of a, b’s count is incremented
with probability 1−p = 0.25 (and, with probability 0.75, this
observation of a does not modify the count for b). Similar
processing would be applied when event b is observed. As
a result, the final noisy histogram could contain anywhere
between 0 and 2 × k = 10 counts.
Suppose that

(
4 2

)
is produced by R and is observed

by a potentially-adversarial entity. What information can
be inferred from this observation, assuming that this entity
knows the details of R (including ϵ and t )? The table below
summarizes the probabilities for the 6 possible frequency
vectors F , for t = 1 as well as for t = 2. Note that each
value of F could be produced by several different traces T ;
the shown probabilities for that F apply for each such trace.

F Pr[R(F ) =
(
4 2

)
]

t = 1 t = 2(
5 0

)
0.1043 0.1009(

4 1
)

0.1265 0.0848(
3 2

)
0.0746 0.0606(

2 3
)

0.0247 0.0378(
1 4

)
0.0061 0.0214(

0 5
)

0.0013 0.0112

A way to carry out the calculation of these probabilities is
the following: if there were x real occurrences of a, the prob-
ability that they contributed exactly y increases to the count
for a is

(x
y

)
py (1 − p)x−y , since this is a binomial experiment

with x independent trials, each with success probability p.
The probabilities in the table are determined by consider-
ing all possible values for x and y, as well as the possible
contributions of the k − x events where b was observed.

When t = 1, for any tracesT andT ′ with d(T ,T ′) ≤ 1, the
corresponding frequency vectors F and F ′ can differ by at
most one count—e.g., they could be

(
5 0

)
and

(
4 1

)
. For

any such pair, the ratio of the corresponding probabilities
is bounded by eϵ . In this sense, differential privacy makes
it difficult to distinguish between these possible traces for
anyone who has observed output

(
4 2

)
. However, this does

not hold for all possible pairs of inputs. For example, the
ratio between the highest and the lowest probability shown
in the table for t = 1 is 98.28 (while for t = 2 this ratio is 9,
as discussed below).

When t = 2, the privacy protection is stronger: for any
pair of traces with d(T ,T ′) ≤ 2, the ratio of the correspond-
ing probabilities is bounded by eϵ . There are benefits even
for traces that are “further apart” than t—e.g., traces with
frequency vectors

(
5 0

)
and

(
0 5

)
. In our example, the

largest ratio of probabilities shown in the table for t = 2 is 9.

3.4 Privacy for Presence/Absence in the Trace
One important implication of Definition 3.1 is the following.
Suppose that for some v we have ≤ t occurrences in a trace
T . There are many possible traces T ′ in which v does not
occur at all and d(T ,T ′) ≤ t . If we employ an ϵ-t-DP scheme,
an adversary will not be able to distinguish between T and
T ′. In other words, she will not be able to conclude that v oc-
curred at all, since it will not be possible to distinguish, with
high probability, the case when v occurred F (v) times from
the case when v occurred 0 times. Such privacy protection
may be important for infrequently-executed but sensitive
software components: e.g., code to change a password. In
general, the mere presence/absence of any v with F (v) ≤ t
in the run-time trace is obfuscated, in a probabilistic sense as
defined by the ratio bound eϵ . For the example from above,
when t = 2, the presence/absence of any a events is obfus-
cated when the actual trace has frequencies

(
0 5

)
,
(
1 4

)
,

or
(
2 3

)
regardless of what is the output of the randomizer.

One extreme case of such obfuscation is to zero out the
frequency when F (v) ≤ t . However, by removing this local
information, aggregate information aboutv is also discarded.
Instead, an ϵ-t-DP scheme preserves v’s frequency distribu-
tion across the entire population, in addition to providing
strong protection for its presence/absence.

4 Differentially Private Profiling
4.1 Efficient Randomization
To design an ϵ-t-DP randomizer, we use an approach that
is a generalization of existing techniques for randomizing
a single item per user [5, 20, 43]. Specifically, we define a
probability

p = e
ϵ
2t /(1 + e

ϵ
2t ) (1)

For each event vij in the trace vi1, . . . ,v
i
k of user i , the ran-

domizer will increment the count for vij with probability p
(and will keep it the same with probability 1−p). In addition,
when vij is observed, each v

′ ∈ V \ {vij } is subjected to the
following processing: the randomizer increments the count
forv ′ with probability 1−p and keeps it the same with prob-
ability p. To achieve such randomization, an instrumentation
layer in the software can observe each run-time occurrence
of an event v and immediately generate the corresponding
contributions to the collected profile. It can be shown that
the cumulative result of these contributions indeed satisfies
the property from Definition 3.1.
The randomization outlined above has a significant lim-

itation: the cost of applying the randomizer could be high.
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For each of the k events in the trace, each element of V
has to be randomized independently. In practical scenarios,
k could contain many thousands of events, and V could
also contains many thousands of elements. For example, in
our experimentsV contained all methods in the code of a
given Android app, and its size was typically several thou-
sand methods. In fact, several of our experiments with this
naive randomizer could not complete within a reasonable
time period. To address this limitation, we redefine the ran-
domizer as operating over the entire local frequency vector
rather than on individual events in the trace. This allows us
to reduce the cost of R from O(k |V|) to O(|V|).

This efficient approach works as follows: during run-time
execution, the true frequency vector F is constructed but
randomization is not applied. After the counts for all k events
are accumulated, the resulting vector is randomized inde-
pendently for each v to obtain a new vector R(F ). Consider
some v and the number of its occurrences F (v). Each of
those occurrences would have contributed to v’s count in
R(F ) with probability p. The number of such contributions
is a random variable with binomial distribution. Recall that
binomial distribution gives the probability of getting exactly
m successes in n independent trials, where each trial suc-
ceeds with probability p. The probability mass function is
f (n,m,p) =

(n
m

)
pm(1−p)n−m . Given n = F (v) and p, we can

draw a random valuem1 based on this distribution. We also
need to account for contributions to v’s count in R(F ) that
are due to the k − F (v) events in which v was not observed.
We can draw another random valuem2 from the binomial
distribution f (k − F (v),m, 1 − p). Then the frequency of v
in R(F ) is set to bem1 +m2.

For efficiency, instead of using the (discrete) binomial dis-
tribution, we use the (continuous) normal distribution. It is
well known that the binomial distribution can be approx-
imated using the normal distribution. To draw a random
value from the binomial distribution for a given n and p,
we draw a random value from the normal distribution with
mean np and variance np(1 − p). The resulting real number
is then rounded to the nearest integer in the range [0,n].

4.2 Server-Side Computation of Estimates
Given the reported local randomized frequencies R(Fi ) from
each user i , the remote software analysis server first com-
putes a vector F̂ =

∑
i R(Fi ). Due to the randomization, the

value F̂ (v) cannot directly be used as an estimate of the true
global frequency G(v) =

∑
i Fi (v). To compute such an es-

timate Ĝ(v), one can consider the expected value of F̂ (v).
This expected value has two components: (1) each of the
G(v) instances of v across all users have been included in
F̂ (v)with probability p; (2) each of the nk −G(v) instances of
other events have contributed to F̂ (v) with probability 1 − p.
Given this observation, one can define the estimate

Ĝ(v) = ((e
ϵ
2t + 1)F̂ (v) − nk)/(e

ϵ
2t − 1) (2)

The expected value of Ĝ(v) is G(v). After this computation,
Ĝ(v) are normalized by the total number of events nk .

After this processing, we have an estimate Ĝ(v) for each
v . However, these estimates do not satisfy two categories
of consistency constraints. First, there is no guarantee that
Ĝ(v) ≥ 0 and

∑
v Ĝ(v) = 1. Second, it is often the case that

the structure of the software imposes additional constraints
on any run-time set of frequencies. One extremely simplified
example is the following: suppose that the body of a method
m contains only a single if statement, inside which there
is call to another methodm′, and, further, this is the only
call tom′ in the entire program. We can assert that for the
true global frequencies, G(m′) ≤ G(m). However, it is not
necessarily the case that in the computed estimates we have
Ĝ(m′) ≤ Ĝ(m). More generally, we would like to consider
static code structures that imply inequality constraints of
the form G(v) ≤ G(v ′) for some pairs of events v and v ′,
and to make the final reported estimates consistent with
such constraints. The next subsection provides details on
the particular code properties we consider and on the static
program analysis used to infer them.

We would like to compute estimates that satisfy these two
categories of consistency constraints. Some prior work [45]
has also considered the consistency constraint that estimates
are non-negative and add up to 1. Unlike this prior work, we
also target consistency constraints derived via static analy-
sis, and employ a novel quadratic programming formulation.
Our goal is to minimize the squares of the differences be-
tween Ĝ(v) and (unknown) estimates x(v) that satisfy the
consistency constraints. The specific optimization problem
we define has the following form:

min
x (v)∈R

∑
v

(
x(v) − Ĝ(v)

)2
s.t. x(v) ≥ 0∑

v x(v) = 1
x(v) ≤ x(v ′)

The last component represents a set of constraints that
are based on the relationships inferred by the static anal-
ysis described in the next subsection. This is an instance
of a linearly constrained quadratic optimization problem. A
variety of solvers are available for such problems; our imple-
mentation uses the solver available in MATLAB. LetG∗(v)
denote the value for x(v) computed by the solver. This value
G∗(v) is reported by the server as the final estimate of the
(normalized) global frequency of event v .

One relevant observation is that such constraints are pub-
lic knowledge since they can be extracted from the app code
via static analysis. Thus, an adversary could observe the re-
sults of applying a local randomizer to some user’s data, and
then utilize similar post-processing based on quadratic pro-
gramming to enforce the constraints on these observations.
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Algorithm 1: Find F (m) ≤ F (m′)

1 foreachm ∈ V do
2 foreach call site cs inm do
3 foreach targetm′ of cs do
4 if m′ is the only target of cs and cs

dominates the exits ofm then
5 Record F (m) ≤ F (m′)

6 if m′ does not override any framework
method and there are no other calls tom′

in app and cs is not in loops then
7 Record F (m′) ≤ F (m)

However, since DP is immune to post-processing [17], the
DP guarantee still holds for the resulting estimates.

4.3 Static Analysis of Call Frequencies
Frequency vectors have a certain structure that imposes
constraints on the relationships between vector elements.
Below we illustrate such constraints for the frequency of
method calls in Android apps. However, similar machinery
could be easily designed for other use cases—for example,
profiling of function calls in C programs and method calls
in Java/C++/C# programs, or general node/edge profiling
in control-flow graphs [4]. The constraints are of the form
F (m) ≤ F (m′) wherem andm′ are methods in the app code.
A method m in an Android app could be called in two

manners. Inside the app code, there could be a call site that
invokesm. A second possibility is thatm is invoked by the
Android platform code. This is the case, for example, for
methods that provide event handlers for GUI events (e.g.,
onClick callbacks for click events) or for window lifecycle
events (e.g., onCreate callbacks for window creation events).
As described below, in some cases constraints can be in-
ferred only for methods that cannot be invoked by unknown
code from the Android platform. We ensure this by only
considering methods that do not override, directly or transi-
tively, any method declared in an Android class or interface.
Note that similar considerations would apply in general for
object-oriented languages such as Java, C++, and C#, where
application methods override library methods, and thus un-
known library code invokes application methods. Callbacks
could also occur in C code: a typical example is the qsort
library function, which takes as input a function pointer to a
comparator function, and therefore static constraints on the
number of comparator invocations cannot be established.

Algorithm 1 describes at a high level our static analysis for
inferring that the call frequency of a method is always not
greater than the call frequency of another method. At line 3,
if cs is a virtual call site, we determine all possible target
methods by considering the class hierarchy of the app code
and the Android platform code. If m′ is the only possible

target, we need to determine thatm′ will be executed at least
once. This is done via dominator analysis of the control-flow
graph (CFG) of the caller m. If the call site dominates all
exit nodes of the CFG (i.e., all return and uncaught throw
statements), it is guaranteed that the execution ofm triggered
at least one invocation ofm′.

A second case implying an inequality constraint is as fol-
lows (lines 6–7). Supposem′ is one of several possible target
methods at a call site, and this is the only call site in the
entire app that invokes m′. Further, suppose that m′ can-
not be called from the Android platform code, as discussed
earlier. Then any invocation ofm′ must occur as part of an
invocation ofm. If, in addition, we can establish thatm′ is
not located inside any loops in the CFG ofm, this is enough
to conclude that F (m′) ≤ F (m).
To implement this static analysis for Android apps, we

use the Soot analysis toolkit [37] to create an intermediate
representation of the app’s bytecode. For each app method
we consider its CFG and the call sites inside it. We record all
call sites and their corresponding dispatch targets utilizing
class hierarchy analysis. To determine whether a call site
dominates the exits of a methodm, we perform reachability
analysis inm’s CFG, starting from the entry node and stop-
ping the traversal at the call site. At the end of the traversal,
we determine whether any ofm’s exits is reached. To decide
whether a call site is in loops, we find all natural loops in the
CFG using depth-first search to identify back edges.

5 Implementation and Evaluation
5.1 Data Collection
To empirically evaluate the proposed techniques, we con-
ducted method frequency profiling for Android apps. The
events in this case are method calls. We used 15 Android ap-
plications that have been used in other studies [50]. We then
applied the Soot analysis toolkit [37] to determine the setV
of methods in each app. Table 1 describes the characteristics
of these benchmarks. Column “Stmts” lists the numbers of
statements in Soot’s Jimple IR. The size of V for each app
is shown in column “|V|”. We excluded several third-party
libraries from this count (e.g., butterknife and okhttp).
Next, we utilized the Monkey tool for random GUI test-

ing [22] to send GUI events to the apps in order to simulate
user interactions. For each benchmark we simulated 1000
independent executions by running Monkey with 1000 dif-
ferent random seeds for the GUI event sequence generation.
Before each execution, we created a fresh Android emulator
to avoid unintended configurations from previous runs. We
recorded every method call during each execution, using
instrumentation at the entry of the corresponding method,
until 5× |V| method invocations were observed. As a result,
we obtained 1000 traces each of which contained k = 5× |V|

method call events. From these traces, local frequency vec-
tors Fi for 1 ≤ i ≤ 1000 were constructed for each app.
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Table 1. Benchmarks.

App Stmts |V| ≤ Pairs Time (s)

barometer 660776 2237 2053 20.23
bible 832654 5340 3819 30.47
dpm 1505454 1362 1127 55.05

drumpads 979900 1903 1672 16.10
equibase 671692 1975 1720 28.64
localtv 1128876 3055 3178 41.53

loctracker 646698 837 540 27.85
mitula 783383 7172 7856 36.78

moonphases 478113 716 584 20.12
parking 482388 1649 1342 21.01
parrot 629429 7433 8000 48.43
post 832654 5340 3819 30.06

quicknews 832654 5340 3819 30.50
speedlogic 308102 265 239 14.27

vidanta 779294 9242 6824 33.37

5.2 Implementation
Static analysis. Our implementation of the static analysis
of inequality constraints for method frequencies was out-
lined in Section 4.3. Column “≤ Pairs” in Table 1 shows the
number of pairs (m,m′) such thatG(m) ≤ G(m′)was inferred
by this analysis. The running time of the static analysis is
listed in column “Time (s)”, for a machine with Xeon E5
2.2GHz and 64GB RAM. The cost of the static analysis is 3.93
seconds per 100K Jimple statements, on average across all
apps. This cost is negligible for all practical purposes, since
it will be incurred once by the software analysis server.

Client side. Recall from Section 4.1 that we use normal dis-
tribution to approximate binomial distribution, in order to
achieve efficient randomization. We utilize Java’s Random
class to draw random values with normal distribution. We
have observed that this implementation yields an accurate
approximation of a binomial distribution. Since Java is one of
the officially supported languages for Android, it is trivial to
adopt this implementation of the randomizer to existing apps.
For convenience of experimentation, all randomization in
our experiments is performed under an offline setting—that
is, each frequency vector is incrementally collected during
app execution, but the resulting Fi is then randomized sepa-
rately from this execution. This enables us to run multiple
trials for each experiment, in order to study the reported
metrics under many instances of the random values drawn
by local randomizers on the same input Fi frequency vectors.

Server side. After receiving the randomized vectors from
the n clients, the server first generates an aggregated vec-
tor Ĝ consisting of the estimates of frequencies after post-
processing, as discussed in Section 4.2. Then, for the qua-
dratic optimization problem, it invokes the quadratic pro-
gramming solver in MATLAB’s Optimization Toolbox [27].
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Figure 1. Relative error of estimates.

The cost for solving the optimization problem depends on
|V| and the number of inequality constraints. For example,
in our experiments, it takes about 30 seconds for the vidanta
app, which has the largest |V| and the third largest number
of constraints across all apps. The solver rarely runs for more
than 5 seconds for smaller apps such as barometer.

5.3 Accuracy of Estimates
We evaluate the proposed techniques by varying the thresh-
old t for the difference between two traces and the privacy
loss parameter ϵ . In particular, we consider ϵ ∈ {ln 9, ln 49}
and t ∈ {100, 101, 102,k}. The values of ϵ are the same as
those used in prior work [20]. We also collected results for
ϵ ∈ {ln 25, ln 81, ln 121}. Due to space constraints, this data
is not included here but is available at http://web.cse.ohio-
state.edu/presto. The conclusions presented in this section
also apply to this additional data.

All ground-truth frequenciesG(v) are normalized bynk so
that

∑
v G(v) = 1. Recall that the estimates G∗(v) produced

by the quadratic programming optimization also have a sum
of 1. For each app, we run 100 independent experiments and
report the mean under each combination of t and ϵ . In all
experiments, the resulting standard deviations are typically
negligible and thus are not presented.
We use relative error (RE) as a metric to evaluate the ac-

curacy of the estimates. This metric measures the overall
difference between the estimated frequencies and the actual
frequencies. More specifically, given a set D of methods, for
each v ∈ D we compute the estimated and ground-truth
frequency, calculate and sum their differences, and normalize
by the sum by the ground-truth total frequency:

RE =
∑
v ∈D |G(v) −G∗(v)|∑

v ∈D G(v)
(3)

In the case when D = V (i.e., the metric is computed for
the entire set of methods), the denominator is 1. Later we

http://web.cse.ohio-state.edu/presto
http://web.cse.ohio-state.edu/presto
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Figure 2. Ground-truthG and estimatesG∗ and Ĝ of 20 most
frequently-executed methods in speedlogic with ϵ = ln 9.

discuss additional results where D ⊂ V . Smaller values for
RE means higher accuracy.

Figure 1 shows RE values of each app. Recall from Section 2
that higher values of ϵ indicate weaker privacy guarantees.
Consider, for example, the speedlogic app. For each value of
t , we can observe that ϵ = ln 49 yields less RE compared to
ϵ = ln 9, and hence provides better accuracy. For instance,
when t = 1, the relative error REln 9 = 0.067 is nearly twice
as large as REln 49 = 0.036. We also tested other values for ϵ
and had similar observations. This conclusion also holds for
the other apps, as shown in Figure 1.

Next, consider the effects of choosing t . From Figure 1, one
can observe that higher values of t generate less accurate
estimates for all apps as they produce more RE. Intuitively,
the randomizer needs to introduce more noise (and thus
more error) when t grows in order to “hide” the t different
events between two traces. When t = k , which provides the
strongest privacy protection that guarantees the indistin-
guishability of any pair of traces, RE reaches its worst-case
value of 2. To further investigate the cause of the inaccu-
racy, for each app, we examined the difference between the
ground-truth frequency G and its estimate G∗ per method.
We observed that (1) a small number of “hot” methods ac-
count for the majority of event occurrences, (2) the frequency
estimates for these methods are significantly more accurate
than the accuracy presented in Figure 1, and (3) the overall
RE values are large because of the errors contributed by the
large number of infrequently-executed methods.

To illustrate these observations, consider again the speed-
logic app for ϵ = ln 9. Figure 2 shows the values ofG andG∗,
as well as Ĝ which will be discussed shortly, for the 20 most
frequently-executed methods in this app. A small number
of methods contribute the majority of events in the traces.
For example, about 20% of the method calls are to a callback
method that is invoked whenever there is new data from
the accelerometer sensor. For these hot methods, the esti-
mation errors are small when t ≤ 100. When t grows to k ,
the estimates are not useful since the noise introduced by
randomization overwhelms the actual frequency. Another
observation we made was that the infrequently-executed
methods usually have significantly less-accurate estimates,
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Figure 3. Comparison of RE for all methods (i.e., the full
domain V) and for hot methods with ℓ = 0.25 and ϵ = ln 9.

and since the number of such methods is very large, their
accumulated error is an essential source of RE.

5.4 Estimates for Hot Methods
To quantify the observations described above, we compute
RE for hot methods only. Following prior work [51], the set
of hot methods is defined based on a threshold 0 ≤ ℓ ≤ 1.
Given a frequency vector F , the set of hot methods in F is
defined by hot(F , ℓ) = {v | F (v) ≥ ℓ × maxv F (v)}. That is,
hot methods are ones with frequencies close to the frequency
of the hottest method [51]. Next, we follow the procedure
in Section 5.3 to compute RE for hot methods, with D =

hot(F , ℓ) in Equation 3. Besides ϵ and t , we also alter the
limit ℓ. Figure 3 shows RE values when ϵ = ln 9. We omit
ϵ = ln 49 since its effects are similar to the ones outlined in
Figure 1. In the experiments, we use ℓ ∈ {0.25, 0.50, 0.75}
and observe similar results, with the accuracy increasing
when ℓ increases. Thus, we only show the metrics for ℓ =
0.25. The corresponding RE values from Figure 1 are also
included in the figure for comparison. We can see that the
randomization generates much less RE for hot methods, and
thus the frequency of such methods can be estimated with
high accuracy, especially with 10 ≤ t ≤ 100. As discussed
later in Section 5.5, even such relatively small values of t
provide significant privacy protections for more than 95%
app methods in our experiments; in particular, they allow
“plausible deniability” about the presence/absence of such
methods in a local trace.

Instead of estimating the frequencies of hot methods, one
could ask a simpler question: what is the set of hot methods?
Such identification of hot methods can be useful, for example,
to focus the efforts for manual or automated performance
optimization. To measure the quality of the DP estimates for
this question, we use the hot method coverage (HMC) metric
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Figure 4. HMC for ℓ = 0.25.

defined by others [51]:

HMC(ℓ) =
|hot(G, ℓ) ∩ hot(G∗, ℓ)|

|hot(G, ℓ)|
(4)

Intuitively, higher values of HMC indicate that hot methods
remain hot even after DP processing is applied.

Figure 4 shows the average HMC across 100 independent
repetitions of the same experiment for ϵ = ln 9 and ϵ = ln 49,
with different values of t . For smaller values of t , the set of
hot methods is identified very accurately. For example, when
t = 1, perfect hot method coverage is observed for all apps
(i.e., HMC = 1). Most apps (13 out of 15) have high HMC
(≥ 0.9) when t grows to 10. This suggests that reasonable
accuracy can be achieved with proper values of t .

5.5 Presence/Absence of Infrequent Methods
As discussed in Section 3.4, Definition 3.1 implies privacy
protection of the absence/presence of methods with local
frequencies F (v) ≤ t . In other words, from the reported
randomized frequencies it is not possible to decide, with
high probability, whether such a method was executed at
all. To explore the extent of this protection, we collect the
number of methods satisfying this property for each of the
1000 traces for an app. The detailed results are not shown
here, but can be summarized as follows. More than 95% of the
methods inV (averaged across all apps) have such protection
when t ≥ 10, and around 87% of methods are protected even
when t = 1. Such protection could be especially important
for infrequently-executed methods that implement sensitive
functionality. One example is a method in the mitula app
for changing the user’s password. Such a method will not be
executed frequently in any trace, yet its actions are highly
sensitive and may be used for other types of analysis, such as
user labelling. Overall, our experimental results clearly show
that the approach achieves strong privacy protection for
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Figure 5. Full-domain RE of G∗ and Ĝ with ϵ = ln 9.

infrequently-executed methods. These results are consistent
with the findings from the previous subsections.

5.6 Importance of Consistency Constraints
Recall from Section 4.2 that we compute estimates G∗(v)
based on domain-specific consistency constraints. To evalu-
ate the effects of these constraints, we also compute estimates
Ĝ(v) without the quadratic programming step, as described
in Section 4.2. For proper comparison with G∗(v), estimates
Ĝ(v) are then normalized by their sum. Figure ?? shows the
RE values for the two categories of estimates. For all apps,
the enforcement of consistency constraints significantly im-
proves the accuracy when t ≤ 10. The RE of G∗ is 2.5×
smaller than the RE of Ĝ when t = 1 and 2.2× smaller for
t = 10, averaged across all apps. For most apps, there are
also accuracy benefits when t = 100.

We also collect similar measurements for hot methods and
find that the application of quadratic programming provides
improvements for both hot-method RE and HMC. To further
illustrate these observations, Figure 2 shows G, G∗, and Ĝ
for the 20 most frequent methods in the speedlogic app. The
results indicate reduced accuracy of estimates for hot meth-
ods if the consistency constraints are not incorporated in
the analysis. We have observed similar effects for other apps.
Our conclusion is that the extra step of enforcing consistency
constraints is essential for error reduction.

5.7 Summary
Our experiments demonstrate that there is no “free lunch”:
increased privacy comes with decreased accuracy. However,
practical compromises are possible to achieve: for hot meth-
ods, one can obtain accurate estimates with some degree of
privacy protection, while for infrequently-executed methods
methods strong privacy guarantees can be provided at the
expense of inaccurate estimates. In many scenarios, the iden-
tification and analysis of hot methods (and, more generally,
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hot statements, edges, paths, etc.) are of primary importance
and DP solutions can likely be successfully deployed. In all
such cases, DP analysis would have to be tuned to achieve
the desired trade-offs, based on the parameterization we
propose. Software developers can conduct pre-deployment
testing (e.g., using automated testing tools) to obtain pro-
filing information and then analyze it using experiments
similar to ours, in order to guide the selection of parameters
given some desired privacy guarantees.

6 Limitations
The proposed approach is designed for event frequency pro-
filing. Other forms of profiling (e.g., for execution time or
memory usage) present different challenges and are impor-
tant targets for future work. In addition, although the ap-
proach can effectively hide the presence/absence of infre-
quent events, it does not perform well for frequency esti-
mation of such events and thus may be unsuitable for some
profiling tasks. Another concern is that the randomization
requires developers to decide the privacy parameters prior
to the actual profiling. Our experimental setup provides a
blueprint of how such decisions could be made before de-
ployment, but additional work is needed to improve the
automation of this process. Last but not least, there are po-
tential optimizations that the proposed approach does not
consider. For example, the communication cost can be re-
duced by data compression and dimensionality reduction.
We leave these enhancements for future work.

7 Related Work
Differential privacy. There exists a large body of work on
differential privacy in the context of distribution estima-
tion [14], clustering [33], heavy hitters [5, 9], learning [25],
and convex optimization [39]. Several applications of LDP
have been realized in practice [2, 13, 20, 32, 41, 42]. Many of
these studies focus on the single-item scenario where each
user holds one data item. Google deploys RAPPOR [20] in
Chrome to learn the distribution of users’ homepage URLs
by applying randomized responses and Bloom filters. Bassily
and Smith [6] consider one single categorical event per user
and propose an asymptotically optimal solution for building
succinct histograms under LDP. Set-valued data have also
been studied. Apple adopts LDP to collect words and emojis
typed by its users [2]. LDPMiner [35] uses a two-phase strat-
egy to find frequent items. Wang et al. [44] discover not only
frequent items but also frequent itemsets. Both approaches
assume that each user holds a set of items, while our work
focuses on the more challenging problem where the local
data is a trace that contains duplicates. Wang et al. [45]
employ consistency constraints in the post-processing of
estimates. Our constraints are more general as they consider
relationships inferred via static analysis.

Our previous work [50] is focused on frequency profiling
of Google Analytics events in mobile apps. This prior effort
employs a different definition of privacy protection. Specif-
ically, it considers indistinguishability of entire traces and
thus provides DP guarantees defined by kϵ . In contrast, here
we define a stricter ϵ-t-DP approach. The previous approach
provides much weaker privacy guarantees, especially con-
sidering that k could be many thousands. In addition, here
we propose efficient randomization based on binomial distri-
bution, which reduces the overhead of randomization by a
factor ofO(k), since in the prior work each event is perturbed
as soon as it is observed. Further, our current work adopts
static analysis to construct consistency constraints and uti-
lizes quadratic programming to enforce these constraints
and thus achieve better accuracy.

Profiling and its privacy. Profiling of remote software ex-
ecutions has been widely adopted for testing and debug-
ging [7, 18, 24, 34, 49] and optimization [1, 23, 28, 29, 38, 40].
Liblit et al. [26] propose a low-overhead approach to gather
run-time events such as assertions for bug isolation via sam-
pling. Bond and McKinley [8] propose a hybrid instrumenta-
tion and sampling approach for continuous path and edge
profiling. Nagpurkar et al. [29] propose an instruction-based
profiling approach for deployed software. Ricci et al. [36]
track garbage collection events to help the development of
new garbage collection algorithms. Privacy has also been
considered. Elbaum and Hardojo [19] marshal and label data
with the encrypted sender’s name for anonymization at the
deployed site. However, anonymization is not enough to en-
sure strong privacy [30, 31]. We develop the first general ap-
proach for DP software event frequency profiling, which pro-
vides well-defined privacy guarantees by design and could be
adopted in the development of principled privacy-preserving
versions of the aforementioned techniques.

8 Conclusions
There is strong interest in privacy-preserving data analysis,
driven by legal and societal demands. We study the foun-
dational problem of software event frequency profiling and
propose a novel tunable approach for achieving differential
privacy. Our techniques are efficient and easy to deploy. Us-
ing domain-specific constraints, the approach significantly
improves the quality of the frequency estimates. Our experi-
ments indicate that, despite the tension between accuracy
and privacy, practical trade-offs can be achieved. Future work
on other categories of profiling techniques should continue
to grow the body of work in the increasingly-important area
of privacy-preserving remote software analysis.
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