Analytical Characterization and Design Space Exploration for
Optimization of CNNs

Rui Li
lirui@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Atanas Rountev
rountev(@cse.ohio-state.edu
Ohio State University
Columbus, Ohio, USA

ABSTRACT

Moving data through the memory hierarchy is a fundamental bottle-
neck that can limit the performance of core algorithms of machine
learning, such as convolutional neural networks (CNNs). Loop-
level optimization, including loop tiling and loop permutation, are
fundamental transformations to reduce data movement. However,
the search space for finding the best loop-level optimization con-
figuration is explosively large. This paper develops an analytical
modeling approach for finding the best loop-level optimization
configuration for CNNs on multi-core CPUs. Experimental eval-
uation shows that this approach achieves comparable or better
performance than state-of-the-art libraries and auto-tuning based
optimizers for CNNs.

CCS CONCEPTS

« Computing methodologies — Parallel computing method-
ologies; Neural networks; « Software and its engineering —
Compilers.

KEYWORDS

Neural networks, Design space exploration, Tile size optimization,
Performance modeling

ACM Reference Format:

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sa-
dayappan. 2021. Analytical Characterization and Design Space Exploration
for Optimization of CNNs. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’21), April 19-23, 2021, Virtual, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3445814.3446759

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have had transformative
impact on several domains including image/video classification,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8317-2/21/04.

https://doi.org/10.1145/3445814.3446759

Yufan Xu
yfxu@utah.edu
University of Utah
Salt Lake City, Utah, USA

Aravind Sukumaran-Rajam
a.sukumaranrajam@wsu.edu
Washington State University

Pullman, Washington, USA

P. Sadayappan
saday@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

language processing, genetic analysis, etc. CNNs are computation-
ally very demanding. Therefore there has been tremendous interest
in optimized implementation of the CNN stages needed in Deep
Neural Network (DNN) pipelines. CNN stages of varied shapes and
sizes are needed even within a single DNN pipeline.

Since the cost of data movement dominates the cost of floating-
point arithmetic computations on all current hardware platforms,
loop tiling is a crucial transformation for the development of op-
timized code for CNN. However, a fundamental challenge is the
explosive size of the space of possible tiled loop variants for the
CNN computation:

Out[n, k,h, w] = Z In[n,c,h+r,w+s]| = Kerlk,c,r,s] (1)

c,r,s

The computation can be expressed as a 7-dimensional loop nest,
with one loop per index. Allowing for any order of accumulation of
additive contributions for each result tensor element, all 7 loops are
fully permutable and hence fully tileable with hyper-rectangular
tiles. Considering a three-level memory hierarchy, up to three lev-
els of tiling may be appropriate, leading to an explosively large
search space with three groups of 7 tiling loops, with 7! possible
permutations of the tiling loops within each group, i.e., 1.28 x 101!
configurations. Further, for each configuration of tiling loops, a very
large number of possible choices exist for the tile sizes, resulting in
an explosive number of alternatives from which to select.

To the best of our knowledge, all previously developed ap-
proaches for CNN optimization have used heuristics and/or em-
pirical auto-tuning to search a limited subset of the explosive space
of permutations and tile size choices [6, 20, 23, 34]. This is a fun-
damental limitation to achieving consistently high performance
across the wide range of CNN instances used in DNN pipelines.
We aim to solve this problem in a principled and comprehensive
way. To achieve this, we develop the first approach that models
analytically the data movement for any CNN stage in a multi-level
memory hierarchy. Using this model, we show how to explore the
entire search space, looking for the configuration that minimizes the
bandwidth-scaled data movement in the limiting level of the mem-
ory hierarchy. The insight of our approach, which differentiates it
from previous CNN optimization efforts, is that analytical modeling
and reasoning enable dramatic pruning of the space of permuta-
tions and tile sizes, reducing it to a small number of non-linear
optimization problems that can be solved by off-the shelf solvers.
This paper targets multicore CPUs, but the analytical machinery

https://doi.org/10.1145/3445814.3446759
https://doi.org/10.1145/3445814.3446759

ASPLOS 21, April 19-23, 2021, Virtual, USA

Permutation pruning Multi-level tile optimization

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan

Code generation

for single-level tiling

Pl
e Cost expr.
Py . generator

Cost modeling

Permutation
pruning

({T1.Tm2,. b Cm) Code .
4’,_. LULEIN Tiled C code with

({T3,1:T5,z:---}:cg)
micro kernel

Figure 1: MOpt Overview

is applicable to targets such as GPUs, TPUs, FPGAs, and spatial
arrays of accelerators.

Our modeling approach addresses a key limitation of existing
efforts for CNN optimization. To demonstrate its utility, in this
paper we combine this modeling with our custom code generator
to achieve CNN performance that matches or exceeds the perfor-
mance possible with state-of-the-art approaches. In the long run,
our techniques provide a critical building block for these existing
approaches, allowing them to overcome one of their fundamental
limitations. This existing work falls in the following three cate-
gories.

Libraries of optimized functions: Tuned vendor libraries are
currently the primary means of achieving high performance for
most applications using CNNs. Applications are typically developed
by composing operators in a high-productivity framework such as
PyTorch or TensorFlow, with the frameworks mapping the execu-
tion of the operators to invocation of tuned library function calls.
Although vendor libraries can achieve very good performance, we
demonstrate through our experimental evaluation of Intel’s state-
of-the-art oneDNN library that there is scope for improvement if
wider exploration of the search space is be undertaken using the ap-
proach proposed in this paper (the discussion in Sec. 12 elaborates
on this).

Auto-tuning and ML-based tuning: One of the most successful
recent efforts in optimizing tensor computations has been TVM [6].
TVM uses a combination of auto-tuning (actual execution of can-
didate code variants on the target platform) and a dynamically
trained Machine Learning model to guide the design-space explo-
ration. However the enormous search space poses a problem and
manual expertise is required to set up optimization scripts that con-
trol the search space. We present experiments demonstrating the
greater effectiveness of our new approach over TVM’s auto-tuning
over a constrained search space. By combining the model-driven
comprehensive design space exploration from our work with the
auto-tuning framework in TVM, further improvement in perfor-
mance is feasible (the discussion in Sec. 12 elaborates on this).
Polyhedral compilers: Such compilers incorporate powerful
transformations for affine programs [4, 5, 8, 36]. The CNN com-
putation in Eq. 1 is affine and can be automatically tiled and op-
timized by this approach. However, the performance achieved by
state-of-the-art polyhedral compilers is very far from that pro-
vided by vendor libraries or by auto-tuning-based code generators
such as TVM [6]. These compilers face a fundamental challenge:
they must separate the key consideration of tile size optimization—
inherently non-linear—from the choice of loop transformations.
The only recourse is to use an outer auto-tuning loop that explores
a limited space of tile sizes, and an inner loop that generates code
for them [2, 5, 11, 18, 27, 35, 36]. Our approach can be generalized

for analytical modeling of data movement in a class of tiled tensor
computations and incorporated into polyhedral compilers, thereby
overcoming this fundamental limitation. (Sec. 12 elaborates on this).
Contributions: The paper makes the following contributions:

o It develops, to the best of our knowledge, the first comprehensive
analytical modeling for data movement volume for multi-level tiled
CNN execution on a system with a multi-level memory hierarchy,
covering the full space of permutations and tile sizes. While the
modeling approach is used in the context of multicore CPUs, it
can also be used for CNN optimization on other platforms, such as
GPUs, FPGAs, distributed-memory systems, and accelerator arrays.
o It presents the first analysis that exploits algebraic properties of
the analytical expressions for data-movement volume to dramati-
cally prune the number of distinct cases from thousands to only eight
in order to find the global optimum in the entire space of tile-loop
permutations for a single-level tiled CNN. The factor of reduction
in the search space that is enabled by this algebraic analysis is
exponentially higher for multi-level tile-size optimization.

o It demonstrates the use of the new analytical modeling and op-
timization approach through the generation of high-performance
multicore CPU code for three CNN benchmarks, including all CNN
stages of MobileNet [14], ResNet-18 [13], and Yolo9000 [29]. The
achieved performance is comparable to or better than both the
state-of-the-art CNN library (Intel’s oneDNN [25]) and the state-
of-the-art framework for auto-tuned code generation (TVM [6]).

2 OVERVIEW

2.1 System Overview

Fig. 1 shows the components of the MOpt system (Modeling-based
Optimizer) for generating optimized CNN code for multicore pro-
cessors, based on a novel comprehensive design-space exploration
approach for tile-loop optimization. The leftmost component repre-
sents a conceptual methodology for pruning the space of possible
permutations of tile-loops for single-level tiling. This methodology
uses analytical modeling of data movement volume to identify a
very small subset—containing only 8 elements—of the full space of
tile-loop permutations, guaranteed to contain an optimal configu-
ration that minimizes data volume for tiled execution. The rest of
this section highlights the key ideas behind this modeling, while
Sec. 3 and 4 provide a more detailed description.

The right portion of the figure shows the tool components for
code generation for a specific CNN. From the insights provided
by the modeling methodology, together with the specific sizes of
the kernel and input/output of the CNN, a set of constrained non-
linear optimization problems are automatically generated. These
problems capture the search for optimal tile sizes for multi-level
tiling (Sec. 5). The optimization problems are then solved using an

Analytical Characterization and Design Space Exploration for Optimization of CNNs

// Ni/Nj/Nk are perfect multiples of Ti/Tj/Tk
for(it = 0; it < Ni; it+=Ti)
for(jt = 0; jt < Nj; jt+=Tj)
for (kt = 0; kt < Nk; kt+=Tk)
for(i = 0; i < Ti; i++)
for(j = 05 j < Tj; j++)
for(k = 0; k < Tk; k++)
Cli+it][j+jt]+=
Ali+it J[k+kt]«B[k+kt][j+jt];

Listing 1: Single-level tiled matrix multiplication

T

Tk

Figure 2: Data reuse in tiled matrix multiplication

off-the-shelf non-linear solver (we use AMPL [9] with Ipopt [37]) to
produce optimal tile sizes T; j and data movement costs C; (here j
ranges over the levels of the memory hierarchy). The best solution
gives the tile sizes and tile-loop permutation to be used to generate
customized C code for the CNN stage, with tile loops surrounding
a CNN microkernel that implements register-tiling using vector
intrinsics.

2.2 Key Ideas for Analytical Modeling

We use the simpler example of matrix multiplication to explain the
main ideas behind the new approach to comprehensive design space
exploration for tiled CNN optimization. For the CNN computation,
the analytical cost functions are more general than for matrix mul-
tiplication, but have a similar structure. Furthermore, the reasoning
to derive these functions and to optimize tile sizes based on them
is also similar. Listing 1 shows one possible version of single-level
tiled code for matrix-multiplication (there are 6 X 6 = 36 possible
permuted variants, with 6 possible permutations for the intra-tile
loops and 6 possible permutations of the tiling loops).

Consider the data footprint of a single tile from Listing 1. This
footprint is the sum of the volumes of the data slices accessed
by the three arrays A, B, and C, respectively T; Ty, T;T, and T;T;.
This is illustrated in Fig. 2. Among all possible combinations of
tile sizes chosen such that the total data-footprint does not exceed
cache capacity, we want to find the one(s) achieving minimal data
movement between main memory and cache:

TiT +TjTi + T;T; < C (2)

As is the case with much of the prior work on analytical modeling
of cache misses for loop computations [12][3][16], we only model
cold misses (first access of data) and capacity misses but not conflict
misses arising from finite set-associativity of caches. We demon-
strate through experimental evaluation that this idealized model of
cache behavior is very effective in tile optimization for CNNs.

Consider the iterations of the innermost tiling loop kt. As kt is

changed, and different tiles are executed, we can observe (Fig. 2)

that the accessed data slices are completely distinct (i.e., without

ASPLOS 21, April 19-23, 2021, Virtual, USA

any reuse of data between tiles) for A and B, whereas exactly the
same data slice of C is used for all the tiles. The total volume of
data movement between main memory and cache for the complete
execution of the innermost tiling loop kt is DV‘I; = T;N; and

DVEt = TjNy for arrays A and B, respectively. For C, since the
same data slice C[it:it+T;-1] [jt:jt+Tj-1] is repeatedly accessed for
each value of the tile-loop iterator kt, with a fully associative cache
each data element will only be brought in once from memory.

The combined data volume for all three arrays, DV, is as follows
(the factor of 2 associated with the data volume for C is due to the
need to move each element in both directions, first from memory
to cache and finally back from cache to memory):

DV = DV, + DVP + DV, = T;Ni + TjNi + 2T;T;

The modeling of total data movement volume between memory and
cache for the execution of the innermost kt tile-loop was facilitated
by the fact that two of the arrays did not have any inter-tile data
reuse, while the third one had complete inter-tile data reuse of
a slice of data that was small enough to fit in the cache. As we
attempt to analyze the volume of data movement through the outer
two tiling loops, the data footprints of the arrays increase and the
analysis of hits and misses becomes very complicated, with many
combinations of possibilities depending on the chosen tile sizes.

A key to developing our analytical parametric modeling ap-
proach is the recognition that for the purpose of tile-size optimiza-
tion, we do not need to accurately model data-movement volume
for all possible tile sizes, but it is sufficient to carry out such model-
ing for those tile sizes that effectively utilize the available capacity
of the cache/scratchpad. We therefore assume that the collective
data footprint of two adjacent tiles will exceed the cache capacity —
if not, the chosen tile sizes are too small and wasteful and should
be increased to make better use of the available capacity. Under
such an assumption, we can continue the parametric analysis of
data volume for the entire execution of the tiled matrix multiplica-
tion algorithm. For any tiling loop, we have two possibilities with
respect to any array: the loop iterator is either used in the indexing
of the array (it is a present index), or it is not used and thus is an
absent index (e.g., tile-loop iterator it does not affect the accessed
elements of array B[k][j] because i is an absent index for B). If the
tile-loop iterator is a present index, the data slice accessed for each
value of the iterator is distinct, and the total accessed data volume
over the execution of the tile loop is the product of the number of
tile-loop iterations and the data volume corresponding to the inner
nested loops. Even if the tile-loop iterator is an absent index, if the
data footprint of the slice accessed by inner loops has exceeded
cache capacity, the total data movement is again the product of
the number of tile-loop iterations and the data volume accessed
in execution of the inner loops. Based on these observations, the
following cost expression applies to the two innermost tile-loops:

DVjyiu = 7-DVia = T2 TiNi + NjNe + 2TiN;
Similarly,
DVigke = 5EDViek = 5E (2 TNk + NjNi + 2N,
= NiN;Ni (% th+ Nik)

®)

Given specific values for Nj, N;, N, the parametric expression in
Eq. 3 can be minimized subject to the capacity constraints in Eq. 2.
However, this is only one of 6 permutations of the tiling loops, and
we desire the combination of tile-loop permutation and tile sizes
that minimize total data movement between memory and cache.

ASPLOS 21, April 19-23, 2021, Virtual, USA

for(n = 0; n < Nn; n++)
for(k = 0; k < Nk; k++)
for(c = 0; ¢ < Nc; c++)
for(r = 0; r < Nr; r++)
for(s = 0; s < Ns; s++)
for(h = 0; h < Nh; h++)
for(w = 0; w < Nw; w++)
Out[n][k][h][w] +=
In[n]{c][h+r][w+s]«Ker[k][c][r][s]

Listing 2: CNN loops

When this modeling is generalized to the CNN computation
(as described in the next section), a brute-force enumeration and
solution of a constrained optimization problem for each possible
tile-loop permutation leads to a huge number of cases. For exam-
ple, for multi-level tiling of the 7-dimensional loop nest for CNN,
with 4 levels of tiling loops (register-tiling, L1, L2, and L3 cache),
the number of cases is (7!)4, i.e., over 645 trillion cases. However,
as we elaborate in Sec. 4, algebraic reasoning can be used to re-
duce the total number of parametric symbolic expressions to be
considered for modeling all tile-loop permutations at one level of
tiling for CNN from 7! (i.e., 5040) to only 8. This massive pruning
is possible because of algebraic reasoning about equivalence or
dominance (guaranteed to find a better or equally good solution)
of all remaining 5032 cases by these 8 constrained optimization
problems.

3 ANALYTICAL MODELING FOR
SINGLE-LEVEL TILING

Given a specific permutation of the tile-loops for a single level of
tiling of the CNN computation, we aim to develop a parametric
expression for the total volume of data movement (as a function of
tile sizes) between main memory and an idealized fully-associative
LRU cache with a capacity of C words and unit line-size. In the
next section, we present a pruning strategy to dramatically reduce
the number of tile-loop permutations to be considered in solving
the tile-optimization problem. Given the original CNN code in List-
ing 2, Listing 3 shows one particular single-level tiled version.!
We will use p = (i7,...,i1) to denote a particular permutation
of the tile-loop iterators nt, kt, ... in the tiled code, where i; is
the innermost tile-loop iterator in the tile-loop nest. The corre-
sponding tile sizes for a particular tiled version will be denoted by
T= (T7,...,Th) € N7 Here each tile size Tjissuchthat1 < T; < N;
where Nj is the corresponding problem size. We assume that each
problem size N; is a multiple of the corresponding tile size T;. This
assumption is used only for the presentation of cost modeling; the
actual code generation handles the general case of partial tiles. A
tiling configuration is a pair (p, T)

In the execution, the iterators from p will be instantiated with
concrete values. Each such instance is an iteration vector and will
be denoted by i € N’. In any such i, the value of iterator i j is
always a multiple of the corresponding tile size T;. To simplify the
discussion, in our cost modeling we will normalize i j in ?by T;. Thus,
the j-th element of | now takes values in the set {0,1,.. ., N;/T;}.

Execution of the code defined by a configuration (p, T) corresponds

!To simplify the presentation, we do not show stride/dilation, but the methodology is
applicable to the general case.

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan

for(nt = 0; nt < Nb; nt+=Tn)
for(kt = 0; kt < Nk; kt+=Tk)
for(ct = 0; ct < Nc; ct+=Tc)
for(rt = 0; rt < Nr; rt+=Tr)
for(st = 0; st < Ns; st+=Ts)
for(ht = 0; ht < Nh; ht+=Th)
for(wt = 0; wt < Nw; wt+=Tw)
CNNTile (nt,kt,ct,rt,st,ht,wt);

Listing 3: CNN with single-level tiling

to a sequence of tiles defined by a lexicographic order of all vectors
i. A key component of our modeling is an analytical description of
the amount of data movement in executing two consecutive tiles.

3.1 Overview of Modeling of Inter-Tile Data
Reuse and Total Data Movement

Given p = (iz,...,11), we construct an analytical expression to
model the amount of data movement when the corresponding tiled
execution occurs. Note that the expression is parametric in the tile
sizes T and will later be used to define a constrained optimization
problem in which the objective function is this cost expression and
the unknowns are the tile sizes in T. Thus, for any code version (as
defined by a loop permutation p), the solution of this optimization
problem provides concrete tile sizes to minimize the cost expression.
The modeling analysis is done separately for each of the three
arrays In, Out, and Ker. For any array A, let R4 for be inner-
most (i.e., rightmost) position in p of an iterator that occurs in
the array reference for A. For example, suppose p = (..., ct, nt).
For array reference Out[n, k, h, w] from the original code we
have Rp,; = 1, since in the tiled code this reference becomes
Out[n+ nt, k + kt, h+ ht, w+ wt] which contains nt, and nt is in
position 1 in ﬁ For array reference In[n, ¢, h + r, w + s], both nt and
ct occur in the tiled code, but nt occurs at position 1 in ﬁ (ie., in
the innermost/rightmost position) and thus Ry, = 1. Finally, for
Ker[k, c,1,s] we have Rg,, = 2 since ct occurs at position 2 in p.
Consider a tile with tile sizes Tp, Ty, T¢, Tr, Ts, Ty, Tw. The
execution of the tile will access a 4-D slice of T,T; T, Ty, ele-
ments of Out|[n, k, h, w] and T} T T,- T elements of Ker|[k, c, r, s]. For
In[n,c, h+r, w+ s], the data slice accessed in the tile will have
TnTe(Ty + T, — 1) (T + Ts — 1) elements. This is because the index
expression w + s takes Ty, + Ts — 1 distinct values in a contiguous
range as w varies over some contiguous range of T,, values and s
ranges over a range of T; values. The capacity constraint specifying
that the total data footprint must not exceed cache capacity is:
TuTe(Ty + T — 1) (Taw + Ts = 1) + T 1 Ty + Ty TeTpTow < C (4)

As illustrated in Sec. 2 with the matrix-multiplication example,
the analytical modeling of data volume for execution of the CNN
loop nest for a specific tile-loop permutation is done by an inner to
outer traversal of the tile-loops. Starting with the inner-most tile
loop, that loop’s index is either absent or present in the tensor’s
index expressions. For example, consider the particular tile-loop
order shown in Listing 3. The innermost tile-loop corresponds to
loop index wt, which is an absent iterator for Ker and a present
iterator for In and Out. This means that for Ker the data slices
accessed for successive tiles as we step through the wt tile-loop
will be exactly the same, i.e., full inter-tile data reuse is achieved.

Analytical Characterization and Design Space Exploration for Optimization of CNNs

In contrast, completely distinct data slices of Out are accessed by
the different tiles that are executed as wt is varied, i.e., there is
absolutely no data reuse across the tiles. For In, the original indexing
expression involving w is of the form w + s. Hence there is some
partial overlap of the data slices accessed by successive tiles as wt
iterates (as detailed below).

For any permutation p, for the innermost tile-loop there is com-
plete data reuse between successive tiles if that iterator is absent in
a tensor’s index expressions, and no reuse or partial reuse for any
tensor where the index is present. Further, after the execution of all
tiles in the innermost tile-loop, eviction of data from previous tiles
should occur for any tensor with that index present. This is a con-
sequence of our choice in only modeling data-movement volume
for tile sizes that are sufficiently large so that cache capacity is not
wasted (i.e, the combined tile footprint of two adjacent tiles always
exceeds cache capacity). Thus, for any tensors with the innermost
tile loop index being present, no data reuse is possible at any outer
tiling loops even if that outer index is absent.

3.2 Cost Expressions for Data Movement

Based on these properties, there are two cases for the cost com-
putation. The first case is for arrays Out and Ker, as well as for In
when the iterator at position Ry, is nt or ct. Here the cost computa-
tion simply considers the number of pairs of consecutive iteration
vectors i and i in the lexicographic order such that the value at
position Ry changes from the first to the second vector. In all such
cases, the second tile accesses a completely different slice of the
corresponding array A. Thus, the amount of data movement is the
number []g, <;<7 %] of such pairs multiplied by the tile footprint
for that array.

As discussed earlier, for Out the tile footprint is T, T;. Ty, T,y and
for Ker this footprint is T T T, T;. For array In, the footprint is
TnT:(Ty, + T, — 1)(Ty + Ts — 1). Multiplying this footprint with
the number of pairs of consecutive tiles for which data movement
occurs (as defined above) gives the complete data volume for a
particular loop permutation p.

The second case is for In[n, ¢, h + r, w + s| when the iterator at
position Ry, is wt, ht, st, or rt. Consider one execution of the loop
for this iterator. Each time the iterator changes, there is partial
reuse across consecutive tiles. As a result, the inter-tile movement
cost along the corresponding data dimension is the tile size for
the iterator. For example, if the iterator at position Ry, is wt, the
tile footprint in that data dimension is Ts + T, — 1, but due to
partial overlap between tiles the actual amount of new data in that
data dimension is T,. For one execution of the wt loop, there are
Ny /T\w—1such iterator changes. Thus, the cost is T,y (Ny, /Tw—1) =
N,, — Tw. The number of times this cost is incurred is determined
by the loops surrounding wt, and is the product of N;/T; for the
positions j around Rp,.

More generally, we have a cost term which is the product of
IR, <j<7]}I—]’ and one of the following:

TnTe(Ty, + T, — 1)(N,, — Tyy) when wt is at R,
TnTe (T, + T, — 1)(Ns — Ts) when st is at Ry,
T Te(Np, — T,) (Tyy + Ts — 1) when ht is at Ry,
ToT:(Ny = T;)(Tyy + Ts — 1) when rt is at Ry,

ASPLOS 21, April 19-23, 2021, Virtual, USA

We also have a second term which captures data movement cost
when the very first iteration of that loop occurs. For this iteration
there is no reuse from the previous tile, and the cost of the entire

tile footprint is incurred. This cost is the product of [, < j<7 %]
and T, To(Ty + Ty — 1)(Tyy + Ts — 1).

4 PRUNING CONFIGURATIONS:
SINGLE-LEVEL TILING

Sec. 3 presented symbolic expressions for total data volume as
a function of parametric tile sizes, for any given permutation of
the tile-loops. There are 7! possible permutations for the seven
tile loops for a single level of cache, and (7!)L permutations for L
levels of cache. In this section, we show that massive pruning of
the search space is possible via algebraic analysis that reduces the
number of permutations to be considered to just 8 of the 7! = 5040
total permutations of the seven tile-loops. This is done by proving
that the solution to one of these eight optimization problems is
guaranteed to be as good as or better than any solutions for the
remaining 5032 cases.

The identification of the pruned subset of tile-loop permutations

is done via an inner-to-outer analysis of tiling loops and reasoning
about the implications on total data movement cost, for different
choices for tile-loop indices made at each level. The array indexing
structure for the CNN computation is such that each of the seven
loop indices is present in exactly two of the three tensors and absent
in one tensor: w, h, and n are all present for In and Out, but absent
for Ker; s, r, and c are present for In and Ker, but absent for Out; k
is present for Ker and Out but absent for In. As per the analysis in
the previous section, the total data movement cost for two of the
three arrays will be fully determined just from the choice of the
innermost tile-loop. The rest of this section describes these cases
and summarizes the final result of this reasoning.
Innermost wt: If we choose the innermost tile-loop to be wt,
the data movement volume for the the seven tiling loops will
be I}’—:]}’—:%%%]}’—:Tnn(n + T, — 1)(Ny + Ty — 1) for In and
9N Nie Ne Nr Ns Ni ZIY—::TnTkThTW for Out (the factor of 2 is due to
the need to read and write each element of Out).

The order of the six surrounding tile-loops will not affect the
total data movement cost of In and Out, but will affect the data
movement cost for Ker. As per the analysis in Sec. 3, the expression
for data movement for Ker is a product of the tile footprint’s volume
(Tx T T, T5) and the product of N;/T; for all tile-loops from the first
present iterator and all surrounding iterators. The volume will be
minimized if all absent indices are lower in the nesting order than
all present indices. This is achieved by placing the tile-loops for
absent indices ht and nt (in either order) in a band just above wt,
with the tile-loops for present indices kt, ct, rt, and st in a band
(in any order) above the tile-loops for At and nt. We will use the
notation ({kt, ct, rt, st}, {nt, ht}, wt) to denote the set of tile-loop
configurations described above: innermost tile-loop for wt, sur-
rounded by a band of two tile-loops for nt and ht (in either order),
and an outermost band of tile-loops for indices kt, ct, rt, st, in any
relative order among those four tile-loops. Note that this notation
represents a set of 4! X 2! = 48 iterator permutations; however, all
elements of this set are equivalent with respect to the cost model,

ASPLOS 21, April 19-23, 2021, Virtual, USA

as their cost expressions are exactly the same. When exploring the
search space, one arbitrary representative of this set will be chosen
and will be subjected to non-linear optimization. The same applies
for the other seven cases described below: each case defines a set
of cost-equivalent permutations, and one arbitrary representative
of the set is selected for tile size optimization.

The parametric expression for the total data movement
cost for any configuration in set ({kt, ct, rt, st}, {nt, ht}, wt), e.g.,
(kt, ct, rt, st, nt, ht, wt) is:

DVt ct,rt stynthtwe = %%%&[TkTTT*')
n J}’Z T T Ty + TaTe (T + Ty — 1) (Noy + T = 1))]

The solution of a constrained optimization problem to minimize
the expression in Eq. 5, subject to the capacity constraint in Eq. 4
will find the lowest possible data volume among all possible per-
mutations with wt as the innermost tiling loop.

Innermost ht: The analysis for tile-loop configurations with
ht at the innermost position can be done similarly to the case
with wt being innermost. The minimal possible data move-
ment will be achieved with any arbitrary member of the set
({kt, ct, rt, st}, {nt, wt}, ht), e.g., (kt, ct, rt, st, nt, wt, ht):
]j\{: % % J]\"A [TchTrTs
LT T Ty T + TuTe (T + Ts = 1) (Np + T = 1))]

Dth ctrt, st nt,wt,ht =
Ny Ny

T et
Innermost st: Smce st is present for In and Ker, the data movement
costs for these two tensors will be independent of the permutations
of the remaining outer tile-loop indices:

Ker _ Np Np Ne Ny Ng Ny, N
DV’ = T_nT_T_CT_rTST_ﬁTkTCT’TS
pyin — N MNN NN

oSt T T, T T. T, T\, Ty

TnTe(T), + Ty — 1)(Ty + Ns — 1)

The data-movement cost for Out will depend on the permuta-
tion of the outer tile-loops. The lowest cost is obtained when the
absent indices for Out are placed immediately above st. The ab-
sent indices for Out are ct and rt. Any permutation in the set
({nt, kt, ht, wt}, {ct, rt}, sty will achieve the lowest possible data
movement cost for Out:

&&&&TnTkThTw

T T Ty Tw

The optimization problem for any permutation in the set
{{nt, kt, ht, wt}, {ct, rt}, st) is to minimize the sum of these three
DV cost expressions subject to the constraint in Eq. 4.
Innermost rt: The reasoning for this case is similar to the
case for innermost st. The best permutations are in set
{{nt, kt, ht, wt}, {ct, st}, rt). For them, the data movement cost is
as follows:

Out
DV =2

N, Nr N; N
pvou, = ol lh ST nTT,

Ker _ NNkNNNNWNh
pvke = —nﬁ—fﬁfﬁﬁrkr T, Ty
pyin - ——&&—W&X

coult T, Tx 1. T T,y T

TnTc(Th +N = 1)(Tw+Ts - 1)
DV_ . = DVOu 4 pvKe pyl

Innermost kt: In this case the data movement volume

will be 217\{—: % % % % I}]—: Do .t T,T,y for Out and

N,, Nr. N. N, Ng N,, Nj,
T_T_kT_T_TST_T_TchTrTS for Ker. Since kt is absent in

In, the next surrounding loop will contain an iterator that is

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan

present in In. This next iterator uniquely determines the cost
function. The six cases for this choice can be separated in two
groups: {wt, ht, st, rt} and {nt, ct}. As discussed shortly, the second
group of choices can be ignored. Any choice from the first group
gives rise to a different cost expression; thus, each of those 4 cases
has to be solved separately. Together with the 4 cases described
earlier (i.e., innermost loop is wt, ht, st, or rt), this gives us the 8
overall cases mentioned previously.

The cost functions for the first group are similar to those dis-
cussed earlier. For example, the cost for (..., wt, kt) is similar to
., wt), but now a factor =& N
the innermost loop and does not affect In

Now consider the second group {nt, ct} of choices—for exam-
ple, (..., nt, kt). Compare this cost with the corresponding one
for configuration (.. wt kt). It is easy to show that the only dif-
1) in the cost for (..., nt, kt),
which is changed to Nw + Ts — 1 in the cost for (..., wt, kt). Since
I}]—:’ > 1, the cost for (..., nt, kt) will never be lower than the one
for (..., wt, kt). Thus, nt (and, similarly, ct) should not be chosen
for the loop immediately surrounding the innermost loop kt.

For completeness, below are the details of the cost expressions for
the four relevant cases. Based on different choices for the second
innermost iterator, the data movement volume expression is as
follows:

For permutation ({nt, ct, ht, rt, st}, wt, kt)

the one for (.. is missing because kt is

ference is a factor of W (Tyw+Ts —

Out — 9N Nk Ne Ny Ns Np No
DV "t = fVTnNTkNTCNT,NTsNTh ki T T T
Ker — Dn Nk Ne Ny Ns Nw Np
bv wtkt T T, T T. T, T, T, Ty T T T Ts
DVI” = NoNe Ny Ns Ny
L whkt T, . T, T, T

TnTe(Tp+ T, — 1)(Nyy + T — 1)

DV g = DV +DVK” + DV

,wt, kt wt, kt L wt kt

For permutation ({nt, ct, wt, rt, st}, ht, kt)

DVIn,ht,kt = %%%%T_KX
TWTe(NL+ T — 1)(Tyy+ Ts — 1)
DV hige = Dvouftzt et DVKe;zt et DV i . htkt

For permutation ({nt, ct, ht, wt, rt}, st, kt)

Out N, Ni N; N, Ny Nj, N.
DV ke 2T T T T T Ty T InTkTh T
DVKEV = &&&&&&&TchTrTs

stkt T, Tx T I, Ty Tw Th

Dvnstkt T T, T.T Th Tw
TnTe(Ty + T, — 1)(Tww + Ns — 1)
DV sk = Dvoustt ket DVKert ket DVIn Lstkt

For permutation ({nt, ct, ht, wt, st}, rt, kt)

Out — 9Nn Nk Ne Ny Ns Np Nw
bv Srtkt T T, T« T. T, Ts Ty, T, TnTi TpTw
Ker _ Nu N Ne Nr Ny Ny N
DV = ToT T T T Tu Ty klehrTs
DVI" = DNuNeNs Ny Nu
Lrtkt T, T. Ts Ty T,
TnTe(Tp + Ny = D)(Thy + Ts = 1)
— Out Ker In
DV e = DV o, ket OV rtkt+DV ikt

Analytical Characterization and Design Space Exploration for Optimization of CNNs

Innermost nt and ct: As discussed above, choosing nt or ct as the
second loop in (..., kt) is inferior to choosing one of {wt, ht, st, rt}.
A similar argument can be used to establish that choosing nt or ct
as the innermost loop is inferior to choosing one of {wt, ht, st, rt}.
The only difference between the two arguments is that now all cost
functions have an extra factor %‘ (since kt is not the innermost
loop anymore), but the rest of the reasoning still applies. Thus, no
additional cases arise to be solved.
Summary: By analyzing the algebraic structure of the cost ex-
pressions, as described above, we have identified that only eight
equivalence classes of tiling permutations need to be considered:
({kt, ct, rt, st}, {nt, ht}, wt)
({nt, kt, ht, wt}, {ct, rt}, st)
({nt, ct, ht, rt, st}, wt, kt)
({nt, ct, ht, wt, rt}, st, kt)

({kt, ct, rt, st}, {nt, wt}, ht)
({nt, kt, ht, wt}, {ct, st}, rt)
({nt, ct, wt, rt, st}, ht, kt)
({nt, ct, ht, wt, st}, rt, kt)

Only one arbitrary representative permutation from each set is se-
lected for further analysis, since all elements in the set have exactly
the same cost expression for data movement. Thus, the search space
is drastically reduced from 5040 distinct tile-loop permutations to
only 8 cases for single-level tiling, and 8~ cases for L-level tiling
instead of 5040" cases.

5 MULTI-LEVEL TILE-SIZE OPTIMIZATION

In this section, we present our approach to optimizing multi-level
tiled CNN. Due to the multiple levels of cache on multiprocessors,
multi-level tiling is beneficial to optimize data movement at the
different levels in the memory hierarchy. In general, while cache
capacities at later levels increase, the bandwidth for data movement
between adjacent levels in the hierarchy decreases. Thus the over-
head (in time) to move data between different levels in the memory
hierarchy will be different. Assuming that concurrent data transfers
(of different data) can occur between different levels of the memory
hierarchy, we seek to minimize the maximum bandwidth-scaled
data-volume across all levels.

For L-level tiling, the number of tile parameters will be 7L, seven
tile sizes per level. Since the tiled execution corresponds to a 7L
loop nest, the range of execution for any iterator j at tile-level I
will be T}“, i.e., the tile-size for that loop variable at the next outer
tiling level, and N; for the outer-most tile. In the previous section,
the data volume expressions for single-level tiling featured ratios
of the problem size over the tile size along the different iteration
space dimensions, N;/T;. For multi-level tiling, the expressions will
have terms of the form T].IH/T}, i.e., the expressions for each level
involve parametric tile sizes for that tile level and the next outer
tile level.

Let BW! represent the bandwidth available for data transfers
and DV the volume of data moved between levels [and [+ 1 in
the memory hierarchy. We seek a tile configuration that minimizes
max; g—‘xll. However, although several publicly available nonlinear
solvers can be used to solve the optimization problem developed in
the previous section for single-level tiling, none can directly solve
a constrained min(max()) nonlinear optimization problem. Hence
we use the following approach to solve the L-level tile optimization
problem: solve L constrained optimization problems, where the
parametric data volume expression for each level I is minimized
in one of those. For the instance of the minimization problem for

ASPLOS 21, April 19-23, 2021, Virtual, USA

Figure 3: Example to illustrate approach to multi-level tile
size optimization

1
level I, additional constraints are added to the effect that % must

be greater than or equal to g—v“//l;c fork # 1.

Our approach to multi-level tile optimization is illustrated by a
simpler example of one-dimensional functions. Fig. 3 shows three
functions: fi(x) (colored black), f2(x) (colored red), and f3(x) (col-
ored blue). Consider the problem of finding min(max(fi, f2, f3)),
where analytical expressions as a function of variable x are available
for f1, f2, and f3. We need to find the minimum of the function feomp,
shown by the dotted line in Fig. 3, but no analytical expression is
available for foomp that can be input to a constrained non-linear
optimization solver. We solve the min-max problem by solving
three separate min(f) problems, over the three regions A, B, and C,
respectively. A is the region over x where function fj is greater than
or equal to f and f3. Similarly, B and C represent regions over x
where f2 and f3, respectively, are greater than or equal to the other
two functions. The minimum value of foomp over the full range of
x can be expressed as min(mi, ma, m3), where my = ming(fi(x)),
my = ming(f2(x)), ms = minc(f3(x)).

In order to solve for

miz3 = min(max(fi(x), f2(x), f3(x))), Xjo < x < Xp;
we can solve three minimization problems, one each for regions over
which the corresponding function has the highest value (regions
respectively marked A, B, and C in Fig. 3):

= min(fi(x)), fi(x) 2 fa(x), fi(x) = f3(x), Xjp < x < Xp;
min(f2(x)), f2(x) = fi(x), fa(x) = f5(x), X}p < X < Xp;

m3 = min(f3(x)), f3(x) = fi(x), f3(x) = f2(x), Xjp < x < Xp;
and then selecting m123 = min(my, ma, ms).

3
I

3
Il

6 MICROKERNEL DESIGN FOR CNN

‘ | Veck 0 |[Veckl1 | } Kernel

Vecl_0 VecO_0,0 || VecO_0,1
Vecl_1 VecO_1,0 || VecO_1,1

Input ecl eco. e Output
| Vecl 5 || [Vveco_5,0|[veco 5,1 |

Figure 4: Conceptual view of outer product scheme

Along with data movement optimizations, optimizing the
throughput of compute-units is critical for achieving close to peak
performance. The principal computations in convolutions can be
realized using the Fused-Multiply-Add (FMA) operator, which can

ASPLOS 21, April 19-23, 2021, Virtual, USA

for(c in 0 to Tc)
for(r in 0 to Tr)
for(s in 0 to Ts)
// outer product
for(hw in 0 to 6)
for (k in 0 to 16)
// FMA

Listing 4: Loop structure of the micro kernel

//Before parallelization
for (i4 = 0; i4 < Ni; i4 += Ti3)
for (j4 = 0; j4 < Nj; j4 += Tj3)
for (i3 = i4; i3 < i4 + Ti3 ; i3 += Ti2)
for (j3 = j4; j3 < j4 + Tj3 ; j3 += Tj2)
// After parallelization
for (i4 = 0; i4 < Ni; 14 += Ti3)
for (j4 = 0; j4 < Nj; j4 += Tj3)
for(ip = i4 + tid/(Tj3/PTj3) + Tip; ip< i4+Ti3;
ip+=(Ti3/PTi3)«Tip) // parallel
for(jp = j4 + tid%(Tj3/PTj3) « Tjp; jp< j4+Tj3;
jp+=(Tj3/PTj3)«Tjp) // parallel
i3 += Ti2)
3 §3 += Tj2)

for (i3 = ip; i3 < ip + Tip
for (j3 = jp; j3 < jp + Tjp

Listing 5: Loop structure before and after parallelization

be efficiently executed by the SIMD (vector) units in modern pro-
cessors. Each core in our benchmarking machines contains two
AVX2 (256 bits == 8 floats) SIMD units, which can achieve a com-
bined throughput of 2 X 8 FMA operations (16 FMA ops), and has a
latency of 4 to 6 clock cycles. The amount of parallelism required to
fully utilize the SIMD pipeline can be computed using Little’s Law
as latency X throughput = 6 X 16 = 96. Note that these operations
should not carry any dependencies.

An outer product scheme, similar to BLIS[24], is used to achieve

the required parallelism. Figure 4 shows the conceptual view of our
outer product scheme. The output feature is distributed across the
vector lanes. In AVX2, each vector register can hold eight single-
precision floating-point elements. Two such registers are used to
hold the kernel elements. Six vector registers, each of which holds a
single input image point, are populated using vector broadcasts. The
outer product of these six vector registers and two kernel registers
are computed using efficient vectorized Fused Multiply Add (FMA)
instructions and stored in twelve vector registers. Listing 4 shows
the loop structure of our micro-kernel. The actual implementation
of the entire microkernel, including loops, is implemented using
x86 assembly code.
Packing: Efficient vectorization requires stride-1 access along the
vectorization dimension. Our scheme vectorizes the output feature
dimension (T). However, since the kernel layout is [K,C, R, S|, K
is not the fastest varying dimension. Hence a data layout trans-
formation is performed to make K the fastest varying dimension
before the convolutions are processed. We split the dimension K
into vector-length sized chunks, and each chunk is laid out contigu-
ously in memory ([K,C,R,S] — [K/VecLen, C, R, S, VecLen]). Our
code generator automatically generates the packing code and this
packing cost is included in all experiments.

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan

7 OPTIMIZING FOR PARALLELISM

We describe how the sequential cost model is adapted to handle
tiled parallel execution. We assume that each core owns a set of
private caches (typically L1 and L2) and collectively shares a set
of shared caches (typically L3). Since the L3 cache is shared, paral-
lelizing loops that iterate over L3 tiles will cause cache interference.
Loops that iterate over L2 tiles as well as loops that iterate over
L1 tiles can be parallelized without cache interference. But paral-
lelizing L1 loops will reduce data locality within L2 tiles. Further,
parallelizing L2 tile loops achieve coarser parallelism, with lower
scheduling overheads. Hence we sub-tile L2 tiling loops to create
two-loop bands. Listing 5 shows the tile structure before and after
parallelization of a 2D loopnest. The outermost band (ip and jp)
is used for parallelization and the inner band (i3 and j3) is exe-
cuted sequentially by each core. Parallelizing certain dimensions
like W and H will result in write conflicts. While these conflicts
can be avoided by using atomic operations or synchronizations,
the overhead is high. Hence, our model only considers parallelism
along the non-reduction dimensions. The cost modeling in the par-
allel case is very similar to the sequential cost model explained in
Sec. 5; hence we only describe the differences in this section. Even
though the memory-to-L3 data movement remains the same, the
effective bandwidth may be higher in the parallel case. Hence, we
use a synthetic benchmark to determine the parallel memory-to-L3
bandwidth and use this bandwidth in the cost model. The parallel
L3-to-L2 data movement cost may also change as the available L3
bandwidth is split across multiple cores. The per-core L3-to-L2 band-
width is also computed using synthetic benchmarks. The parallel
L3-to-L2 cost computation is similar to the cost computation ex-
plained in Sec. 5 and can be obtained by replacing T3 in with PT,3
where o € non reduction dimensions. Ta3/PTa3 is the amount of
parallelism along dimension a. A constraint is added to ensure that
the total amount of parallelism is equal to the total number of cores
([TTa3/PTa3 == num_cores). The rest of the constraints remain
the same. The L2-to-L1 bandwidth and L1-to-register bandwidth
used in the parallel case is the same as the sequential case. The par-
allel cost model is then solved using the same min-max formulation
from Sec. 5.

8 PUTTING IT ALL TOGETHER

In this section, we discuss some aspects of the overall process for
generation of optimized CNN code that have not been previously
described. We first demonstrate the way to handle parallel execution
and then present the work flow of the full optimization system.

System Workflow

The design of the microkernel (Section 6) is entirely dictated by
the latency and throughput of the FMA units and is not dependent
on the cache or memory parameters. Hence, for a given machine,
the same micro-kernel is used for all problem sizes. However, the
tile sizes and loop permutation of the loops surrounding the mi-
crokernel is dependent on the problem specification. Algorithm
1 shows an overview of our permutation and tile-size selection
process. Function GetPrunedPermutation returns the set of pruned
permutations. The loop at line 3 iterates over each permutation and

Analytical Characterization and Design Space Exploration for Optimization of CNNs

Input :ProblemSize, HardwareSpec
Output: LoopPermutation, TileSize
1 PrunedPermuSet « GetPrunedPermutations ();
2 GlobalSoln.Cost « INT MAX;
3 for pm € PrunedPermuSet do
4 NotVisitedLvls « [Reg, L1, L2, L3];
5 FixedTileSizes « [] ;
6 while NotVisitedLvls # 0 do

7 MinCost « INT _MAX;
8 for ObjLvl € NotVisitedLvls do
9 [CurCost, CurTileSizes] «
ArgMinSolve (ProblemSize, HardwareSpec, ObjLvl,
pm, FixedTileSizes, NotVisitedLvls);
10 if MinCost > CurCost then
11 MinTileSizes < CurTileSizes;
12 MinLevel « ObjLvl;
13 MinCost «— CurCost;
14 end
15 end
16 NotVisitedLvls.remove (MinLevel) ;
17 FixedTileSize.add (getTileSizeforLevel (MinTileSizes,
MinLevel)) ;
18 end
19 if MinCost < GlobalSoln.Cost then
20 GlobalSoln « {pm, FixedTileSize, MinCost}
21 end
22 end

23 IntegerSoln « FloorToInteger (GlobalSoln);

24 FinalSolution TileSizes «— LoadBalancer (finallntegerSol);

25 return [FinalSolution.pm, FinalSolution.TileSizes];
Algorithm 1: Permutation and Tile Selection Algorithm

finds the best tile-sizes for the given permutation. For a given per-
mutation (pm), we initialize the FixedTileSizes as an empty array at
line 5, we first find the tile-sizes for the most-constrained level and
fix the tile size corresponding to this level. Next, among the remain-
ing levels, we find the tile-sizes for the most-constrained level and
find the tile-sizes for that level. This process is repeated until the
tile-sizes for all levels are computed. However, the cost of each level
is not known a priori. The maximum constraining level is found
using the following steps. For each level: (i) add a constraint to mark
the current level as the most constraining one, (ii) invoke the solver
to find the tile-sizes which minimizes the cost under the former
constraint, (iii) select the level with the minimum cost (min-max
formulation). Each iteration of loop at line 6 represents this com-
putation. The loop at line 8 finds the minimum cost assuming that
the current level (ObjLv) is the level with maximum constraints.
Line 9 invokes the Ipopt solver[37] by setting the constraint that
the ObjLvl is the most constrained level. The if condition at line 10
keeps track of the minimum cost and the associated level. The tile
sizes for the most constrained level are then fixed and removed
from the search space (lines 16-17). Function getTileSizeforLevel
is a helper function to extract the tile-sizes for a given level. This
entire process is repeated for each permutation to find the best
permutation and tile-sizes. Note that the tile-sizes returned from
the solver are real numbers; however, tile-sizes should be integers.

ASPLOS 21, April 19-23, 2021, Virtual, USA

We floor each tile-size to obtain the integer solution. The tile sizes
are then adjusted to minimize the core idling (load balance).

9 MODEL VALIDATION

We present our experimental evaluation in two parts: first, in this
section we discuss model validation, followed in the next section
by a comparison with state-of-the-art alternatives: Intel oneDNN
[25] and AutoTVM [6, 40].

For our experimental evaluation, we used all CNN benchmarks
used by TVM in the extensive comparative evaluation [6] against
various other CNN optimization frameworks. The benchmarks used
by TVM include all twelve conv2d operators from Resnet-18[13],
and the nine depth-wise conv2d operators from MobileNet[14]. In
addition we used all eleven conv2d operators from Yolo-9000[29].
All benchmark parameters are shown in Table 1. All input and
output tensors were stored in NCHW layout and all kernel tensors
were stored in KCRS layout. Any time expended in internal layout
transformations was included in the measured execution time for
all codes.

The experiments described in this section were performed by
measuring single-core performance and profiling hardware coun-
ters on an 8-core Intel Core i7-9700K CoffeeLake processor, with
32KB L1 cache per core, 256KB L2 cache per core, and a shared
12MB L3 cache. Hardware counter events were profiled by use of
Likwid [33].

For each of the 32 conv2d operators, a sampling of the space
of tile-size combinations was performed to select around 100 con-
figurations uniformly distributed in the full space of tile-size com-
binations. For each code configuration, we generated the model-
predicted score, measured performance by executing it, and gath-
ered hardware counter events for data movement volume at the
register, L1 cache, L2 cache, and L3 cache levels.

We sought to answer the following questions:

(1) Given a set of alternative tile configurations for a benchmark,
how does the rank ordering of those code configurations by
use of the analytical model compare with that based on mea-
sured performance? The rationale for such an assessment is
that the effectiveness of a compiler performance model in dif-
ferentiating between configurations is much more important
than the absolute error between modeled execution time and
measured execution time.

(2) How does the rank ordering of code configurations by the

model compare with the measured data volumes at the differ-
ent levels of the memory hierarchy?
What is the loss-of-performance for a model-selected configu-
ration when compared to the best performing configuration in
the sampled set? We evaluated a top-1, top-2 and top-5 loss-of-
performance score, where top-k means the best performance
among the top k predicted configurations by the model.

Figure 5 presents the loss-of-performance comparing model-
predicted best configurations and the actual best among the 100 or
so configurations evaluated for each benchmark. For each conv2d
operator, we calculated three loss ratios. The top-one loss represents
the loss of performance of the best-predicted case by our model
over the actual best code version. The top-two loss represents the
loss of performance of the better of the top-2 versions predicted

—
5SS
=

ASPLOS 21, April 19-23, 2021, Virtual, USA

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan

Layer | K C
Tayer | K C H/W | RS 5 12’ 1
Yo 32 3 544 3 R2 64 64
Y2 64 32 272 3 R3 64 64
Y4 128 64 136 3 .

R4 128 64
Y5 64 128 136 1 «

R5 128 64
Y8 256 128 68 3

R6 128 128
Y9 128 256 68 1 .

R7 256 128
Y12 512 256 34 3

R8 256 128
Y13 256 512 34 1

R9 256 256
Y18 1024 512 17 3 .

R10 512 256
Y19 512 1024 17 1 Ri1* 512 256
Y23 28269 1024 17 1

R12 512 512

RIS

; Layer | K C HW [RS
1 M1 32 32 112 3
3 M2* 64 64 112 3
1 M3 128 128 56 3
3 M4* 128 128 56 3
3 M5 256 256 28 3
3 Meé6* 256 256 28 3
3 M7 512 512 14 3
3 Ms* 512 512 14 3
1 M9 1024 1024 7 3
3

Table 1: Configurations of conv2d operators in Yolo-9000 (left), ResNet-18 (middle) and MobileNet (right); K: # output channels;
H, W: input image height and width; C: #input channels; R/S kernel size; batch size = 1; kernel stride = 1/2 (2 if marked with *

after kernel name, 1 otherwise)

M top5loss [top2 loss

5.00%
4.00%

top1 loss

3.00%
2.00%
o | | " II ||
0.00% e | 1] [| [T m
JES A Q N N9 D > H o A > 2 0 NN
‘0 ARG I I I NSNC AN SNSRI GO S I SEE R N\ NN
9 9 9 9 9 Q 9 O ° F £ N S N N N N N N @ @ @
<° <° <° @ <° <° <® é\ é\ R A A S i YL © &F LS &é‘ &é\ &

Figure 5: Model prediction performance loss over 100 grid sampling for Mobilenet, Yolo-9000, and Resnet-18 on i7-9700K

by the model over the actual best code version. For the top-five
loss, we take the best among the top 5 cases based on prediction.
Our experiment shows that for all thirty-two conv2d operators,
the model predicted best code versions always achieve less than
4.5% loss , i.e., the model always finds a code version that achieves
95.5% performance comparied to the actual best code version in the
sampled configuration space. For most operators (thirty of thirty-
two), the loss is less than 3%.

Figure 6 shows the correlation of predicted performance with ac-
tual performance and data movement hardware counters (registers,
L1, L2, and L3) for three of the benchmarks:Resnet-9, Mobnet-2, and
Yolo-5. Each of the three columns of graphs in the figure correspond
to one of those three conv2d operators. In these graphs, the Y-axis
represents one of the following metrics: Performance (GFLOPs),
number of register load/stores, and L1/L2/L3 cache misses, one
chart for each metric, in that order from top to bottom. The differ-
ent configurations are ordered from left to right along the X-axis on
the basis of model-predicted performance, with the best-predicted
case at the left end, and the worst-predicted case at the right end.

The first row of charts shows that there is a strong correlation
between actual performance and predicted performance.- code ver-
sions with higher performance generally also have higher model-
predicted scores. The other plots shows a strong correlation be-
tween data movement hardware counter measurement for the pre-
dicted bottleneck resource and the predicted performance. Since
the predicted performance is based on the predicted bottleneck
resource, we would expect correlation with hardware counter mea-
surements for that resource. For both Resnet9 (left column) and

Mobnet2 (middle column), the model predicts that the register level
is the most constraining one. Indeed, the experimental measure-
ments show a strong correlation with hardware measurements of
load/stores. It is interesting to note that for both benchmarks there
is no correlation with hardware counter measurements at some
other levels, specifically L1 and L3. Both registers and L3 are pre-
dicted to be constraining resources for Yolo5 (right column) and
this is also seen in the experimental data.

10 COMPARISON WITH STATE-OF-THE-ART
LIBRARY AND AUTO-TUNING

In this section, we present a comparative experimental evaluation
of the code generated by MOpt with a state-of-the-art library (Intel
oneDNN [25]) and a state-of-the-art auto-tuning system (AutoTVM
[6, 40]. The experiments were carried out on two systems: an 8-core
Intel Core i7-9700K CoffeeLake processor, with 32KB L1 cache per
core, 256KB L2 cache per core, and a shared 12MB L3 cache and
an 18-core Intel i9-10980XE CascadeLake processor, with 32KB L1
cache per core, 1IMB L2 cache per core, and a shared 24.75MB L3
cache.

We compare the performance of code generated by MOpt with
two state-of-the-art frameworks: (i) Intel oneDNN (v1.5) library,
and (ii) TVM (v0.6). TVM relies on auto-tuning and machine learn-
ing models to generate efficient code. All MOpt codes and oneDNN
were compiled using the Intel ICC 2019 compiler with flags "-
O3 -march=native -qopenmp". TVM recommends using the LLVM
framework; hence we used LLVM-8. TVM tuning was based on their
recommended template: "generic.schedule_conv2d_nchw"[38]. We

Analytical Characterization and Design Space Exploration for Optimization of CNNs

Resnet9-performance

Mobnet2-performance

ASPLOS 21, April 19-23, 2021, Virtual, USA

Yolo5-performance

80 100 80
“"“K‘—nw}”nﬂmz‘w - H00ORRIOON
b poiSROSoK p— —
60 75 E— P
Mmook
NS
. . . N
]] S 4
40 50 .
8 B —
05028 S0 2000 2 X056,
20 25 20
R
0 0 0
Resnet9-REG Mobnet2-REG Yolo5-REG
40000000 — 2.5E+7 = 1.00E+8
e S 25 X X 20000000 s
R
2.0E+7
30000000 7.50E+7
o o o
5 5 15E+7 S 5
@ @ —— ®
3 20000000 3 R—— 3 5.00E+7
2 r— 2 2
o o 1.0E+7 o
I+ 0000000000000 x I+ T+ K
10000000 2.50E+7
5.0E46 S——
0 0 0
Resnet9-L1 Mobnet2-L1 Yolo5-L1
1500000 1500000 3000000
-
e X00000000¢ PO 00 x
0 0060 5 0 xx X i
g 1000000 IR 8 1000000 o 8 2000000
= L2 L
£ € £
2 2 T — 2
S 500000 8 8 e
% L S 500000 Y S 1000000 S
20000000 I Ho00ed
0009000 200000000 e 0 P
0 0 0
Resnet9-L2 Mobnet2-L2 Yolo5-L2
600000 500000 2500000
——
x 400000 o 2000000
& 400000 S 8 o]
8 » 2 300000 2 1500000
E L E E
[} [} [
g g g
8 R PR § 200000 § 1000000
S 200000 o S . <
S, 100000 * s s 500000
X5 X a0 3000000000000 o 300000000000
0 0 Q Tmmm—"
Resnet9-L.3 Mobnet2-L3 Yolo5-L3
50000 20000 . 200000
002520 0000 95000008502 R0 RSN x
40000 &
15000 150000 <
73 73 @a 00000020 30000500008 X 00 300 X
[[} [-
2 30000 8 8
s £ 10000 = 100000
2 2 2
§ 20000 g] S
* * 5000 * 50000
10000
0 0 0

Figure 6: Model-predicted rank ordering versus actual measurement on i7-9700K. Left: Resnet9, Middle: Mobnet2, Right: Yolo5;
Top: Performance (GFLOPs), followed by Reg. load/stores, L1 misses, L2 misses, L3 misses. Points are ordered along X-axis in
decreasing order of predicted performance.

used XGBTuner as the ML tuning model, and we set "LLVM -
mcpu=core-avx2 or -mcpu=skylake-avx512" based on the target

to ensure that the generated code was vectorized for the appropri-
ate ISA (avx2 for i7, avx512 for i9). For each CNN benchmark, we

ASPLOS 21, April 19-23, 2021, Virtual, USA

ran TVM’s auto-tuner with its internal ML model to find the best
configuration over 1000 trials.

We compare TVM and oneDNN agaist two MOpt code versions
(i) MOpt-1: A single code version generated with the configuration
with minimum modeled cost and (ii) MOpt-5: Five code versions
were synthesized based on the top 5 modeled configurations. The
reason we also include MOpt-5 is to highlight the potential for
performance improvement by inclusion of limited empirical auto-
tuning to MOpt. Since the modeling in MOpt is based on an idealized
fully associative cache, occasionally we find (e.g., Yolo9 and Yolo18)
that conflict misses cause a significant drop in performance. But
when we consider the top five configurations generated by the
MOpt framework, it turns out that these configurations rarely ex-
perience pathological conflict miss scenarios and the best among
the top five performs very well.

We repeated each experiment 50 times on the system, using 8
threads on i7-9700k and 16 threads on 19-10980xe. We excluded the
very first run since it often includes additional time for loading
libraries. In order to avoid cache reuse across successive runs, we
flushed the cache between runs and measured the execution time
of each run individually. We turned off DVFS and turbo-boost, and
locked the clock at base frequency to reduce the variability across
runs. For each benchmark, we report mean GFLOPS achieved over
50 runs. The bar charts and the left vertical axes in Figure 7 show the
performance, normalized to TVM’s performance. As recommended
by a popular approach for statistically-rigorous performance mea-
surements [10], we also report the 95% confidence interval. The
interval is shown on top of each bar, as a characterization of vari-
ance; in some cases, it is so small that it is barely visible. We also
show the actual GFLOPS value of the MOpt-based code above the
corresponding bar.

The geometric means of speed-up of MOpt over oneDNN are:
On i7-9700k, 1.16x on the Yolo, 1.37x on the ResNet, and 1.24x on
MobileNet. On i9-10980xe, 1.26x on the Yolo, 1.08x on the ResNet,
and 1.14x on MobileNet. The geometric means of speed-up of MOpt
over TVM are: On i7-9700k,1.73x on the Yolo, 1.40x on the ResNet,
and 1.52x on MobileNet. On 19-10980XE, 1.53x on the Yolo, 1.84x
on the ResNet, and 1.56x on MobileNet.

11 RELATED WORK

Tile size optimization: Some previous research has focused on tile
size optimization based on analytical modeling [32, 39]. However,
they relied on heuristic search. Recently, Li et. al [21] developed
an analytical modeling approach and its solution using nonlin-
ear solvers, for optimizing data movement for tensor contractions.
However, their work only addressed sequential computing and was
restricted to tensor contractions and could not be applied to CNNs.
Renganarayana et. al[30] developed a framework based on integer
geometric programming to optimized tile size selection if the opti-
mization problem could be expressed as a posynomial. While our
one-level tile-size optimization formulation is a posynomial, the
constraints arising in the multi-level tile optimization problem are
no longer posynomials.

Some other previous efforts have formalized the tile size selec-
tion problem as a constrained optimization problem. Sarkar et. al
[31] presented a model for optimizing memory cost for doubly

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan

nested loops, and limited the dimension of loop nest to not greater
than three. Krishna [17] et. al utilized a nonlinear solver to find
optimal tile sizes to minimize disk I/O for tensor contraction, but
they only addressed on single level of tiling. Cociorva et. al [7]
proposed a model for optimizing inter-processor communication
under memory constraints, restricted to tensor contraction. Lin et.
al [22] developed a tool that used a convex solver to optimize tile
size for direct buffer access. However, it relied on heuristic search
to find loop permutations and did not comprehensively cover the
full loop permutation space, and they also only addressed a single
level of tiling.

Polyhedral compilers: Polyhedral compilers such as Polly[11],
Pluto[5], PPCG [36] perform tile sizes optimization and
loop parallelization based on the polyhedral model. Tensor
Comprehension[35] is an automatic compiler for converting
tensor computations to high-performance machine learning
kernels based on the polyhedral model. However, a fundamental
limitation of polyhedral compilers is that the cost models used
for optimization are linear. The tile-size optimization problem
is inherently non-linear. Polyhedral compilers are forced to
separate tile-size optimization from tile-loop permutation and
therefore have not demonstrated code generation for CNN whose
performance matches vendor library code (like Intel oneDNN) or
optimizers that use auto-tuning (like TVM).

Specialized Machine Learning compilers: PlaidML [27] is a
portable tensor compiler that compiles deep learning codes on
mobile devices. It automatically applies tiling transformation to
improve efficiency of training. XLA (Accelerated Linear Algebra)
[19] is a domain-specific compiler that improves performance
for linear Algebra operators inside Tensorflow[1]. XLA fuses
Tensorflow operators in the same graph, so it reduces the
requirements to write intermediate values and number of kernel
calls. TVM [6] is an automatic end-to-end optimizing compiler for
improving the performance of deep learning systems. It works
with deep learning frameworks like Pytorch[26] and Keras[15]
and supports code generation for different hardware platforms.
It extends and uses Halide [28] as its internal representation. Its
optimization is driven by an ML-based cost model that trains
itself by using auto-tuning data collected when running on the
target platform. It has been demonstrated to achieve much higher
performance than other existing CNN optimizing frameworks
like PPCG, PlaidML, XLA, etc. [6, 40]. Thus, TVM represents the
current state-of-the-art in CNN optimization. In this paper, we
therefore compare performance with it.

CNN libraries: Intel’s oneDNN[25] is a state-of-the-art optimized
neural network library for Intel Architectures. We have compared
performance with oneDNN.

12 DISCUSSION

To the best of our knowledge, this paper presents the first demon-
stration that a purely analytical modeling approach for optimized
code generation for CNN can achieve performance comparable to
or better than the current state-of-the-art in both optimized vendor
libraries and auto-tuning based optimizers that perform actual exe-
cution of candidate code versions on the target platform. Further

Analytical Characterization and Design Space Exploration for Optimization of CNNs

ASPLOS 21, April 19-23, 2021, Virtual, USA

= 3.0

= (4.02x ,4.74x ,4.82x, 1,0x)

£ s mEm MOpt-l1 /// MOpt-5 @@ oneDNN & TVM

o 504 7

920 595 510 255 319; 669 396 16

® 15 o sg7. 28 710 722 759 L s §

) g 7 333120 430 141 Y ‘ ? ;

o 10 Oxs B0 e IR U iR 2 ERs Ehs T B IS BT B s I8 R

2 '3::1¢:1"":5::~ :2:: i

© 0.5 X WO > B DX Iy iR b K B N o K B % B et

9] 8 X s E DE g ol 1 5 e s 5 e:E IS: R g 5 9]

& 0.0 g0 24 A 2l 7.4 5 4 5 3 i ‘ : W R s s IR I 5 | ’ g g d

F &L & LS Q@ & &@o\oe RN N R B P &L EL,SLL DI
& & & F S E FE e O I I N N S N A
F T HF T T FSTSH S SR UER SR R R SR S SN N2
I QO Q97 Q0 O 0 8 O © T T &

Em Mopt-1

Speedup (relative to TVM)

7//7 Mopt-5

I
¢ oneDNN mu TVM 125;

-
o

i &

NN\

s awaaew
S R A IO IO

Figure 8: Performance (relative to TVM) and variance for Mobilenet, Yolo-9000, and Resnet-18 on i9-10980XE

improvement of performance is possible by via incorporating the
strengths of these systems into MOpt, as discussed below.

Table 2 contrasts the strengths and limitations of oneDNN, TVM,
and MOpt. oneDNN is a highly optimized vendor library that in-
cludes highly optimized microkernels developed and optimized by
Intel engineers over many years. However, it dynamically chooses
among a small number of pre-determined tiled code structures
based on the CNN array sizes provided at invocation, i.e., it per-
forms minimal design-space exploration. TVM performs a search
through a limited design space, as specified by the tuning script.
A significant difference between our model-driven search method-
ology and TVM’s auto-tuning based search is the extent of the
space that can be effectively explored. Our search time is relatively
independent of the problem size, while TVM’s search time for a
specified number of samples is essentially proportional to the num-
ber of operations of the specific CNN modeled. For example, TVM
took 1 minute versus 109 minutes to search for the optimal code
for the small first stage versus the large last stage of the Yolo-9000
pipeline. However, MOpt only took 9 seconds and 23 seconds, re-
spectively, for optimizing these two problem cases. Therefore a
judicious constraining of the full search space is essential for using
TVM (as detailed in Sec. 10, we use the script recommended by the
developers of TVM), i.e., comprehensive design-space exploration
is not practical.

MOpt’s strength is comprehensive design-space exploration to
seek tile-loop structures and tile sizes that minimize the data volume
at the bottleneck resource in the multi-level cache hierarchy. It does
not use any empirical auto-tuning in its search and uses a micro-
kernel that is not as highly optimized as oneDNN’s. Nevertheless,

Au.to Micro Kernel Design Sp.ace
tuning Exploration
oneDNN X Highly optimized Minimal
TVM v NA Limited
MOpt X Not highly optimized | Comprehensive

Table 2: Strengths/limitations of oneDNN, TVM and MOpt

the achieved performance of MOpt’s code on the CNN stages of
three DNN pipelines is almost always better and often much better
than TVM’s code, and comparable and sometimes much better than
oneDNN. While data-movement volume is a significant factor that
affects performance, other factors are also important, which are
very challenging to model, such as conflict misses in real caches
with finite set-associativity. A direction for ongoing/future research
is to combine our model-driven approach with a limited amount
of auto-tuning via actual execution on the target platform. One
direction we explored was to incorporate a data-volume-model
guided search within TVM’s auto-tuning based search. However
we faced a fundamental problem: TVM uses LLVM’s compiler to
generate vectorized code and it performs loop transformations in
its backend that we cannot control. The performance of the final
resulting code was affected very significantly by the LLVM backend
so that a tile loop structure and tile sizes for which MOpt achieves
very high performance can produce very low performance through
the TVM-LLVM chain because of LLVM’s transformations. TVM
plans extensions to allow fixed microkernels at the inner-most
level instead of the sole current path of LLVM code generation.
When that feature is available, we expect to be able to incorporate

ASPLOS 21, April 19-23, 2021, Virtual, USA

MOpt’s model-driven search into TVM’s auto-tuning and gain the
combined benefit of comprehensive design-space exploration and
empirical auto-tuning.

Further planned work will apply the analytical modeling ap-
proach to optimize CNN on other target platforms. GPUs, FPGAs,
distributed-memory systems, and accelerator arrays can be ab-
stracted in a similar manner, as hierarchical systems with memory
capacity at each level, with consideration for achieving adequate
parallelism, leading to multi-level tile-size optimization problems.
One important extension will be the modeling of spatial locality.
This can be done by adapting the data volume expressions to count
the number of cache lines (or DRAM transactions for GPUs): Use
[%] instead of Ty, where L is the cache line-size in words and T
is the tile size along the fastest-varying dimension of an array. This
reflects the fact that the movement of data is actually in units of
larger granularity—cache lines or fixed-size DRAM transactions
(on GPUs)—and not individual elements.

Finally, there is significant potential for application of this model-
driven tile-optimization approach to overcome a fundamental limi-
tation of polyhedral compilers: tile size optimization is currently
infeasible because parametric tile size variables cause the array in-
dexing expressions to become non-affine and thus out of the scope
of the inherent modeling machinery within the polyhedral model.
For a significant and practically important subset of matrix/tensor
computations, a tile-footprint based cost-modeler and optimizer
can be plugged into a polyhedral compiler, enabling iterative search
across tile loop permutations and fusions by executing MOpt-like
parametric tile size optimization to guide loop transformations.

13 CONCLUSION

We present a new approach to overcome the design-space explosion
problem that has thwarted effective compile-time modeling and
optimized code generation for CNNs. Although the space of possible
configurations is extremely large, we devise an effective analytical
modeling approach to search in this space. The structure of data
movement cost expressions is exploited to achieve dramatic space
pruning. Constrained non-linear optimization problems are used
to find multi-level tile sizes that minimize bandwidth-scaled data
volume at the most constraining level in the memory hierarchy.
Experimental results demonstrate that achieved performance is
superior to code generated by TVM and can be comparable to or
better than Intel’s oneDNN. Further improvements are possible
by incorporating better microkernels and by using empirical auto-
tuning. The methodology for full design-space exploration and
tile-size optimization can also be used to enhance the performance
of libraries such as oneDNN, optimizing code generators such as
TVM, and polyhedral compilers.

14 ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science Foun-
dation through awards 1946752, 1919122 and 2018016.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 265-283.

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan

[2] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. 2019. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 193-205.

[3] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noel Pouchet, and Ponnuswamy
Sadayappan. 2017. Analytical modeling of cache behavior for affine programs.
Proceedings of the ACM on Programming Languages 2, POPL (2017), 1-26.

[4] Cedric Bastoul. 2004. Code generation in the polyhedral model is easier than you
think. In Proc. International Conference on Parallel Architectures and Compilation
Techniques (PACT). 7-16.

[5] U.Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical
automatic polyhedral parallelizer and locality optimizer. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 101-
113.

[6] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In Proc. USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[7] Daniel Cociorva, Xiaoyang Gao, Sandhya Krishnan, Gerald Baumgartner, Chi-
Chung Lam, P Sadayappan, and] Ramanujam. 2003. Global communication
optimization for tensor contraction expressions under memory constraints. In
Proceedings International Parallel and Distributed Processing Symposium. IEEE,
8-pp.

[8] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem. I.
One-dimensional time. International Journal of Parallel Programming 21, 5 (1992),
313-347.

[9] Robert Fourer, David M Gay, and Brian W Kernighan. 1990. A modeling language
for mathematical programming. Management Science 36, 5 (1990), 519-554.

[10] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous
Java Performance Evaluation. In OOPSLA. 57-76.
[11] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012.
Polly—performing polyhedral optimizations on a low-level intermediate
representation. Parallel Processing Letters 22, 04 (2012), 1250010.
Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler. 2019. A
fast analytical model of fully associative caches. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 816
829.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity mappings
in deep residual networks. In European Conference on Computer Vision. Springer,
630-645.
[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).
Nikhil Ketkar. 2017. Introduction to keras. In Deep learning with Python. Springer,
97-111.
Peter MW Knijnenburg, Toru Kisuki, Kyle Gallivan, and Michael FP O’Boyle.
2004. The effect of cache models on iterative compilation for combined tiling and
unrolling. Concurrency and Computation: Practice and Experience 16, 2-3 (2004),
247-270.
Sandhya Krishnan, Sriram Krishnamoorthy, Gerald Baumgartner, Chi-Chung
Lam, J Ramanujam, P Sadayappan, and Venkatesh Choppella. 2006. Efficient
synthesis of out-of-core algorithms using a nonlinear optimization solver. J.
Parallel and Distrib. Comput. 66, 5 (2006), 659-673.
[18] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s
Law. arXiv:2002.11054 [cs.PL]
Chris Leary and Todd Wang. 2017. XLA: TensorFlow, compiled. TensorFlow Dev
Summit (2017).
Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou. 2016. Opti-
mizing memory efficiency for deep convolutional neural networks on GPUs. In
SC’16: Proc. International Conference for High Performance Computing, Networking,
Storage and Analysis. 633-644.
[21] RuiLi, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low, Fabrice Rastello,
Atanas Rountev, and P Sadayappan. 2019. Analytical cache modeling and tilesize
optimization for tensor contractions. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1-13.
Haibo Lin, Tao Liu, Lakshminarayanan Renganarayana, Huoding Li, Tong Chen,
Kevin O’Brien, and Ling Shao. 2011. Automatic loop tiling for direct memory
access. In 2011 IEEE International Parallel & Distributed Processing Symposium.
IEEE, 479-489.
Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. 2019. Optimiz-
ing CNN Model Inference on CPUs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 1025-1040.

=
N

=
&

[15

[16

(17

[19

[20

~
5,

[23

https://arxiv.org/abs/2002.11054

Analytical Characterization and Design Space Exploration for Optimization of CNNs

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33

[34

[35]

[36]

[37

[38

[39

[40]

Tze Meng Low, Francisco D Igual, Tyler M Smith, and Enrique S Quintana-
Orti. 2016. Analytical modeling is enough for high-performance BLIS. ACM
Transactions on Mathematical Software (TOMS) 43, 2 (2016), 12.

oneDNN 2020. Intel oneAPI Deep Neural Network Library (oneDNN).
https://software.intel.com/content/www/us/en/develop/documentation/
oneapi-programming-guide/top/api-based-programming/intel-oneapi-deep-
neural-network-library-onednn.html.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems. 8024-8035.

PlaidML 2017. PlaidML. https://www.intel.ai/plaidML.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519-530.

Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
7263-7271.

Lakshminarayanan Renganarayana and Sanjay Rajopadhye. 2008. Positivity,
posynomials and tile size selection. In SC’08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing. IEEE, 1-12.

Vivek Sarkar and Nimrod Megiddo. 2000. An analytical model for loop tiling
and its solution. In 2000 IEEE International Symposium on Performance Analysis
of Systems and Software. ISPASS (Cat. No. 00EX422). IEEE, 146-153.

Jun Shirako, Kamal Sharma, Naznin Fauzia, Louis-Noél Pouchet,] Ramanujam,
P Sadayappan, and Vivek Sarkar. 2012. Analytical bounds for optimal tile size
selection. In International Conference on Compiler Construction. Springer, 101-121.
Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments. In 2010 39th
International Conference on Parallel Processing Workshops. IEEE, 207-216.
Yaohung M Tsai, Piotr Luszczek, Jakub Kurzak, and Jack Dongarra. 2016.
Performance-portable autotuning of OpenCL kernels for convolutional layers
of deep neural networks. In 2016 2nd Workshop on Machine Learning in HPC
Environments (MLHPC). IEEE, 9-18.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gomez, Christian
Tenllado, and Francky Catthoor. 2013. Polyhedral parallel code generation for
CUDA. ACM Transactions on Architecture and Code Optimization 9, 4 (2013),
54:1-54:23. https://doi.org/10.1145/2400682.2400713

Andreas Wichter and Lorenz T Biegler. 2006. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear programming.
Mathematical programming 106, 1 (2006), 25-57.

Yao Wang and Animesh Jain. 2019. TVM CNN Tuning Script. https://github.com/
apache/incubator-tvm/blob/v0.6/topi/python/topi/x86/conv2d.py.

Tomofumi Yuki, Lakshminarayanan Renganarayanan, Sanjay Rajopadhye,
Charles Anderson, Alexandre E. Eichenberger, and Kevin O’Brien. 2010. Au-
tomatic Creation of Tile Size Selection Models. In Proceedings of the 8th An-
nual IEEE/ACM International Symposium on Code Generation and Optimization
(Toronto, Ontario, Canada) (CGO ’10). ACM, 190-199.

Lianmin Zheng, Eddie Yan, and Tiangi Chen. 2018. Developer Documentation:
Automatic Kernel Optimization for Deep Learning on All Hardware Platforms.
https://tvm.apache.org/2018/10/03/auto-opt-all.

ASPLOS 21, April 19-23, 2021, Virtual, USA

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-deep-neural-network-library-onednn.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-deep-neural-network-library-onednn.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-deep-neural-network-library-onednn.html
https://www.intel.ai/plaidML
https://doi.org/10.1145/2400682.2400713
https://github.com/apache/incubator-tvm/blob/v0.6/topi/python/topi/x86/conv2d.py
https://github.com/apache/incubator-tvm/blob/v0.6/topi/python/topi/x86/conv2d.py
https://tvm.apache.org/2018/10/03/auto-opt-all

ASPLOS 21, April 19-23, 2021, Virtual, USA

A ARTIFACT APPENDIX
A.1 Abstract

This artifact describes the steps to reproduce the results presented
in this work.

A.2 Artifact check-list (meta-information)

Program: Mopt, TVM, OneDNN

Compilation: Intel C++ compiler, LLVM-10, LLVM-8, Python3.8
(scripts are provided)

e Benchmark: conv2d operators in ResNet, MobileNet, and Yolo (bech-
marking scripts are provided)

Run-time environment: Linux Ubuntu 18.04 LTS, Miniconda
Hardware: Intel i7-9700k and Intel i9-10980xe CPU

Execution: Execution scripts are provided

Metrics: Execution time/GFLOPS and data movement

Output: Log file with GFLOPS/data movement

How much disk space required (approximately)?: 100GB

How much time is needed to prepare workflow (approxi-
mately)?: One hour (based on the dependencies)

o How much time is needed to complete experiments (approxi-
mately)?: 96 hours

Publicly available?: Yes

Code licenses (if publicly available)?: Custom (provided with arti-
fact)

Archived (provide DOI)?: 10.5281/zenodo0.4322031

A.3 Description

A.3.1 How to access. All the source code, benchmarks,
and scripts associated with this work are available under
https://doi.org/10.5281/zenodo.4322031. A copy of the software is
also maintained at

https://github.com/HPCRL/ASPLOS_artifact.

A.3.2 Hardware dependencies. Experiments requires the following
CPUs: Intel i7-9700k and Intel i9-10980xe

A.3.3 Software dependencies.

Python 3.8 (miniconda) wilth amplpy, sympy, joblib modules
Intel C++ Compiler 2019

AMPL Ver. 20181102

IPOPT 3.12

GCC 75

LLVM version 10.0 (for experiment on avx512 only)

LLVM version 8.0 (for tvm only)

Likwid (for hardware counter measurements on i7-9700K)

A.3.4 Benchmarks. we use conv2d operators in ResNet-18, Mo-
bileNet, and Yolo9000 as the benchmarks.

A.4 Installation

We recommend installing Miniconda and using a virtual envi-
ronment for the experiment. Use pip to install the following
modules: amplpy, sympy, joblib. Install AMPL binary and IPOPT
binary (links below). Install CMake, Intel C++ compiler and
LLVM compiler following the official instructions. Mopt’s
micro-kernel generator can be compiled using cmake (see
README.md for additional instructions). Compile TVM v0.6
commit 008aa838139bcd8e66c680f14a944f7af274a33d using

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan

LLVM-8 by following the official instructions (see README.md for
additional instructions).

Detailed installation instructions can be found in the README.md
file.
LINKS:

e miniconda: https://docs.conda.io/en/latest/ miniconda.html

e AMPL: https://ampl.com/try-ampl/download-a-free-demo/

e IPOPT: https://ampl.com/products/solvers/all-solvers-for-
ampl/

e Cmake: https://cmake.org/documentation/;

o Intel C++ Compiler: https://software.intel.com/content/www/
us/en/develop/tools/oneapi/components/dpc-compiler.html;

e LLVM https://llvm.org/docs/UserGuides.html;

A.5 Evaluation and expected results

We run each conv2d operator 50 times with cache flush for MOpt,
OneDNN, and TVM. All the input and output tensors are stored in
the ‘NCHW’ layout, and the kernel tensor is stored in the ‘KCRS’
layout. Transposing time, if any, is also included in the measured
time. We run each benchmark 50 times and report the average
GFLOPs.

After disabling hyper-threads and fixing the frequency to the pro-
cessor’s base frequency, we expect to see stable GFLOPs among
the 50 times runs. The average GFLOPs should be similar to the
reported values in the main paper.

	Abstract
	1 Introduction
	2 Overview
	2.1 System Overview
	2.2 Key Ideas for Analytical Modeling

	3 Analytical Modeling for Single-Level Tiling
	3.1 Overview of Modeling of Inter-Tile Data Reuse and Total Data Movement
	3.2 Cost Expressions for Data Movement

	4 Pruning Configurations: Single-Level Tiling
	5 Multi-level Tile-size Optimization
	6 Microkernel Design for CNN
	7 Optimizing for Parallelism
	8 Putting It All Together
	9 Model Validation
	10 Comparison with State-of-the-Art Library and Auto-tuning
	11 Related Work
	12 Discussion
	13 Conclusion
	14 Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

