
Interprocedural Dataflow Analysis in the
Presence of Large Libraries

Atanas Rountev1, Scott Kagan1, and Thomas Marlowe2

1 Ohio State University, Columbus, OH, USA
2 Seton Hall University, South Orange, NJ, USA

Abstract. Interprocedural dataflow analysis has a large number of uses
for software optimization, maintenance, testing, and verification. For
software built with reusable components, the traditional approaches for
whole-program analysis cannot be used directly. This paper considers
component-level analysis of a main component which is built on top of a
pre-existing library component. We propose an approach for computing
summary information for the library and for using it to analyze the main
component. The approach defines a general theoretical framework for
dataflow analysis of programs built with large extensible library compo-
nents, using pre-computed summary functions for library-local execution
paths. Our experimental results indicate that the cost of component-level
analysis could be substantially lower than the cost of the correspond-
ing whole-program analysis, without any loss of precision. These results
present a promising step towards practical analysis techniques for large-
scale software systems built with reusable components.

1 Introduction

Interprocedural dataflow analysis is a widely-used form of static program anal-
ysis. Dataflow analysis techniques play an important role in tools for perfor-
mance optimization, program understanding and maintenance, software testing,
and verification of program properties. Unfortunately, the use of interprocedural
dataflow analysis in real-world software tools is hindered by several serious chal-
lenges. One of the central problems is the underlying analysis model implicit in
most of the work in this area. The key feature of this model is the assumption
of a whole-program analysis for a homogeneous program. Interprocedural whole-
program analysis takes as input an entire program and produces information
about the behavior of that program. This classical dataflow analysis model [28]
assumes that the source code for the whole program is available for analysis.

Modern software presents serious challenges for this traditional model. For
example, systems often contain reusable components. Whole-program analysis
assumes that it is appropriate to analyze the source code of the entire program
as a single unit. However, for software built with reusable components,

– Some program components may be available only in binary form, without
source code, which makes whole-program analysis impossible.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 2–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Interprocedural Dataflow Analysis in the Presence of Large Libraries 3

– It is necessary to re-analyze a component every time this component is used
as part of a new system. For example, a library may be used in many appli-
cations, and whole-program analysis requires re-analysis of this library from
scratch in the context of each such application.

– Code changes in one component typically require complete re-analysis of the
entire application.

– The cost of whole-program analysis is often dominated by the analysis of
the underlying large library components (e.g., standard libraries, middle-
ware, frameworks, etc.). To achieve practical cost, analysis designers are
often forced to use semantic approximations that reduce the precision and
usefulness of the analysis solution.

These issues limit the usefulness of many existing analyses. In some cases the
analyses cannot be used at all. Even if they are possible, the analyses have to
be relatively approximate in order to scale for large-scale software with hun-
dreds of thousands (or even millions) lines of code. Such approximations lead to
under-optimized code in optimizing compilers, spurious dependencies in program
understanding tools, false warnings in verification tools, and infeasible coverage
requirements in testing tools.

Component-Level Dataflow Analysis. In this paper we consider a model of in-
terprocedural dataflow analysis which we refer to as component-level analysis
(CLA). A component-level analysis processes the source code of a single program
component, given some information about the environment of this component.
The general CLA model is discussed in [20] (without any formalisms, proofs,
or experiments.) Here, we focus on one particular scenario for CLA: analysis of
a main component Main which is built on top of a library component Lib. In
this scenario, the source code of Lib is pre-analyzed independently of any library
clients. This pre-analysis produces summary information for Lib. This informa-
tion is used subsequently for component-level analysis of the source code of any
main component built on top of Lib.

This form of CLA has significant real-world relevance. In particular, there are
large standard libraries that are associated with languages such as C++, Java,
and C#. A library could be considered as component Lib, while a program writ-
ten on top of it is component Main . CLA allows (1) analysis of Main without
the source code of Lib, by using the summary information, (2) reduction in the
cost of analyzing Main , because the source code of Lib has already been ana-
lyzed, (3) reuse of the summary information across multiple main components,
in order to avoid repeated re-analysis of Lib, and (4) reduced work to handle
code changes, since changes in Main do not require re-analysis of Lib.

Contributions. The main goal of our work is to define general theoretical
machinery for designing component-level analyses of Main . We achieve this goal
by generalizing the “functional approach” to whole-program analysis due to
Sharir and Pnueli [28]. The key technical issue that this generalization needs
to address is the lack of complete call graph information when performing pre-
analysis of a library. An example of this problem is the presence of callbacks
from the library to the main component. The contributions of our work are:

4 A. Rountev, S. Kagan, and T. Marlowe

– General theoretical framework: This paper defines a general approach
for component-level analysis in the absence of complete information about
calling relationships within Lib and from Lib to Main . The approach is
defined for the most general category of monotone dataflow problems. As a
result, it becomes possible to define CLA versions for many important and
widely-used whole-program analyses.

– Framework instantiation: Our long-term goal is to design CLA versions
of existing whole-program analyses, based on the framework from above.
In this paper, we show how to instantiate the general approach to a par-
ticular form of the interprocedural reaching definitions analysis, which is a
classical dataflow problem. This analysis exemplifies the category of flow-
and context-sensitive dataflow analyses, which present the most challenging
targets for our theoretical approach.

– Experimental comparison: We present an experimental study which com-
pares CLA with its whole-program counterpart. The experiments indicate
that the CLA approach can produce significant reduction in analysis cost,
while at the same time achieving exactly the same precision.

2 Whole-Program Analysis

This section describes, at a high level, the classical formulation of whole-program
interprocedural dataflow analysis [28]. The input to the analysis is the source
code for a complete program. One of the procedures1 is designated as the main
procedure main . In the traditional model presented below, each call site invokes
only one procedure. A call that could invoke many procedures (e.g., due to virtual
dispatch or function pointers) can be modeled as a case statement where each
case corresponds to one unique target procedure. Given a complete program, a
whole-program analysis constructs a tuple 〈G, L, F, M, η〉 where

– G = (N, E) is an interprocedural control-flow graph (ICFG).
– L is a meet semi-lattice, with partial order ≤, meet operation ∧, and greatest

element �. To simplify the discussion, we assume that L has finite height.
– F ⊆ {f | f : L → L} is a monotone2 function space that is closed under

functional composition and functional meet.
– M : E → F is an assignment of dataflow functions to graph edges. Function

fe = M(e) encodes the effects of e’s execution.
– η ∈ L is the solution at the start node of main .

Graph G contains the control-flow graphs (CFGs) for the individual proce-
dures. Nodes n ∈ N correspond to statements, and intraprocedural edges e ∈ E
represent flow of control within the same procedure. The CFG for a procedure p
has an artificial start node startp and an artificial exit node exitp. Each single-
target call is represented by two nodes: a call-site node and a return-site node.

1 We will use “procedure” to refer to both procedures and methods.
2 That is, x ≤ y implies f(x) ≤ f(y) for any f ∈ F and x, y ∈ L.

Interprocedural Dataflow Analysis in the Presence of Large Libraries 5

There is an interprocedural edge e ∈ E from a call-site node to the start node
of the invoked procedure p; there is also a corresponding edge e ∈ E from exitp

to the return-site node. Dataflow functions are associated with these edges to
represent the effects of parameter passing and return values.

A path in G is a sequence of edges q = (e1, . . . , ek) such that the target of
ei is the same as the source of ei+1. The dataflow function associated with q is
the composition of the edge functions: fq = fek

◦ . . . ◦ fe1 . Not all ICFG paths
represent possible executions. A valid path has interprocedural edges that are
properly matched: each (exit,return-site) edge is matched correctly with the last
unmatched (call-site,start) edge on the path.

The meet-over-all-valid-paths solution MVPn for an ICFG node n describes
the program properties immediately before the execution of n. This solution is
MVPn =

∧
q∈VP(n) fq(η) where VP(n) is the set of all valid paths q leading

from the start node of main to n (paths q do not include n itself). An analysis
algorithm computes a solution Sn ∈ L at each node n; this solution is safe (i.e.,
correct) if Sn ≤ MVPn. There are well-known general algorithms for computing
safe solutions for dataflow problems; one such algorithm is outlined in Section 2.2.

2.1 Running Example

We will use the example in Figure 1 throughout the rest of the paper; the figure
also shows the corresponding ICFG. The example uses a C-style language to
illustrate a whole program built with two components: a library component and
a main component. We consider the classical reaching definitions problem. The
definitions k=0, k=2, k=3, k=7, and k=9 will be denoted by d0, d2, d3, d7, and

Fig. 1. Whole program, ICFG, and dataflow functions

6 A. Rountev, S. Kagan, and T. Marlowe

d9 respectively. The set of all definitions of k will be denoted by Dk. Similar
notation will be used for the remaining variables. The lattice for the problem
is the powerset of D = {d0, . . . , d9}, with partial order ⊇, meet operation ∪,
top element � = ∅, and bottom element ⊥ = D. The non-identity dataflow
functions are shown next to the corresponding edges in Figure 1. For example,
the function for k=3 is f3(x) = (x − Dk) ∪ {d3}, where x ⊆ D.

2.2 The Functional Approach of Sharir and Pnueli

One of the classical techniques for solving whole-program dataflow problems is
the “functional approach” by Sharir and Pnueli [28]. The essence of this approach
is the creation and use of summary functions. A summary function φn : L → L
for a node n represents the solution at n as a function of the solution at the
start node of the procedure containing n. For example, in Figure 1, φ27 = f7,
φ28 = f8 ◦ f7, and φ11 = f2 ∧ f3. (As usual, for any g, h : L → L, the functional
meet k = g ∧ h is such that k(x) = g(x) ∧ h(x) for any x.) In the case when n
is the exit node of a procedure p, φn can be used as a summary function fp for
the entire procedure.

Phase I of Sharir-Pnueli’s analysis computes summary functions for all ICFG
nodes. This fixed-point computation uses the summary functions for p’s callees
to compute the summary function for nodes inside p. For example, in Figure 1,
fp3 = f8 ◦ f7 and fext = f9. Inside p2, these functions can be used to compute,
for example, φ19 = fext and φ21 = (f4 ◦ fext) ∧ (f5 ◦ fext) ∧ (fp3 ◦ f6). In the
output of the first phase, we have fp3 = φ28 = f8◦f7, fext = φ31 = f9, fp2 = φ21,
fp1 = φ13 = (fp2 ◦ f2) ∧ (fp2 ◦ f3), and fmain = φ6 = fp1 ◦ f1 ◦ f0.

Phase II of the analysis propagates lattice elements using the summary func-
tions. In Figure 1, the value η = ∅ at the start node 1 of main is propagated to
call-site node 4, as φ4(η) = (f1 ◦f0)(∅) = {d0, d1}. This value is then propagated
to the start node of p1, and from there to call-site node 11 as φ11(φ4(η)). In
turn, the value at 11 is propagated to the start node of p2, and to call-site nodes
16 and 22 as φ16(φ11(φ4(η))) and φ22(φ11(φ4(η))), respectively. In general, the
propagation occurs only among start nodes and call-site nodes, and stabilizes
when the solutions at start nodes are fully computed. Phase III of the analysis
can be performed on demand. Whenever the solution at a node n is needed, it
can be computed as φn(Sstart), where Sstart is the solution computed by phase II
for the start node of n’s procedure.

2.3 Using the Functional Approach for Component-Level Analysis

In Sharir-Pnueli’s approach the bulk of the computation is performed during
phase I when all ICFG nodes need to be visited, possibly multiple times. Phase II
involves only start nodes and call-site nodes. Phase III is performed on demand,
and its cost is proportional to the number of distinct queries made by an analysis
client. In this paper we focus our efforts on reducing the cost of phase I by using
pre-analysis of Lib.

In the simplest case, the pre-analysis of Lib and the subsequent component-
level analysis of Main are trivial. Suppose each call site in Lib is monomorphic

Interprocedural Dataflow Analysis in the Presence of Large Libraries 7

and its target does not depend on the code in the main component. For exam-
ple, this is true for C programs that do not use function pointers, and for Java
programs that do not make virtual calls. Clearly, the phase I computation for
all library procedures can be performed independently of any main component.
The summary functions fp for all exported library procedures p can be stored
as the library summary. Later, when CLA of some main component is performed,
the phase I computation for that Main will compute φn for all nodes n in this
main component, using the pre-computed summary functions for library proce-
dures. Phase II can be restricted only to the portion of the call graph that is in
Main , and phase III can answer on-demand questions about the node solutions
in Main .

Unfortunately, this approach is possible only in the absence of callbacks from
Lib to Main . However, callbacks are common in real-world software. For exam-
ple, in C code, one of the parameters of a library function p could be a function
pointer g to a callback function defined in Main . A call (*g)(..) inside p in-
vokes the callback function. Clearly, the complete behavior of p is not known at
summary-generation time, and it is not possible to create a summary function
fp. This is a realistic problem, because callbacks through function pointers occur
often in C libraries [17]. Callbacks also occur often in object-oriented software.
Consider a library method m(A *a) in C++ or m(A a) in Java, where A is a
library class. Suppose some Main creates a subclass B of A that overrides some
of A’s methods. If Main calls m with an actual parameter that is a pointer to an
instance of B, a virtual call through a inside m may invoke a method defined in
B. Of course, this situation is common for extensible object-oriented libraries.

Even in the absence of callbacks, in many cases it is still not possible to create
a precise summary function for a library procedure. Consider the following Java
example: the library contains a procedure p with a virtual call a.m(), where the
static type of a is library class A. Suppose the library contains classes B and
C that are subclasses of A, and method A.m is overridden by B.m and C.m. A
conservative pre-analysis of the library has to assume that a.m() could invoke
any of these three methods, and as a result the summary function for p will
depend on all three callees. But if some Main instantiates and uses only C, for
example, the pre-computed summary function for p will be overly conservative.
Since the calling relationships at virtual calls in Lib depend on the execution
context created by Main , any library procedure that contains polymorphic calls
presents a problem for the functional approach.

3 Summary Computation for Component-Level Analysis

Consider again the program in Figure 1. Suppose the library component Lib were
built as a reusable component, independent of the particular main component
in the figure. Furthermore, for the sake of the example, assume that p1 were
made visible to (and callable by) future main components, while the remain-
ing library procedures were hidden from such components using some language
mechanism.

8 A. Rountev, S. Kagan, and T. Marlowe

Suppose we wanted to compute summary information for Lib in order to
use it later when performing component-level analysis of any main component
Main (including the main component from Figure 1). The summary will be
main-component-independent, and the only information used for computing this
summary will be the source code of Lib. Our goal is to construct a library
summary with the following property: the subsequent summary-based CLA of
Main must produce for each ICFG node n in the main component the same
solution as the solution that would have been computed for n by a whole-program
analysis of the source code of Main ∪ Lib.

One possible summary information contains the ICFG of the library together
with some encoding of the dataflow functions at the ICFG edges. However, such
a summary contains redundant details that are irrelevant for the CLA of Main .
As a result, phase I of CLA will have the same cost as phase I of a whole-program
analysis would have had. Furthermore, due to the redundant information, the
summary would be unnecessarily large, making it expensive to store and read.

We propose a general approach that can be used to create a more concise
library summary. The approach will be illustrated for the example in Figure 2,
but this technique is conceptually applicable to any interprocedural dataflow
analysis. (In [22] we show how to handle flow- and context-insensitive analyses.)
The basic idea is to compute summary functions that capture the effects of all
relevant library-local ICFG paths. The functions are then included in the library
summary together with information about the program points that could be
affected by future main components. Figure 2 shows the summary information
computed for Lib by our approach. Combining this summary with the ICFG for
any main component Main allows component-level analysis of Main .

Fig. 2. (a) ICFG for Lib (b) condensed ICFG and summary functions for Lib

Interprocedural Dataflow Analysis in the Presence of Large Libraries 9

3.1 Library Pre-analysis for Summary Generation

Fixed calls. The pre-analysis of the source code of Lib constructs the ICFG for the
library and identifies the calls at which the target procedures may depend on the
main component. If a call site in Lib always invokes the same library procedure,
regardless of the code in any main component, we will refer to it as a fixed call.
In C code, any call that is not through a function pointer is a fixed call. In Java,
we can use the following simple criterion for fixed calls: (1) any call that does not
correspond to the bytecode instructions virtualinvoke or interfaceinvoke is
a fixed call, and (2) a virtualinvoke call is fixed if the static type of the receiver
is a final class, or the compile-time target method is a final or private method.
Note that it may be possible to employ conservative analyses (e.g., [23, 13]) to
identify additional fixed calls that do not satisfy these rather restrictive criteria;
such analyses can be performed with worst-case assumptions about the behavior
of the unknown main components.

Fixed procedures. We will recursively define a library procedure p to be fixed if (1)
p contains no calls, or (2) p contains only fixed calls and they invoke only fixed
procedures. All transitive callees of p are known at library pre-analysis time,
and the Sharir-Pnueli approach can be used to compute a summary function
fp. The library pre-analysis identifies all fixed procedures p and computes the
corresponding summary functions. In Figure 2 the only fixed procedure is p3
and the analysis computes fp3 = f8 ◦ f7.

Non-fixed procedures. After processing the fixed procedures, the library pre-
analysis considers all non-fixed procedures. The analysis computes a set of sum-
mary functions ψk

n : L → L for each ICFG node n in each such procedure. Here
k is an ICFG node that belongs to the same procedure as n, and is one of the
following: (1) the start node of the procedure, (2) the return-site node for a non-
fixed call, or (3) the return-site node for a fixed call to a non-fixed procedure.
Intuitively, k represents a program point which depends on unknown main com-
ponents. For example, for node 21 in Figure 2, the approach would construct
two functions ψ14

21 and ψ17
21 . During phase I of the subsequent component-level

analysis of a main component, these functions allow us to express the summary
function at 21 as φ21 = ψ14

21 ∧(ψ17
21 ◦fcallback ◦ψ14

16), where fcallback is the summary
function for the callback procedure from the main component.

Computation of summary functions. Figure 3 defines a worklist-based algorithm
for computing the summary functions. The algorithm first initializes functions
ψk

k to the identity function λx.x. For all other n, ψk
n is initialized to a function

that maps every lattice element to �; as usual, � represents the lack of any infor-
mation. In our running example, the identity function is associated with nodes
7, 12, 14, and 17. After initialization, functions ψk

n are computed incrementally
using functional composition and functional meet. A function ψk

n captures the
semantic effects of certain ICFG paths from k to n. For example, there are two
paths from node 7 to node 11 in Figure 1. Function f2 is propagated to 11 along

10 A. Rountev, S. Kagan, and T. Marlowe

procedure Summary Computation For Nonfixed Procedures
for each non-fixed procedure p do

initialize ψ
startp
startp

:= λx.x and put (startp, startp) on the worklist
for each return-site r for a non-fixed call, or for a fixed call to a non-fixed procedure do

initialize ψr
r := λx.x and put (r, r) on the worklist

for each other node n and each applicable k do initialize ψk
n := λx.�

while the worklist is not empty do
remove pair (k, n) from the worklist
case 1: if n is not a call-site node or a method exit do

for each ICFG successor node n′ of n do propagate(k, n′, f(n,n′) ◦ ψk
n)

case 2: if n is a fixed call-site, with return-site r, calling fixed procedure p do
propagate(k, r, f(exitp,r) ◦ fp ◦ f(n,startp) ◦ ψk

n)
case 3: in all other cases, do nothing

procedure propagate(k, n, f)
ψk

n := ψk
n ∧ f

if ψk
n has changed, put (k, n) on the worklist

Fig. 3. Computation of summary functions for non-fixed library procedures

one path, and function f3 is propagated along the other path. Thus, the summary
analysis will compute ψ7

11 = f2∧f3 = λx.(x−Dk)∪{d2, d3}. As another example,
at return-site 24 we have ψ14

24 = fp3 ◦ ψ14
23 = f8 ◦ f7 ◦ f6.

The computed summary functions are then used to construct the library
summary. First, for every fixed procedure p that is visible to future
main components, the summary includes the summary function fp. For every
non-fixed p, the summary contains the set Ψp of all functions ψk

n such that n
is (1) the exit node of p, (2) the call-site node for a non-fixed call in p, or
(3) the call-site node for a fixed call in p to a non-fixed procedure. For exam-
ple, for p1 in Figure 2, Ψp1 = {ψ7

11, ψ
12
13} because 11 is a call-site node for a

fixed call to the non-fixed procedure p2. Similarly, for p2, the summary contains
Ψp2 = {ψ14

21 , ψ
14
16 , ψ

17
21}.

The functions in Ψp implicitly define a “condensed” CFG for p. The nodes in
this condensed graph are all k and n such that ψk

n ∈ Ψp. For every ψk
n ∈ Ψp that

is different from λx.�, there is an edge from k to n in the condensed CFG, with
edge dataflow function ψk

n. These edges represent sets of paths from the original
CFG. Figure 2(b) shows the condensed graphs for non-fixed procedures p1 and
p2. The condensed CFG for p3 (not shown in the figure) has only a start node,
an exit node, and a single edge with edge dataflow function fp3.

Note that the summary functions are being constructed without any knowl-
edge about the future main components and about the lattice elements that
correspond to these main components. For the running example, the summary
analysis has no information about the definitions that are generated by main
components. For example, in ψ7

11 = λx.(x − Dk) ∪ {d2, d3}, the set Dk of def-
initions of k is not known completely. However, complete knowledge of Dk is
not necessary to encode this function. It is enough to represent the fact that
all definitions of k are killed—both the known ones from the library and the
unknown ones created by future main clients.

Interprocedural Dataflow Analysis in the Presence of Large Libraries 11

3.2 Analysis of a Main Component

The summary functions and the condensed CFGs defined by them can be used
to perform component-level analysis of any main component that is built on top
of Lib. Such an analysis is straightforward. First, the condensed CFGs for the
library procedures are added to the ICFG for the main component, together
with the appropriate interprocedural edges. The resulting condensed ICFG is
used as input to phase I of Sharir-Pnueli’s whole-program analysis. For any
node n in the condensed ICFG, the summary function φ′

n computed by this
phase I is a safe approximation of the summary function φn that would have
been computed for n by phase I of the standard whole-program analysis of the
“normal” non-condensed ICFG—in other words, we have φ′

n(x) ≤ φn(x) for
any x ∈ L. In the case when all dataflow functions are distributive—that is,
f(x ∧ y) = f(x) ∧ f(y)—there is no loss of precision, and φ′

n = φn.
Phases II and III on the condensed ICFG are similar to phases II and III on

the original ICFG. For any node n, the solution S′
n computed by phase III of

the analysis on the condensed graph is a safe approximation of the solution Sn

computed by phase III of the analysis of the original ICFG—that is, S′
n ≤ Sn. If

the dataflow functions are distributive, we have S′
n = Sn, and the component-

level analysis achieves the same precision as the whole-program analysis.

3.3 Analysis Implementation

The approach described above provides the conceptual foundations for design-
ing CLA versions of whole-program analyses. In order to implement an actual
analysis, an analysis builder has to address two important issues.

First, the library summary should contain enough information so that the
CLA of Main can compute a whole-program call graph, in order to construct
the interprocedural edges in the condensed ICFG. As a simple example, for
Figure 2, the summary could record the fact that the call at node 16 is through
a function pointer, and that no function addresses are taken in the library. The
CLA of Main can resolve the call at 16 to any procedure whose address is
taken in Lib or in Main ; for the particular main component in Figure 1, the
only possible target is ext. As another simple example, for a Java library, the
summary can store the static receiver type and static target method for each
non-fixed call site. When the code of Main becomes available, the whole-program
class hierarchy can be constructed and used to determine the potential target
methods at non-fixed library calls. Of course, more sophisticated approaches
for call graph construction are possible. The adaptation of these techniques to
component-level analysis is beyond the scope of this paper; some existing work
already solves certain instances of this problem (e.g., [24]).

A second key issue for component-level analysis is the representation, compo-
sition, and meet of dataflow functions. The function space should allow compact
representation of functions. For a large number of important dataflow problems,
such compact representations have already been defined. In particular, inter-
procedural finite distributive subset (IFDS) problems [18] and interprocedural

12 A. Rountev, S. Kagan, and T. Marlowe

distributive environment (IDE) problems [27] have compact function representa-
tions and efficient functional composition and functional meet [19, 18, 27]. These
two categories of problems are significant because they cover a large number of
widely used interprocedural analyses [19] such as reaching definitions, available
expressions, live variables, truly-live variables, possibly-uninitialized variables,
several forms of constant propagation, flow-sensitive side-effects, some forms of
may-alias and must-alias analysis, interprocedural slicing, 0-CFA type analysis
for Java [9], field-based points-to analysis for Java [15], and object naming anal-
ysis [21]. The general theoretical approach described earlier can be instantiated
to IFDS/IDE problems by using graph-based analysis algorithms similar to the
whole-program algorithms from [19, 18, 27]. Using these techniques, it becomes
possible to design CLA versions of many important and widely-used analyses.

In the particular case of the reaching definitions analysis, a function f can be
represented by a pair (K, G) where K is the set of definitions killed by f , and G
is the set of definitions generated by f . The functional meet of f1 = (K1, G1) and
f2 = (K2, G2) is represented by (K1 ∩K2, G1 ∪G2). The functional composition
f2 ◦ f1 corresponds to (K1 ∪ K2, (G1 − K2) ∪ G2).

4 Experimental Study

This section presents an experimental study which evaluates the effectiveness
of the proposed approach for CLA. The study was performed on the 19 Java
programs shown in Table 1. Each program was processed using the Soot frame-

Table 1. Analyzed programs

Program User Methods All Methods User CFG Nodes All CFG Nodes
jb-6.1 149 7130 2888 117781
socksproxy 113 7178 2449 118969
jlex-1.2.6 133 7113 7210 122095
RabbIT2 184 7368 3455 122755
javacup-0.10j 332 7312 9066 124000
sablecc-2.18.2 1744 8755 24149 139498
db 96 17755 2397 303193
compress 100 17760 2399 303201
fractal 184 17919 3526 305731
raytrace 219 17878 5179 305973
socksecho 176 17966 3562 306658
jack 349 18008 11541 312333
jtar-1.21 224 18152 6145 312562
jess 641 18323 12365 313375
mpegaudio 307 17967 14304 315094
jflex-1.4.1 509 18217 14826 315936
mindterm-1.1.5 598 18385 17792 321948
muffin-0.9.3a 933 18820 18383 323560
javac 1185 18868 25496 326524

Interprocedural Dataflow Analysis in the Presence of Large Libraries 13

work [30] version 2.2.2, on top of the J2SE 1.4.2 libraries. The experiments were
performed on a 2.8GHz Pentium4 PC with 2GB of RAM running Sun’s HotSpot
Client VM version 1.4.2 using a maximum heap size of 1.5GB (JVM option Xmx).

For each of the data programs, we utilized Soot’s call graph construction
algorithm based on class hierarchy analysis. Column User Methods shows the
number of reachable methods which are declared in the program code (i.e., all
reachable non-library methods). The total number of reachable methods is listed
in column All Methods. As Table 1 shows, the vast majority (80.1% to 99.5%) of
reachable methods were contained in the libraries. These measurements clearly
indicate that the cost of whole-program analysis will be dominated by the cost
to analyze the relevant library code. This observation provides a very strong
motivation for using summary-based component-level analysis of Main .

For each of the data programs, we constructed the whole-program ICFG.
Columns User CFG Nodes and All CFG Nodes of Table 1 describe the number
of ICFG nodes. Again, the large majority of nodes (between 82.7% and 99.2%)
were in the Java libraries. Using the techniques described in Section 3.1, we con-
structed the “condensed” version of the ICFG. The reduction of the number of
nodes (shown in Table 2) was substantial, with the condensed ICFGs contain-
ing 59.2% to 71.4% fewer nodes than the original ICFGs. Our experiments also
showed that the reduction in the number of ICFG edges was equally significant;
for brevity, we do not present these results. Since the cost of dataflow analyses
typically depends on ICFG size, these results clearly show that a summary-based
approach can achieve considerable cost reduction.

To measure the savings achieved by our technique, we implemented Sharir-
Pnueli’s Phase I for a variation of the reaching definitions problem for Java.
Java has three types of memory locations: local variables, instance fields, and
static fields. For local variables, the reaching definitions problem is purely intra-
procedural. For instance fields, an alias analysis must be used to resolve indirect
accesses through object references. Since such resolution is typically done with
a may-alias analysis, field definitions cannot be killed safely; as a result, the
dataflow functions are different from the ones in the classical reaching definitions

Table 2. Reduction in the number of ICFG nodes

Condensed Condensed
Program Nodes Reduction Program Nodes Reduction
jb 35556 69.8% socksecho 88453 71.2%
socksproxy 35604 70.1% jack 95926 69.3%
jlex 39876 67.3% jtar 91722 70.7%
RabbIT2 37155 69.7% jess 96817 69.1%
javacup 41733 66.3% mpegaudio 98689 68.7%
sablecc 56954 59.2% jflex 99376 68.6%
db 86783 71.4% mindterm 102769 68.1%
compress 86789 71.4% muffin 103864 67.9%
fractal 88195 71.2% javac 109965 66.3%
raytrace 89563 70.7%

14 A. Rountev, S. Kagan, and T. Marlowe

Table 3. Running time of the analysis (in seconds) and % time reduction

Program WPA CLA Program WPA CLA
jb 97.3 19.2 (80.2%) socksecho 658.5 328.6 (50.1%)
socksproxy 96.1 20.5 (78.6%) jack 665.2 322.6 (51.5%)
jlex 101.2 17.5 (82.8%) jtar 682.3 349.6 (48.8%)
RabbIT2 101.1 22.1 (78.2%) jess 665.1 334.6 (49.7%)
javacup 116.6 24.0 (79.4%) mpegaudio 585.9 240.1 (59.0%)
sablecc 139.3 34.5 (75.2%) jflex 686.0 454.1 (33.8%)
db 656.1 392.5 (40.2%) mindterm 648.6 342.0 (47.3%)
compress 597.5 300.4 (49.7%) muffin 658.1 366.1 (44.4%)
fractal 676.0 261.5 (61.3%) javac 656.1 346.7 (47.2%)
raytrace 651.3 417.1 (36.0%)

problem. Thus, we implemented a reaching definitions analysis for static fields
only, where the dataflow functions are of the form described in Section 2.

Table 3 shows the analysis running time (in seconds) using both whole-
program analysis (column WPA) and component-level analysis (column CLA).
The reduction in running time ranged from 33.8% to 82.8%, with an average
of 57.5%. Even though Table 3 only shows results for one particular dataflow
analysis, we believe that due to the ICFG reduction, such dramatic savings will
not be limited to the reaching definitions problem. Studying the effects of CLA
on other dataflow analyses remains open for future investigations.

5 Related Work

Many techniques have been introduced for efficient dataflow analysis, with var-
ious representations of the flow of control and data. Examples include the elim-
ination algorithms from [26] and the flow graph summarization of Callahan [1].
Our condensed ICFG is conceptually similar to the program summary graph
from [1]. Efficient data flow representation is typically in terms of groups of
problems, beginning with the slot-wise problems (e.g., [7]), eventually leading to
the formulation of the IFDS and IDE frameworks [18, 27].

Various whole-program dataflow analyses construct summary information
about a procedure, and then use this information when analyzing the callers of
that procedure. An early example are the jump functions used for interprocedural
constant propagation [10]. As another example, several analyses [2, 4, 31, 3, 25]
perform a bottom-up traversal of the program call graph and compute a sum-
mary function for each visited procedure. This summary function is then used
when analyzing the callers of that procedure and when constructing their sum-
mary functions. Summary functions can also be created in top-down manner,
by introducing all possible contexts at the entry of the analyzed procedure [11].
Some approaches compute summary information for a software component inde-
pendently of the callers and callees of that component. One particular technique
is to compute partial analysis results for each component, to combine the results

Interprocedural Dataflow Analysis in the Presence of Large Libraries 15

for all components in the program, and then to perform the rest of the anal-
ysis work (e.g., [5, 8, 6, 12, 24]). Sometimes conservative assumptions are used
instead of pre-computed summaries (e.g., [29]). Finally, there is related work on
incremental and parallel dataflow analysis (e.g., [16, 14]) in which the idea of
a representative problem is introduced, and in which intensive local analysis is
followed by a quick postpass to recover the actual solutions.

6 Conclusions and Future Work

The use of library summaries is essential for interprocedural dataflow analysis
of modern software systems that are built with large library components. We
propose a general theoretical framework for summary-based analysis, and present
initial results that strongly indicate the potential of this technique to reduce
analysis cost. In future work, we will (1) instantiate the framework to a range
of popular dataflow analyses, starting with IFDS and IDE analyses, and (2)
implement and evaluate these analyses, in order to gather experimental evidence
of the benefits of the proposed approach. We will also consider systems built with
multiple library components (e.g., libraries that use other libraries).

Acknowledgment. We would like to thank the CC reviewers for their helpful
comments and suggestions.

References

1. D. Callahan. The program summary graph and flow-sensitive interprocedural data
flow analysis. In Conf. Programming Language Design and Implementation, pages
47–56, 1988.

2. R. Chatterjee, B. G. Ryder, and W. Landi. Relevant context inference. In Symp.
Principles of Programming Languages, pages 133–146, 1999.

3. B. Cheng and W. Hwu. Modular interprocedural pointer analysis using access
paths. In Conf. Programming Language Design and Implementation, 2000.

4. J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for
Java. In Conf. Object-Oriented Programming Systems, Languages, and Applica-
tions, pages 1–19, 1999.

5. M. Codish, S. Debray, and R. Giacobazzi. Compositional analysis of modular logic
programs. In Symp. Principles of Programming Languages, pages 451–464, 1993.

6. M. Das. Unification-based pointer analysis with directional assignments. In Conf.
Programming Language Design and Implementation, pages 35–46, 2000.

7. D. Dhamdhere, B. Rosen, and K. Zadeck. How to analyze large programs efficiently
and informatively. In Conf. Programming Language Design and Implementation,
pages 212–223, 1992.

8. C. Flanagan and M. Felleisen. Componential set-based analysis. ACM Trans.
Programming Languages and Systems, 21(2):370–416, Mar. 1999.

9. D. Grove and C. Chambers. A framework for call graph construction algorithms.
ACM Trans. Programming Languages and Systems, 23(6):685–746, Nov. 2001.

10. D. Grove and L. Torczon. Interprocedural constant propagation: a study of jump
function implementation. In Conf. Programming Language Design and Implemen-
tation, pages 90–99, 1993.

16 A. Rountev, S. Kagan, and T. Marlowe

11. M. J. Harrold and G. Rothermel. Separate computation of alias information for
reuse. IEEE Tran. Software Engineering, 22(7):442–460, July 1996.

12. N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA. In Conf.
Programming Language Design and Implementation, pages 254–263, 2001.

13. F. C. Kuck. Class analysis for extensible Java software. Master’s thesis, Ohio State
University, Sept. 2004.

14. Y.-F. Lee and B. G. Ryder. A comprehensive approach to parallel data flow anal-
ysis. In Int. Conf. Supercomputing, pages 236–247, 1992.

15. O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In Int.
Conf. Compiler Construction, LNCS 2622, pages 153–169, 2003.

16. T. J. Marlowe and B. G. Ryder. An efficient hybrid algorithm for incremental data
flow analysis. In Symp. Principles of Programming Languages, pages 184–196,
1990.

17. A. Milanova, A. Rountev, and B. G. Ryder. Precise call graphs for C programs
with function pointers. Int. J. Automated Software Engineering, 11(1):7–26, 2004.

18. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Symp. Principles of Programming Languages, p. 49–61, 1995.

19. T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataflow analysis via graph
reachability. Technical Report TR 94-14, Datalogisk Institut, University of Copen-
hagen, Apr. 1994.

20. A. Rountev. Component-level dataflow analysis. In Int. Symp. Component-Based
Software Engineering, LNCS 3489, pages 82–89, 2005.

21. A. Rountev and B. H. Connell. Object naming analysis for reverse-engineered
sequence diagrams. In Int. Conf. Software Engineering, pages 254–263, 2005.

22. A. Rountev, S. Kagan, and T. Marlowe. Interprocedural dataflow analysis in the
presence of large libraries. Technical Report OSU-CISRC-1/06-TR01, Jan. 2006.

23. A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing of
polymorphism in Java software. IEEE Tran. Software Engineering, 30(6):372–387,
June 2004.

24. A. Rountev and B. G. Ryder. Points-to and side-effect analyses for programs built
with precompiled libraries. In Int. Conf. Compiler Construction, LNCS 2027, pages
20–36, 2001.

25. E. Ruf. Effective synchronization removal for Java. In Conf. Programming Lan-
guage Design and Implementation, pages 208–218, 2000.

26. B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis. ACM
Computing Surveys, 18(3):277–316, 1986.

27. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Comp. Sci., 167:131–170, 1996.

28. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications, pages 189–234. 1981.

29. F. Tip, P. Sweeney, C. Laffra, A. Eisma, and D. Streeter. Practical extraction
techniques for Java. ACM Trans. Programming Languages and Systems, 24(6):625–
666, 2002.

30. R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.
Optimizing Java bytecode using the Soot framework: Is it feasible? In Int. Conf.
Compiler Construction, LNCS 1781, pages 18–34, 2000.

31. J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In Conf. Object-Oriented Programming Systems, Languages, and Appli-
cations, pages 187–206, 1999.

	Introduction
	Whole-Program Analysis
	Running Example
	The Functional Approach of Sharir and Pnueli
	Using the Functional Approach for Component-Level Analysis

	Summary Computation for Component-Level Analysis
	Library Pre-analysis for Summary Generation
	Analysis of a Main Component
	Analysis Implementation

	Experimental Study
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

