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ABSTRACT
Android devices have limited hardware resources (e.g., mem-
ory). Excessive consumption of such resources may lead to
crashes, poor responsiveness, battery drain, and negative
user experience. We propose an approach for systematic au-
tomated test generation to expose resource leak defects in
Android applications. We first define the notion of a neutral
sequence of GUI events. Intuitively, such a sequence can be
expected to have “neutral” effects on resource consumption,
and repeated executions of this sequence should not exhibit
resource growth. Using a state-of-the-art static control-flow
model of an Android application, we demonstrate how to
achieve automated generation of such sequences. We then
define test generation algorithms for two important cate-
gories of neutral sequences, based on common leak patterns
specific to Android. Our experimental evaluation compares
this approach with a non-automated approach from prior
work. The results from this evaluation strongly indicate that
it is possible to achieve effective, general, and automated test
generation for resource leaks in Android applications using
the proposed techniques.

1. INTRODUCTION
The market for Android devices has experienced expo-

nential growth during the past few years [8]. Aiming to
provide long-lasting yet portable daily computing services,
smartphones are usually equipped with low-power electronic
components and limited hardware resources. For exam-
ple, in Android’s Dalvik virtual machine (VM) the avail-
able heap memory for an application typically ranges from
16 MB to 192 MB depending on device specifications. In
contrast, in traditional laptops and PCs there are hundreds
even thousands of MB available in the heap of VMs. Other
examples of limited resources include bitmaps, binders (used
by Android’s inter-process communication mechanism) and
threads. Excessive consumption of such resources may lead
to crashes, poor responsiveness, battery drain [26], and neg-
ative user experience.
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The target of our work is systematic automated test gen-
eration to expose resource leak defects in Android applica-
tions. For such applications, the management of resources is
challenging. Google’s training and best-practices documents
[10, 11] offer numerous suggestions to help developers avoid
common pitfalls in resource management and usage, e.g.,
resource leaks where applications fail to release resources
appropriately. For software engineering researchers, these
guidelines provide an opportunity to automate the detec-
tion and prevention of resource leak defects.

Automated testing for Android has seen significant ad-
vances over the last few years; a recent study by Choudhary
et al. [6] summarizes some of these efforts. However, test-
ing for resource leaks has not been investigated extensively.
Random testing approaches (e.g., [12, 16, 19]) cannot be ex-
pected to trigger the repeated behaviors needed to observe
leaks. Targeted exploration/testing approaches (e.g., [1, 2,
3, 4, 15, 17, 20, 25, 32] are primarily interested in achiev-
ing high coverage of possible application behaviors. Our
prior work [28] considers testing for resource leaks, but re-
lies on manual control-flow modeling and employs simplistic
test selection criteria that lack generality, require applica-
tion knowledge, and are not automated.

Our proposal. We propose an automated approach for
test generation and execution, based on the following novel
contributions. First, we define the notion of a neutral se-
quence of GUI events. Suppose the current activity is a (ac-
tivities are the main components of Android applications).
A neutral sequence triggers a series of window-open and
window-close operations that (1) balance each other out—
that is, each newly-opened window is closed, (2) a may be
replaced with another instance a′ of the same activity class,
and (3) other windows that exist before the sequence starts
are not affected. Intuitively, such a sequence can be ex-
pected to have “neutral” effects on resource consumption,
and repeated executions of this sequence should not ex-
hibit resource growth. While an earlier notion of neutral
sequences was considered in our prior work [28], in this pa-
per we provide a much more general and precise definition
which, unlike the one from [28], can be used for system-
atic and automated generation of neutral sequences and the
corresponding test cases, with the help of a general static
control-flow analysis for Android.

The second contribution of our approach is a test genera-
tion algorithm that targets two important categories of neu-
tral sequences. The first category considers repeated execu-
tions of neutral sequences for one activity a and its related
“helper” windows: options menus, context menus, and di-



alogs. This category is based on the observation that leaks
often are caused by the mismanagement of resources dur-
ing the lifecycle of an activity [13]. The second category
includes sequences that capture the interaction of two ac-
tivities a and a′ (and their related menus and dialogs); this
is another common leak pattern. Our static analysis algo-
rithms systematically explore the space of possible neutral
sequences for these two categories, using a general state-of-
the-art static model of an application’s GUI.

The last contribution of our work is a series of experi-
ments that compare the leak detection of the proposed au-
tomated approach with the manual approach from our prior
work [28]. In that earlier work, application-specific knowl-
edge was needed for several aspects of the test generation.
We demonstrate that the new automated test generation has
comparable performance—it discovers 16 out of the 18 leak
defects detected in [28], as well as 2 new defects that were
not detected in the prior work. These results strongly in-
dicate that it is possible to achieve effective, general, and
automated test generation for resource leaks in Android ap-
plications using the proposed techniques.

2. BACKGROUND
This section describes the GUI semantics that drives the

application’s behavior and then defines the notion of “neu-
tral” event sequences used by the proposed test generation.

2.1 Relevant Android GUI Features

Windows and views. Activities are instances of subclasses
of android.app.Activity. They are the major application
components and correspond to GUI windows that interact
with the user through a set of GUI widgets. The widgets are
referred to as “views” in Android terminology.

We also consider the windows for dialogs and menus. Di-
alogs are objects from subclasses of android.app.Dialog.
Menus are associated with activities (“options” menus) and
widgets (“context” menus); they instantiate classes that im-
plement android.view.Menu. A dialog or a menu is intended
for a short interaction with the user on behalf of the activ-
ity that is currently displayed (the owner activity for that
dialog or menu). Dialog/menu lifetime is contained within
the lifetime of its owner activity. For each activity a, let the
cluster of a, denoted by cluster(a), be the set containing a
and all menus and dialogs owned by a. Let Win denote the
set of all run-time windows and View denote the set of all
run-time widgets in these windows.
. Example: Figure 1 shows an example derived from a

real-world leak in connectbot described in [28]. Class Host-
ListActivity defines an activity. Methods onCreate and
onDestroy are lifecycle callbacks (discussed shortly) called
by the framework when the activity starts and terminates.
Field list at line 4 is a list widget for displaying a sequence
of list item widgets (for remote SSH hosts). The call at line 5
attaches a listener for“click”events on list items. The call at
line 7 allows a context menu to be associated with a list item.
When the user performs a “long click” event on an item, an
instance of ContextMenu is created, onCreateContextMenu is
invoked on it, and a menu item edit for editing the selected
SSH host is added to the context menu. Such menu items
will be referred to as“views”(although they are not instances
of View). Field sort is also a menu item used for sorting the
elements in list. If the user presses the hardware MENU

1 public class HostListActivity extends Activity {
2 private MenuItem sort;
3 public void onCreate() { ...
4 ListView list = this.getListView(); ...
5 list.setOnItemClickListener(
6 new OnItemClickListener() { ... });
7 registerForContextMenu(list); ... }
8 public void onDestroy() { ... }
9 public boolean onCreateOptionsMenu(Menu menu) {
10 sort = menu.add(R.string.list_menu_sortname);
11 sort.setOnMenuItemClickListener(
12 new OnMenuItemClickListener() { ... }); ... }
13 public void onCreateContextMenu(ContextMenu menu) {
14 MenuItem edit = menu.add(R.string.list_host_edit);
15 edit.setOnMenuItemClickListener(
16 new OnMenuItemClickListener() {
17 public boolean onMenuItemClick(MenuItem item) {
18 Intent i = new Intent(HostEditorActivity.class);
19 startActivityForResult(i, REQUEST_EDIT);
20 return true; } }); ... } ... }

21 public class HostEditorActivity extends Activity { ... }

Figure 1: Example derived from connectbot application.

button, the framework will create an options menu for the
activity and add sort to it (line 10). The owner activity for
the two menus is HostListActivity, and thus they form a
cluster together with it.

One of the test cases we generate will long-click on a list
item, then click the edit item in the context menu, and fi-
nally click the hardware BACK button to get back to the
list display. When this sequence of three events is repeated
several times, the application crashes. Every time HostLis-

tActivity is (re)entered, a background service is started
and a new binder object is returned. When the user leaves
the activity, the service is unbound. However, the binder ob-
ject is kept alive by references in the framework and cannot
be garbage collected. This leak is related to a documented
problem in the framework code.1 /

Events. A window can respond to widget events on the
views contained in this window. For such events we will use
the notation e = [v,k] where v ∈ View is a widget and k is
an event kind. For the example in Figure 1, we have events
[li ,click ] and [li ,long click ] where li is the list item widget
on which the event was triggered by the user. We also have
events [edit ,click ] and [sort ,click ] to represent the clicking
on the menu item edit (from the context menu) and sort
(from the options menu).

In addition to widget events, we need to consider default
events. Pressing the hardware BACK button is represented
by event back . Event rotate indicates that the user rotates
the screen, which recreates the current activity with a differ-
ent layout. Event home abstracts an interaction in which the
user presses the HOME button and then later resumes the
application. Event power corresponds to a scenario in which
the POWER button is used to turn off the screen, and then
the device is reactivated. As discussed earlier, event menu
indicates that the hardware MENU button was used to open
an options menu. We will use the notation e = [w,k] for de-
fault events; here w is the window that is currently active
and interacting with the user. In Figure 1, let a denote a
window of HostListActivity. There are five default events
[a,. . .]. Event [a,menu] creates the options menu m associ-
ated with a. For this menu we have events [m,. . .] for back ,
home, power and rotate. Let Event denote the set of all

1
code.google.com/p/android/issues/detail?id=6426



widget events and default events in the application.

Callbacks. When an event e ∈ Event occurs, it causes a se-
quence of callback invocations [c1,o1][c2,o2] . . . [cm,om]. Here
ci is a callback method defined in the application code, and
oi is a run-time object (either a widget or a window). Each
of these invocations completes before the next one starts.

Widget event handler callbacks respond to widget events;
an example is onMenuItemClick in Figure 1. Lifecycle call-
backs are used to manage the lifetime of activities, menus,
and dialogs. For example, in Figure 1, callback onCreate

and onDestroy indicate the creation and destruction of the
activity. The handling of default events also results in call-
back invocations: e.g., [a,home] for an activity a triggers
onPause, onStop, onRestart, onStart, onResume on a.
. Example: In Figure 1, consider widget event [li ,click ] on

some list item widget li . This event will trigger a callback in-
vocation [onItemClick,li ]. Similarly, consider [li ,long click ].
The Android framework defines an internal event handler for
this event; this handler creates a ContextMenu instance m
and triggers [onCreateContextMenu,m]. Event [edit,click ]
triggers [onMenuItemClick,edit] [onPause,a1] [onCreate,a2]
[onStart,a2] [onResume,a2] [onStop,a1] where a1 and a2 are
objects of HostListActivity and HostEditorActivity. /

Window transitions. A window transition, denoted by a
pair t = [w,w′] ∈ Win ×Win, indicates the scenario that
a new window w′ (possibly the same as w) becomes active
by performing a GUI event on the previously active window
w. Accordingly, for each transition t, we use ε(t) ∈ Event
and σ(t) to denote the event that causes t and the sequence
of callback invocations that occur as part of t. We model
the behavior of opening and closing windows of transition
t by a sequence of window push/pop operations performed
on a window stack which stores windows that are currently
active. We denote these effects by δ(t) ∈ ({push, pop} ×
Win)∗. Some behaviors cannot be modeled with a stack,
e.g., the launch modes for activities, but they are rarely
used [27] and thus not considered in this work.

Consider any sequence of transitions T = 〈t1, t2, . . . , tn〉
such that the target of ti is the same as the source of ti+1.
Let σ(T ) be the concatenation of callback invocation se-
quences σ(ti). Similarly, let δ(T ) be the concatenation of
window stack update sequences δ(ti). In general, these ef-
fects could involve several windows and can trigger compli-
cated callback sequences.

2.2 Neutral Sequences of Window Transitions
Given a window stack in which the top element is an ac-

tivity a, a neutral sequence of transitions T is one that leaves
the stack in the same state, except for possibly replacing a
with another instance a′ of the same activity class. If a′ is
the same instance as a, the sequence opens and closes new
windows, but never affects a or the windows that are below
a in the window stack. If a′ is a different instance than a,
then the execution of the sequence destroys a and replaces
it with a′, opens/closes other windows on top of a and a′,
but does not affect the stack elements below a.

Formally, let T = 〈t1, t2, . . . , tn〉 be such that the target
of ti is the same as the source of ti+1, the source of t1 is
a, and the target of tn is a′ where a′ is an instance of the
same activity class as a (it is possible that a′ is the same as
a). T is a neutral transition sequence if the stack updates

δ(T ) can be successfully applied to a stack containing only
a, resulting in final stack containing only a′. Equivalently,

Definition 1. T is a neutral transition sequence if the
string (push a) ◦ δ(T ) is an element of the language

L→ Balanced push a′ Balanced

where

Balanced → Balanced Balanced | push wi Balanced pop wi | ε

Here ◦ denotes concatenation. Balanced is the standard
language [22] that describes sequences of matching push and
pop operations—usually used to model balanced updates to
the call stack, but in our case modeling the window stack.

Intuitively, a neutral sequence represents a period of time
during which several new windows are created and destroyed,
without affecting windows that already exist at the start of
the period (except possibly for a). Such a sequence repre-
sents a potential target for test generation: if a test case
contains repeated executions of such a sequence, it may be
able to expose leaking behaviors. Since leaks sometimes in-
volve the destruction and re-creation of the current activity
(i.e., the activity a that is on top of the window stack when
the sequence starts), our definition allows a to be replaced
by a′. While prior work has defined a similar idea of a
“neutral cycle” [28], that work (1) considers only a simplis-
tic manually-created model of possible window transitions,
(2) does not consider the push/pop effects on the window
stack due to the transitions, and thus incorrectly models a
variety of run-time behaviors, and (3) considers only limited
categories of neutral sequences.
. Example: Sequence T = 〈t1, t2, t3〉 is a neutral transition

sequence that corresponds to a real leak in this application
(also see Figure 2 which illustrates a static abstraction of
the related window transitions). Transition t1 is triggered
by a long-click event on a list item in HostListActivity.
This event creates a context menu attached to the selected
item. Next, t2 is the transition from the context menu to
an instance of HostEditorActivity by clicking edit context
menu item, and t3 is the transition due to the default back
event from HostEditorActivity back to HostListActivity.
Transitions t1, t2, and t3 are illustrated by edges e8, e14, and
e15 in Figure 2. Given a stack in which the top element is
HostListActivity, this sequence leaves it with the same
state: a context menu is pushed (by t1) and popped (by t2),
followed by a push and pop of HostEditorActivity, without
any modification of the remaining stack. String (push a) ◦
δ(T ) is push a, push m, pop m, push a′, pop a′ where a and
a′ denote HostListActivity and HostEditorActivity re-
spectively, and m is the context menu attached to the clicked
element in the list of a. This string satisfies the property de-
fined in Definition 1. /

As another example, consider T = 〈t1, t2〉 in which t1
and t2 correspond to e3 and e4 in Figure 2. The sequence
captures the following scenario: first press the hardware
MENU button and then click the sort options menu item
to sort the list items of HostListActivity. In this case,
(push a)◦δ(T ) = push a, push m, pop m which also meet the
neutrality property of a transition sequence. As a final ex-
ample, if T contains only t1 = [a,a′] triggered by a screen ro-
tation event [a,rotate], then δ(T ) = pop a, push a′ because a
is destroyed and recreated as a′, and string (push a)◦δ(T ) =
push a, pop a, push a′ satisfies the desired property.



a1:

HostListActivity

e1: rotate

e2: home

m1:

OptionsMenu

e3: menu

m2:

ContextMenu
e8: [item,long_click]

e4: [sort,click]

e5: back

e6: home
e7: rotate

e11: rotate

e9: back

e10: home

a2:

HostEditorActivity

e14:

[edit,click]

Window Stack Ops:

e1:  pop a1, push a1

e3: push m1

e4: pop m1

e8:  push m2

e14: pop m2, push a2

e15: pop a2

e15: back

e12: rotate

e13: home

Figure 2: Window transition graph for the running example.

3. TEST GENERATION AND EXECUTION
The run-time behavior outlined earlier is first abstracted

by a static model introduced in prior work. Next, paths in
this model are used to define test coverage goals and the
corresponding algorithms for test generation.

3.1 Window Transition Graph
For the rest of the paper we will use Win, View, etc.

to denote sets of static abstractions rather than their run-
time counterparts. We employ an approach from our prior
work [24] in which activities, menus, dialogs, and views are
modeled statically and their propagation through the code
is tracked interprocedurally. Follow-up work [31, 30] defines
the window transition graph (WTG), a static model with
nodes w ∈ Win and edges t = [w,w′]. Each transition t
is annotated with trigger event ε(t), callback sequence σ(t),
and window stack changes δ(t). The public implementation
of WTG construction [9] was used in our test generation.

The window stack changes δ(t) (i.e., window push/pop
operations) are derived based on the window open/close
operations performed by callback invocation [ci,oi] ∈ σ(t).
Control-flow analysis of ci and its transitive callees is com-
bined with a constant propagation data-flow analysis (based
on the calling context oi) to eliminate infeasible control-flow
paths. This approach has been shown to produce precise
static control-flow modeling [30].

The notion of a run-time neutral sequence can be natu-
rally mapped to the notion of a WTG neutral cycle, based
on the matching of push/pop window stack operations de-
scribed in Definition 1. Since two run-time instances a and
a′ of the same activity class will be mapped to the same
WTG node, the static abstraction is a WTG cycle. In ad-
dition, we impose the constraint that a WTG neutral cycle
does not contain repeated edges, in order to disallow sub-
cycles. Note that repeated nodes in the cycle are possible
and desirable. For example, if one wanted to consider re-
peated executions of two widget events e1 = [v1,k1] and
e2 = [v2,k2] such that the window stack does not change,

the necessary WTG neutral cycle would be a
e1−→ a

e2−→ a.
The WTG for the running example is shown in Figure 2.

This figure illustrates the window transitions and the event
that triggers each transition. The window stack operations
for a few of the transitions are also shown in the figure.
The clusters of HostListActivity and HostEditorActivity

are the nodes within the two dotted rectangles, respectively.

Consider the WTG cycle a1
e8−→ m2

e14−−→ a2
e15−−→ a1. This

Algorithm 1: GenerateIntraClusterNeutralCycles

1 foreach activity a ∈Win do
2 path ← 〈〉
3 stack ← 〈a〉
4 Traverse(a, a, path, stack)

5 procedure Traverse(a, w, path, stack)
6 if path.length > k then
7 return

8 if path.length 6= 0 ∧ path.endnode = a ∧ stack = 〈a〉 then
9 record path

10 foreach edge t = [w,w′] such that t /∈ path do
11 if CanAppend(a, t, path, stack) then
12 DoAppend(t, path, stack)

13 Traverse(a, w′, path, stack)
14 UndoAppend(t, path, stack)

cycle shows a static abstraction of the leaky neutral tran-
sition sequence that is discussed at the end of Section 2.2.

Another example of a neutral cycle is a1
e3−→ m1

e4−→ a1.

3.2 Intra- and Inter-Cluster Test Sequences
A common source of leaks is the mismanagement of re-

sources during the lifecycle of an activity [13]. Thus, a nat-
ural target for test generation are repeated executions of
neutral transition sequences that involve an activity a and
all menus/dialogs that perform simple tasks on behalf of
a—that is, only windows in cluster(a). An intra-cluster test
sequence is a WTG neutral cycle T = 〈t1, t2, . . . , tn〉 starting
from node a such that each node in T belongs to cluster(a).
In Figure 2, an example of an intra-cluster neutral cycles is

a1
e3−→ m1

e4−→ a1 which corresponds to the sorting of list
items as described in Section 2.2.

There are also examples of leaks that involve the interac-
tion of two clusters: for example, there is a leak of binder
objects when the user navigates from HostEditorActivity

back to HostListActivity. Given two activities a and a′,
an inter-cluster test sequence for a and a′ is a WTG neu-
tral cycle T = T1 ◦ T2 ◦ T3 starting at a and consisting of
three components. First, the last node from T1 is a′ and
the remaining nodes from T1 are in cluster(a). Similarly,
all nodes from T2 are in cluster(a′) except for the last one
which is in cluster(a). Finally, T3 is entirely in cluster(a).
We also impose the restriction that each Ti does not con-
tain repeated nodes. Since repetition of nodes is allowed
in intra-cluster test sequences (as discussed earlier), such
behaviors are not considered in the inter-cluster sequences.
In Figure 2, an example of an inter-cluster neutral cycle is

a1
e8−→ m2

e14−−→ a2
e15−−→ a1.

Note that inter-cluster sequences could be generalized to
involve more than two clusters. However, the number of test
cases could become impractically large. Our experimental
resuls indicate that cycles involving two clusters effectively
expose leaking behaviors.

3.3 Test Generation
Our test generator is built on top of the publicly-available

static analyses from [9, 24, 31]. Given the WTG, cluster-
ing is done as expected: for each activity a, a traversal of
the WTG is peformed to find all menus and dialogs reach-
able from a without going through another activity. Set
cluster(a) contains a and all reached nodes.

For each activity a ∈ Win, we perform a depth-first



traversal to explore intra-cluster neutral cycles. Algorithm 1
shows the detials of this traversal. The current WTG path
and its corresponding window stack are maintained in path
and stack respectively during the traversal. Any non-empty
path, whose length is restricted by some analysis parameter
k, ending with a that leaves the stack in the initial state is
recorded for later processing to generate test cases.

During the depth-first traversal, helper function CanAp-
pend filters out edges t that leave cluster(a) and then de-
termines whether current path could be appended with t
via examining the validity of the window stack push/pop
sequence by applying δ(t) to stack . Helper function DoAp-
pend appends path with t and modifies stack according to
δ(t) if CanAppend returns true. UndoAppend removes t
from path and “undo” all the changes made to stack .

The construction of inter-cluster neutral cycles is concep-
tually similar, except that helper function CanAppend al-
lows one edge of p to cross into another cluster, followed by
a corresponding return edge.

3.4 Test Execution
The test cases are implemented in the Robotium test-

ing framework [23]. For each transition t in a cycle T ,
event ε(t) is mapped to a corresponding Robotium API call.
Some events may require additional manual inputs from the
tester—e.g., to decide which item to click in a list, or which
string to enter in a text field. Each test case is parame-
terized by a run-time parameter specifying the number of
repetitions. Test case execution is similar to earlier work
[28]: several resources are monitored and decisions are made
based on these observations. We monitor memory usage and
the number of threads/binders. Native memory is used by
native code that is accessible via the Java Native Interface
(JNI). Java heap memory is the memory space to store Java
objects that is automatically managed by the Dalvik virtual
machine. Binders and threads are used for inter-process
communication and time-consuming tasks. Measurements
for these resources can easily be collected via the Android
Debug Bridge (ADB) and do not require any modifications
of system code.

A test case is stopped early if it does not exhibit a pattern
of growth. We employ the approach from [28]: a relatvely
small number of repetitions (30 in our setup) of the neutral
cycle is performed first, and linear regression on the mea-
surements is used to compute rates of growth. A test case is
stopped if the growth does not exceed a certain threshold.
Around 90% of the test cases are stopped at this stage. The
remaining test cases are allowed to continue running until
either a crash is observed, or a limit on the number of repe-
titions (500 in our setup) is reached, after which the growth
rate is analyzed as before to decide whether to report a leak.

To eliminate the effects of previous tests, the emulator
is restarted every time before the execution of a test case.
This takes about 1 minute. Test runs that stop early form
the bulk of test execution time and one such run typically
takes around 1 minute, excluding the emulator startup time.
For the experiments described in the next section, we tested
8 applications for which the total number of generated test
cases was around 50 thousand. By running test cases in par-
allel on several machines, we completed all experiments in
around 2 weeks. It is important to note that our goal was not
to reduce the running time of tests, but rather to perform
comprehensive evaluation of the leak-detection capabilities

of the proposed test generation. In future work we plan to
investigate how to reduce this cost by adaptively choosing
the number of neutral cycle repetitions, by focused run-time
monitoring and amplification [7], and by using static or dy-
namic analysis to prioritize test cases.

4. EXPERIMENTAL EVALUATION
We evaluated the proposed testing approach on 8 open-

source applications analyzed in our prior work [28]. While
that earlier approach needs manual control-flow modeling
and specification of neutral cycles, our current approach em-
ploys static analysis to generate the test cases automatically.
The main goal of the evaluation was to answer the following
research question:

RQ: Are the automatically-generated tests as ef-
fective as the manually-constructed ones in terms
of detection of leak defects?

The applications and the number of WTG nodes and
edges are shown in the first three columns of Table 1. The
large number of edges for fbreader is caused by a known
precision limitation of prior static analyses [24, 30]. Col-
umn “Clusters” shows the number of clusters in the WTGs.
The remaining columns show the numbers of generated test
cases for different values of the path-length limit k (line 6
in Algorithm 1). Clearly, the number of test cases grows
significantly with larger values of k, which raises interesting
questions about test case prioritization, perhaps with the use
of static or dynamic analysis of callbacks that are invoked
in response to GUI events. For the rest of the experiments,
we used k= 3 as the parameter for test generation, except
for fbreader for which we used k=2 due to the large WTG
size. Test generation time is typically very low: for all but
one program, it takes less than 1 second to generate all neu-
tral cycles and the corresponding test cases (for fbreader

this time is around 4 minutes). All test cases generated in
this manner were executed as described in Section 3.4.

Table 2 compares the defects reported by our tests and
compares them with the defects detected by the manual test
cases from [28]. Here we measure unique leak defects and not
the number of test cases, since it is possible for several test
cases to fail due to a single defect. Column“Known”contains
the number of defects already known from [28]. Columns
“Intra”and“Inter”shows how many defects were reported by
intra- and inter-cluster test cases, generated as described in
Section 3. It can be seen that both test generation strategies
are effective, and appear to be complementary.

Column |K−D| is the number of known defects that were
not reported by our tests. There are 2 such defects. In one
case, limitations of the static analysis for WTG construction
misses some window transitions, and the corresponding test
cases are not generated. Further work on static analysis for
Android can resolve this problem. The seconds case involves
a neutral sequence of length which exceeds the path length
limit. There is no easy way to resolve this issue: it is not
feasible to test all long event sequences, and additional anal-
yses or application-specific knowledge will likely be needed
to select test cases that drive such behaviors.

The last column shows that 2 leak defects discovered in
our experiments were new and were not discovered by the
earlier test cases from [28]. One of these defects is a native
memory leak in connectbot. It is caused by the incorrect
implementation of the digest function in the framework. The



Application WTG Clusters k = 2 k = 3 k = 4 k = 5

Nodes Edges Intra Inter Intra Inter Intra Inter Intra Inter

apv 13 84 5 174 3 1557 13 14604 13 133619 13
astrid 53 374 19 733 23 8582 304 120628 864 1718582 1560
connectbot 34 192 11 305 7 1795 13 10401 13 56593 13
fbreader 40 26505 23 7689 2696 N/A N/A N/A N/A N/A N/A
k9 30 356 18 1228 62 15142 128 209197 154 3012195 154
keepassdroid 29 308 15 842 58 10238 190 136902 302 1838782 386
vlc 19 70 10 307 5 2211 7 17763 7 144827 7
vudroid 7 47 4 42 9 142 17 438 19 1182 19

Table 1: Analyzed applications, number of clusters, and test cases.

Application Known Detected |K −D| |D −K|

Intra Inter

apv 1 0 1 0 0
astrid 1 0 1 0 0
connectbot 3 3 1 0 1
fbreader 2 1 1 0 0
k9 4 3 0 1 0
keepassdroid 4 0 3 1 0
vlc 2 1 1 0 0
vudroid 1 0 2 0 1

Table 2: Resource leak defects: known and detected.

application leaks roughly 100 KB every time the password
of a pubkey is changed. To ensure security, a password is
digested for 1000 times by calling MessageDigest.digest.
However, the byte array in this method is not fully released
in native memory when it gets reset after the digest. This
defect is fixed in Android Ice Cream Sandwich by upgrading
the underlying library.

The other defect is a segmentation fault in vudroid, raised
when the user tries to repeatedly open PDF files in a short
period of time. This leak is also in native memory. It can
be triggered by the neutral sequence of opening a PDF file
and then going back to the previous activity. The appli-
cation uninterruptedly renders a whole page of a PDF file
and stores it in native memory, yet it does not release the
memory in time after the file is closed.

Summary. These results show that, for the analyzed appli-
cations, the leak-detection effectiveness of the proposed test
generation is comparable to the much more labor-intensive
and error-prone manual approach from our prior work. Of
course, the small number of experimental subjects poses a
threat to the external validity (i.e., generalizability) of this
conclusion. Still, we believe that this study presents promis-
ing initial evidence that automated testing for resource leaks
in Android applications is feasible and effective.

5. RELATED WORK

Test generation for Android. A summary of many ex-
isting testing approaches for Android is presented in [6]. A
few representative examples are discussed below. The stan-
dard Monkey tool [12] uses a simple random strategy for
generating UI events. Android GUI Ripper [2] generates a
dynamically built GUI model. MobiGUITAR [1] utilizes an
enhanced version of AndroidRipper and then applies test ad-
equacy criteria to it in order to generate test cases. It would
be interesting to see whether this purely-dynamic approach
(or some hybrid static-dynamic version of it) can be com-
bined with our neutral-cycle-based testing for leaks. ORBIT

[32] also uses a dynamic exploration strategy but combined
with static code analysis to determine which UI events are
relevant for a specific activity. The A3E GUI exploration
tool [4] employs two strategies: purely-dynamic depth-first
exploration and targeted exploration based on a control-flow
model from a static taint-like analysis. ACTEve [3] is a
concolic testing tool which symbolically tracks events from
their generation to their handling. Jensen et al. [17] use
symbolic analysis to create event handler summaries and to
build event sequences using the summaries and a UI model.
Other examples of testing tools for Android include Dyn-
odroid [19], SwiftHand [25], EvoDroid [20], PUMA [15], and
Droidmate [16].

Test amplification for Android. Amplification can be
used to detect potential problems during testing. Zhang and
Elbaum [33] apply test amplification techniques for exception-
handling code, which is necessary due to unreliable environ-
ment factors such as network connectivity. Their approach
amplifies existing test cases by injecting exceptions. Our
prior work [29] amplified potentially-expensive operations
that could affect the responsiveness of the UI thread and
lead to application-not-responding errors. Fang et al. [7]
develop a tool to quickly find memory-related performance
problems in managed languages by amplifying the size of al-
located objects. It may be possible to enhance our approach
with memory object amplification to reach crashes faster;
this issue is orthogonal to the problem of test generation.

Leak analysis for Android. Pathak et al. defined a static
analysis to find defects in which code paths leak energy-
related resources [21]. Another static analysis [14] aims to
examine Android event handlers for the usage of resource-
related APIs. Neither of these approaches models the full
generality of GUI control flow. Our WTG model is a state-
of-the-art static representation of Android GUI, and the
only one that models the state of the window stack. Other
leak analyses use purely-dynamic techniques. GreenDroid
[18] uses Java PathFinder to trigger various GUI event se-
quences based on a manual model of GUI structure and
behavior, in order to observe dynamically leaks related to
battery drain. Another energy bug detection tool [5] is also
based on dynamic analysis of resource leaks. A modified
version of Dynodroid [19] is employed to generate a model
of the GUI, and the model is then used to trigger sequences
of GUI events. Both approaches aim to detect energy-leak
behaviors expressed as misuse of acquire-release API calls.
As recent work shows [6], achieving high run-time cover-
age for Android applications is a difficult problem because
of the event-driven and framework-based control flow and
data flow. Our test generation, based on a comprehensive



static model that identifies neutral event sequences, provides
an alternative to these approaches.

6. CONCLUSIONS AND FUTURE WORK
Using static control-flow analysis, it is possible to auto-

matically create comprehensive tests to cover various repet-
itive behaviors in Android GUIs. Our initial study strongly
suggests that significant leak detection can be achieved au-
tomatically, at a level comparable with test generation that
involves manual effort. Future work needs to develop tech-
niques for test prioritization using static or dynamic analy-
sis, as well as refinements of test execution and monitoring
(e.g., by using amplification techniques in the spirit of [7]).
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