
Computer Science and Engineering College of Engineering The Ohio State University

Generics with Type Bounds

Lecture 27

Computer Science and Engineering The Ohio State University

Generic Methods
Like classes, methods can be generic

class ArrayOps { //ordinary nongeneric class
static <T> T midpoint(T[] A);
<T> int nonNullLength(T[] A);

}

Scope of type parameter limited to method
Instantiation with a specific parameter type
not needed when invoking method

Parameter type is inferred from arguments
String s = ArrayOps.midpoint(args);
Date d = ArrayOps.midpoint(timeline);
int c = arrayWorker.nonNullLength(args);
(Can also use return type, when assigned)
But explicit type invocation is legal too
i = MathUtilities.<Integer>max(42, 34);

Computer Science and Engineering The Ohio State University

Example: Generic Methods
class ArrayOps {

public static <T> T midpoint(T[] A) {
assert A.length >= 1;
return A[A.length/2];

}
public <T> int nonNullLength(T[] A) {

int count = 0;
for (T t : A)

if (t != null) count++;
return count;

}

public static void main(String[] args) {
ArrayOps arrayWorker = new ArrayOps();
String s1 = ArrayOps.midpoint(args);
String s2 = ArrayOps.<String>midpoint(args);
int x = arrayWorker.nonNullLength(args);
int y = arrayWorker.<String>nonNullLength(args);

}

Computer Science and Engineering The Ohio State University

Type Bounds
Ordinary parameters have 2 parts: name and type

void someMethod(Person p)
Inside method, know p refers to a Person (or below)
SSN id = p.getSSN(); //ok, p is Person (or Student)

Generics have only 1 part: a name, like “T”
Inside method, know only that T is Object (or below)
<T> void genericMethod(T t) {
t.hashCode(); //ok, all Objects have hashCode

So generic code must be applicable to all objects?
What if we want to restrict type arguments?

<T> void genericMethod(T t) {
SSN id = t.getSSN(); //error: no getSSN for Object

Solution: Bound type argument above by Person
<T extends Person> void genericMethod(T t) {
SSN id = t.getSSN();

Computer Science and Engineering The Ohio State University

Example: Type Bounds
class Filter {

static <T>
T max(T t1, T t2) {

return (t1.compareTo(t2) <= 0 ? t2 : t1);
}

}

BigNatural nat1 = ...
BigNatural nat2 = ...
System.out.println(Filter.max(nat1, nat2));

Computer Science and Engineering The Ohio State University

Question: Why not This Way?
class Filter {

static <T>
Comparable<T> max(Comparable<T> t1,

Comparable<T> t2) {
return (t1.compareTo(t2) <= 0 ? t2 : t1);

}
}

BigNatural nat1 = ...
BigNatural nat2 = ...
System.out.println(Filter.max(nat1, nat2));

Computer Science and Engineering The Ohio State University

Example: Type Bounds
class Filter {

static <T extends Comparable<T>>
T max(T t1, T t2) {

return (t1.compareTo(t2) <= 0 ? t2 : t1);
}

}

BigNatural nat1 = ...
BigNatural nat2 = ...
System.out.println(Filter.max(nat1, nat2));

Computer Science and Engineering The Ohio State University

Arrays and Inheritance

Consider 3 types: Student, Person, Object
Student extends Person, Person extends Object

Subtyping: a Student “is a” Person
A Student can do everything a Person can do

Client would rather have Student to use
Implementer would rather write Person

Code expecting a Person, can be given a Student
boolean older (int age, Person p);

Question: a Student[] “is a” Person[]?
Can a Student[] do everything a Person[] can do?
Can code expecting a Person[] be given a
Student[] instead?
boolean allOlder(int age, Person[] ps);

Computer Science and Engineering The Ohio State University

Arrays and Co/Contra-Variance

Student

Person

Object

Student[]

Person[]

Object[] Student[]

Object[]

Person[]⇒ or ?

Covariance Contravariance

Computer Science and Engineering The Ohio State University

Strawman 1: Covariance
Student[] is a Person[], Person[] is an Object[]

boolean allOlder (int age, Person[] ps) {
boolean result = true;
for (Person p : ps)
if (p.getAge() < age) result = false;

return result; //ok for arrays of Students too
}

Counter-example
void clobberFirst (Person[] ps) {
ps[0] = new Infant(“Baby Doe”);
//ok since Infant extends Person

}

Student[] roster = ...
//assert: roster contains only Students

clobberFirst(roster);
//trouble: Dynamic type of roster[0] is Infant

roster[0].grantDegree();

Computer Science and Engineering The Ohio State University

Strawman 2: Contravariance
Object[] is a Person[], Person[] is a Student[]

void populateClass(Student[] roster) {
for (int i=0; i<roster.length; i++)
roster[i] = new Student();

} //ok for an array of Persons too

void formJury(Person[] panel) {
populateClass(panel);

}

Counter-example
void graduate (Student[] roster) {
for (Student s : roster)
//trouble: dynamic type of s is Person
s.grantDegree();

}

Person[] ps = ...
graduate(ps);

Computer Science and Engineering The Ohio State University

Java’s Choice

Neither is right!
A Student[] can not do everything a Person[]
can do!

e.g. it can not contain an Infant
A Person[] can not do everything a Student[]
can do!

e.g. it can not calculate a max GPA

Java’s choice: Covariance
Student[] is a Person[]!

Consequence: We live dangerously
If the wrong type of object is assigned to an
array element, ArrayStoreException is thrown

Computer Science and Engineering The Ohio State University

Generics and Wildcards

Wildcard ?: Refers to stack of any kind
Stack<?>

Example
boolean largeSize(int limit, Stack<?> s) {
if (s.size() > limit) return true;
else return false;

}

Subtyping: Every Stack is a Stack<?>
Stack<String> args = . . .
Stack<People> crew = . . .
flag = largeSize(3, args); //ok
flag = largeSize(32, crew); //ok

Computer Science and Engineering The Ohio State University

Generics and Inheritance

Is a Stack<Student> a Stack<Person>?
Can a Stack<Student> do everything a
Stack<Person> can do?
Can code expecting a Stack<Person> be
given a Stack<Student> instead?

Java’s choice:
No!
For a generic class G, there is no implicit
subtyping relationship between G<A> and
G
Neither covariance nor contravariance
Regardless of any subtyping relationship
between A and B

Computer Science and Engineering The Ohio State University

Generics: Co/Contra-variance

Similar to arrays
Sometimes covariance is ok
Sometimes contravariance is ok

Consider code written for Stack<Person>
boolean someMethod(Stack<Person> s);

Questions:
Can a Stack<Student> be passed in instead?
Can a Stack<Object> be passed in instead?

Answer:
It depends on what client code does with s!
Some code works fine for Stack<Student>
Some code works fine for Stack<Object>

Computer Science and Engineering The Ohio State University

Both Forms

Example 1: Getting from stack
int firstAge(Stack<Person> s) {
Person p = s.pop();
return p.getAge();

}
Works when argument is a Stack<Student>
Does not work when given a Stack<Object>

Example 2: Putting into stack
void addChild(Stack<Person> s) {

s.push(new Person(3));
}
Works when argument is a Stack<Object>
Does not work when given a Stack<Student>

Computer Science and Engineering The Ohio State University

Upper Type Bounds: Covariance

Combine wildcard with type bound
Stack<? extends Person>

Person is an upper bound on type parameter
Reflects covariant relationship

int firstAge(Stack<? extends Person> s) {
Person p = s.pop();
return p.getAge();

}

List<? extends Number> figures =
new ArrayList<Number>();

figures = new ArrayList<Integer>();

Use when code “gets” from generic

Computer Science and Engineering The Ohio State University

Lower Type Bounds: Contravariance

Combine wildcard with type bound
Stack<? super Person>

Person is a lower bound on type parameter

Reflects contravariant relationship
void addChild(Stack<? super Person> s) {
s.push(new Person(3));

}

List<? super Integer> figures =
new ArrayList<Integer>();

figures = new ArrayList<Number>();

Use when client code “puts” to generic

Computer Science and Engineering The Ohio State University

Summary

Generic methods
Type parameter applied to individual
methods

Inheritance and arrays
Java arrays are covariant in their base
type
This is not type safe (wrong stores cause
exception)

Inheritance and generics: type bounds
Use upper type bound when getting
Use lower type bound when putting
Use exact type when doing both

	Generics with Type Bounds
	Generic Methods
	Example: Generic Methods
	Type Bounds
	Example: Type Bounds
	Question: Why not This Way?
	Example: Type Bounds
	Arrays and Inheritance
	Arrays and Co/Contra-Variance
	Strawman 1: Covariance
	Strawman 2: Contravariance
	Java’s Choice
	Generics and Wildcards
	Generics and Inheritance
	Generics: Co/Contra-variance
	Both Forms
	Upper Type Bounds: Covariance
	Lower Type Bounds: Contravariance
	Summary

