
Computer Science and Engineering College of Engineering The Ohio State University

Singleton

Lecture 28

Computer Science and Engineering The Ohio State University

Preventing Instantiation

Default (zero-argument) constructor
Provided only if there is no explicit constructor

Declare a single explicit private constructor
Result: No other class can instantiate
Note: including constructor prevents construction!
Document the private constructor

Side effect: Class can not be extended
Subclass must call parent’s constructor
So, parent’s constructor must be visible

Use: Utility classes
Collection of static members
See java.lang.Math, java.util.Arrays
Beware: easily abused to write procedural code

Computer Science and Engineering The Ohio State University

Example: Non-instantiability

//Non-instantiable utility class
public class UtilityClass {

//Suppress default constructor
private UtilityClass() {

//Constructor never invoked
}

. . . //other parts of class
}

Computer Science and Engineering The Ohio State University

Singleton Pattern

A singleton is a class that is
instantiated exactly once

eg Window manager, file system

Basic recipe
Private constructor
(One) instance reference in private field
Static factory method

Optimization: Lazy initialization
Instantiate only if requested

Computer Science and Engineering The Ohio State University

Example Singleton
//Singleton with static factory
public class Manager {
private static final Manager INSTANCE = new
Manager();

//suppress default constructor
private Manager() {

. . .
}

public static Manager getInstance() {
return INSTANCE;

}

. . . //other parts of class
}

Computer Science and Engineering The Ohio State University

Example Lazy Singleton
//Singleton with static factory and lazy init
public class Manager {
private static Manager INSTANCE; //default is null

//suppress default constructor
private Manager() {
. . .

}

public synchronized static Manager getInstance() {
if (INSTANCE == null) {
INSTANCE = new Manager();

}
return INSTANCE;

}

. . . //other parts of class
}

Computer Science and Engineering The Ohio State University

Many Subtle Problems

Multiple threads
Static factory must be synchronized

Multiple classloaders
Each classloader has a different instance

Serialization
Saving singleton to disk then re-reading
results in new instance

Computer Science and Engineering College of Engineering The Ohio State University

Potpourri:
Memory Leaks and Random

Computer Science and Engineering The Ohio State University

Memory Management

Java (generally) manages memory for you
Every call to “new” creates a new instance

Memory allocated to hold instance

When is this memory released?
Answer: when there are no references to this
instance
eg End of scope
void someMethod() {
someClass x = new someClass();
. . .

} //x goes out of scope

(Beware of aliases of course)

Computer Science and Engineering The Ohio State University

Example “Memory Leak”
public class Stack {
private Object[] elements;
private int size = 0;

public Stack (int initialCapacity) {
elements = new Object[initialCapacity];

}

public void push (Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop () {
if (size == 0)
throw new EmptyStackException();

return elements[--size];
}

Computer Science and Engineering The Ohio State University

Example Continued
//class Stack continued...

private void ensureCapacity() {
if (elements.length == size) {

Object[] oldElements = elements;
elements = new Object[2*elements.length + 1];
System.arraycopy(oldElements, 0,

elements, 0, size);
}

}
}

Computer Science and Engineering The Ohio State University

Example Repaired
public Object pop() {

if (size == 0)
throw new EmptyStackException();

Object result = elements[--size];
elements[size] = null;
return result;

}

Computer Science and Engineering The Ohio State University

Memory Leak: Problem and Solution

Problem: Keeping obsolete references
Stack has array of reference that will
never be dereferenced

Solution: explicitly null-out reference
someReference = null;

But, do not do this needlessly
Clumsy and complicates code

When is it needed?
Classes that manage their own memory
Classes that keep caches

WeakHashMap discards entries when key no
longer accessible

Computer Science and Engineering The Ohio State University

Know The Libraries: Random

Generating uniform random [0..bound)
import java.util.Random;
Random rnd = new Random(); //time seed
int x = rnd.nextInt(bound);

Do not scale using 0-argument version
int x = Math.abs(rnd.nextInt()) % bound;

Problems
No abs for Integer.MIN_VALUE
Short repetition period for bounds small
power of 2
Uneven distribution for some bounds

Computer Science and Engineering The Ohio State University

To Ponder
static Random rnd = new Random();

static int random(int n) {
return Math.abs(rnd.nextInt()) % n;

}

public static void main(String args[]) {
int b = 2 * (Integer.MAX_VALUE / 3);
int low = 0;
for (int i=0; i < 1000000; i++)

if (random(b) < b/2)
low++;

System.out.println(low); //prints ~666,666
}

Computer Science and Engineering The Ohio State University

Summary
Singleton

Instantiated at most once
Private constructor ensures no default constructor
Static factory returns existing reference
Lazy initialization defers instantiation

Memory Leaks
Problem: indefinitely retaining obsolete reference
Solution: explicit null-out (only when necessary!)

Random
Use 1-argument (bounded) nextInt method

	Singleton
	Preventing Instantiation
	Example: Non-instantiability
	Singleton Pattern
	Example Singleton
	Example Lazy Singleton
	Many Subtle Problems
	Potpourri:�Memory Leaks and Random
	Memory Management
	Example “Memory Leak”
	Example Continued
	Example Repaired
	Memory Leak: Problem and Solution
	Know The Libraries: Random
	To Ponder
	Summary

