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Preventing Instantiation

Default (zero-argument) constructor
Provided only if there is no explicit constructor

Declare a single explicit private constructor
Result: No other class can instantiate
Note: including constructor prevents construction!
Document the private constructor

Side effect: Class can not be extended
Subclass must call parent’s constructor
So, parent’s constructor must be visible

Use: Utility classes
Collection of static members
See java.lang.Math, java.util.Arrays
Beware: easily abused to write procedural code
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Example: Non-instantiability

//Non-instantiable utility class
public class UtilityClass {

//Suppress default constructor
private UtilityClass() {

//Constructor never invoked
}

. . . //other parts of class
}
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Singleton Pattern

A singleton is a class that is 
instantiated exactly once

eg Window manager, file system

Basic recipe
Private constructor
(One) instance reference in private field
Static factory method

Optimization: Lazy initialization
Instantiate only if requested
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Example Singleton
//Singleton with static factory
public class Manager {
private static final Manager INSTANCE = new 
Manager();

//suppress default constructor
private Manager() {

. . .
}

public static Manager getInstance() {
return INSTANCE;

}

. . . //other parts of class
}
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Example Lazy Singleton
//Singleton with static factory and lazy init
public class Manager {
private static Manager INSTANCE; //default is null

//suppress default constructor
private Manager() {
. . .

}

public synchronized static Manager getInstance() {
if (INSTANCE == null) {
INSTANCE = new Manager();

}
return INSTANCE;

}

. . . //other parts of class
}
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Many Subtle Problems

Multiple threads
Static factory must be synchronized

Multiple classloaders
Each classloader has a different instance

Serialization
Saving singleton to disk then re-reading 
results in new instance
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Potpourri:
Memory Leaks and Random
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Memory Management

Java (generally) manages memory for you
Every call to “new” creates a new instance

Memory allocated to hold instance

When is this memory released?
Answer: when there are no references to this 
instance
eg End of scope
void someMethod() {
someClass x = new someClass();
. . .

} //x goes out of scope

(Beware of aliases of course)
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Example “Memory Leak”
public class Stack {
private Object[] elements;
private int size = 0;

public Stack (int initialCapacity) {
elements = new Object[initialCapacity];

}

public void push (Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop () {
if (size == 0)
throw new EmptyStackException();

return elements[--size];
}
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Example Continued
//class Stack continued...

private void ensureCapacity() {
if (elements.length == size) {

Object[] oldElements = elements;
elements = new Object[2*elements.length + 1];
System.arraycopy(oldElements, 0,

elements, 0, size);
}

}
}



Computer Science and Engineering  The Ohio State University

Example Repaired
public Object pop() {

if (size == 0)
throw new EmptyStackException();

Object result = elements[--size];
elements[size] = null;
return result;

}
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Memory Leak: Problem and Solution

Problem: Keeping obsolete references
Stack has array of reference that will 
never be dereferenced

Solution: explicitly null-out reference
someReference = null;

But, do not do this needlessly
Clumsy and complicates code

When is it needed?
Classes that manage their own memory
Classes that keep caches

WeakHashMap discards entries when key no 
longer accessible
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Know The Libraries: Random

Generating uniform random [0..bound)
import java.util.Random;
Random rnd = new Random(); //time seed
int x = rnd.nextInt(bound);

Do not scale using 0-argument version
int x = Math.abs(rnd.nextInt()) % bound;

Problems
No abs for Integer.MIN_VALUE
Short repetition period for bounds small 
power of 2
Uneven distribution for some bounds
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To Ponder
static Random rnd = new Random();

static int random(int n) {
return Math.abs(rnd.nextInt()) % n;

}

public static void main(String args[]) {
int b = 2 * (Integer.MAX_VALUE / 3);
int low = 0;
for (int i=0; i < 1000000; i++) 

if (random(b) < b/2) 
low++;

System.out.println(low);  //prints ~666,666
}
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Summary
Singleton

Instantiated at most once
Private constructor ensures no default constructor
Static factory returns existing reference
Lazy initialization defers instantiation

Memory Leaks
Problem: indefinitely retaining obsolete reference
Solution: explicit null-out (only when necessary!)

Random
Use 1-argument (bounded) nextInt method
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