
Computer Science and Engineering College of Engineering The Ohio State University

Factories

Lecture 26

Computer Science and Engineering The Ohio State University

A Game of Sprites

Consider a game consisting of sprites
Dragons, butterflies, princesses

Main class: GameDriver
Populates the world with sprites
Responds to user events (eg mouse clicks)
Draws, erases, and moves sprites
Keeps track of score

GameDriver is coded to the interface
Sprite interface promises generic drawing and
moving abilities
Specific kinds of sprites have more behaviors (eg
breathing fire)

Computer Science and Engineering The Ohio State University

Sprites Hierarchy

Sprite

Butterfly

Princess

Dragon

GameDriver

implements

extends uses

Computer Science and Engineering The Ohio State University

Instantiating Objects

GameDriver is general (coded to the
interface)

class GameDriver {
private List<Dragon> dragons;
private List<Butterfly> butterflies;
. . .
public boolean isQueen(Princess p) {...}

}

But every call to new requires a class
public void populate() {
Dragon villain = new DisneyDragon(35);
. . .

}

Computer Science and Engineering The Ohio State University

Sprites Hierarchy

Sprite

Butterfly

Princess

Dragon

GameDriver

implements

extends uses

DisneyDragon

DisneyBFly

DisneyPrincess

Computer Science and Engineering The Ohio State University

Sprites Hierarchy

Sprite

Butterfly

Princess

Dragon

GameDriver

implements

extends uses

creates

DisneyDragon

DisneyBFly

DisneyPrincess

Computer Science and Engineering The Ohio State University

Product Lines
Object creation may occur in many different
places

Across the program, every method that creates a
sprite
Across a method, every line that creates a sprite

Some classes may be designed to work best
with other classes

An example of concrete-concrete coupling
(generally a bad thing)
Example: themes for our game of sprites

Disney characters vs Magic characters
Goal: Single-point-of-control over which
product line is used

Every instantiation should be a Disney character
Should be easy to switch to all Magic characters

Computer Science and Engineering The Ohio State University

Sprites Hierarchy

Sprite

Butterfly

Princess

Dragon

GameDriver

implements

extends uses

creates

MagicDragon

DisneyDragon

MagicBFly

DisneyBFly

DisneyPrincess

MagicPrincess

Computer Science and Engineering The Ohio State University

Solution: Factory Component
Add a level of indirection
Responsibility for instantiation of sprites encapsulated in one
place: a factory

Factory object can create Dragon, Butterfly, and Princess objects
interface Factory {
Dragon createDragon(int size);
Butterfly createButterfly();
Princess createPrincess(String name);

}
Each implementation of Factory creates a single product line
class MagicFactory implements Factory {
public Dragon createDragon(int size) {

return new MagicDragon(size);
}
. . .

}
Known as the “Factory Pattern” (a creational design pattern)

Computer Science and Engineering The Ohio State University

Sprites Hierarchy with Factory

Sprite

Butterfly

Princess

Dragon

GameDriver

implements

extends uses

creates

Factory

MagicDragon

DisneyDragon

MagicBFly

DisneyBFly

DisneyPrincess

MagicPrincess

DisneyFactory
MagicFactory

Computer Science and Engineering The Ohio State University

Person Hierarchy with Factory

Person

Faculty

Staff

Student

Provost

implements

extends uses

creates

Factory

UMStudent

OSUStudent

UMProf

OSUProf

OSUStaff

UMStaff

OSUDirectory
UMDirectory

Computer Science and Engineering The Ohio State University

Accessory Hierarchy with Factory

Accessory

Shoes

Purse

Belt

StylishPerson

implements

extends uses

creates

Factory

BlackBelt

BrownBelt

BlackShoes

BrownShoes

BrownPurse

BlackPurse

Nordstrom
NineWest

Computer Science and Engineering The Ohio State University

Warden and Prisoners

Warden

implements

extends uses

creates

Factory

Timid

Brave

TimidFactory

BraveFactory

AsynchCon

Prisoner

ACFactory

Computer Science and Engineering The Ohio State University

Alternative: Factory Method

A different creational pattern
Instantiation encapsulated in method

Class can have larger responsibilities

This method designed to be overridden
Subclasses differ in the product line from which
the overridden method creates new instances

Distinction between these two patterns:
In abstract factory pattern, the factory class is
responsible only for creation
In factory method pattern, the class containing
the factory method is responsible for both
creation and use/assembly

Computer Science and Engineering The Ohio State University

GameDriver with Factory Method

Sprite

Butterfly

Princess

Dragon

GameDriver

implements

extends uses

creates

MagicDragon

DisneyDragon

MagicBFly

DisneyBFly

DisneyPrincess

MagicPrincess

DisneyGame
MagicGame

Computer Science and Engineering The Ohio State University

Recall Basic JUnit Recipe

Given class SmartPerson implements
interface Person
Separate fixture into:

Base class testing behavior promised in Person
Derived class testing implementation-specific
behavior of SmartPerson

Base class contains:
Protected member of (declared) type Person
Abstract @Before method to initialize this member

Derived class contains:
Overridden version of @Before to instantiate a
SmartPerson

Computer Science and Engineering The Ohio State University

JUnit with Inheritance

SmartPersonTest

SmartPerson Person
implements

extends

PersonTest protected Person p;
@Before
public abstract void setUp();
@Test
public void someTest1() {...}
@Test
public void someTest2() {...}

@Override @Before
public void setUp() {
p = new SmartPerson();

}

Computer Science and Engineering The Ohio State University

Base Class Test Fixture
class PersonTest {
protected Person p1;
protected Person p2;
@Before
public abstract void setUp();

@Test
public void doesSum() {

int actual = p1.add(3,4);
int expected = 7;
assertTrue((actual – expected <= 2)

&& (actual – expected >= -2));
}

}

Computer Science and Engineering The Ohio State University

Derived Class Test Fixture
class SmartPersonTest extends PersonTest {

@Override
@Before
public void setUp() {

p1 = new SmartPerson();
p2 = new SmartPerson(“Evariste Galois”);

}

@Test
public void doesSumAccurately() {

assertEqual(7, p1.add(3,4));
}

}

Computer Science and Engineering The Ohio State University

JUnit with Factory Methods

Current recipe resembles a factory method
@Before method overridden and responsible for
instantiation

Limitation: JUnit fixture methods (like setup)
can not have arguments

Derived class instantiates the members
Constructor arguments are fixed in body of setup

Goal: Permit test cases to construct their
own instances for testing

Desirable when there are many boundary
conditions not easily covered by a small number
of statically-instantiated objects

Computer Science and Engineering The Ohio State University

New Base Class Test Fixture
class PersonTest {
protected Person p;

protected abstract Person
createFromString(String name);

@Test
public void doesSum() {

p = createFromString(“Galileo Galilei”);
int actual = p.add(3,4);
int expected = 7;
assertTrue((actual – expected <= 2)

&& (actual – expected >= -2));
}

}

Computer Science and Engineering The Ohio State University

New Derived Class Test Fixture
class SmartPersonTest extends PersonTest {

@Override
protected Person

createFromString(String name) {
return new SmartPerson(name);

}

@Test
public void doesSumAccurately() {

p = createFromString(“Galileo Galilei”);
assertEqual(7, p1.add(3,4));

}
}

Computer Science and Engineering The Ohio State University

Good Practice: Static Factories
Class provides a public static factory method

Return type is an instance of the class
public static Integer valueOf(int i);

Advantages:
Factories can have descriptive names
BigInteger p = BigInteger.probablePrime(128,rnd);
Need not create a new instance!

For immutables, return reference to existing instance
For example, which is better?
Integer i1 = new Integer(1);
Integer i2 = Integer.valueOf(1);

Advanced technique: return instance of a private class
Client knows nothing about class, only the interface

Disadvantages:
No public/protected constructor means no subclassing
No real distinction from any other static method

Naming conventions: valueOf(), getInstance()

Computer Science and Engineering The Ohio State University

Summary
Creation with new() gives concrete-to-
concrete coupling

Product lines difficult to enforce/support
Abstract factory pattern

Creation delegated to special-purpose class
Factory class designed to be extended
Each subclass creates objects from one product
line

Factory method pattern
Specific creational methods designed to be
overridden
Each subclass overrides method to create objects
from one product line

Implications for JUnit
Static factory methods

	Factories
	A Game of Sprites
	Sprites Hierarchy
	Instantiating Objects
	Sprites Hierarchy
	Sprites Hierarchy
	Product Lines
	Sprites Hierarchy
	Solution: Factory Component
	Sprites Hierarchy with Factory
	Person Hierarchy with Factory
	Accessory Hierarchy with Factory
	Warden and Prisoners
	Alternative: Factory Method
	GameDriver with Factory Method
	Recall Basic JUnit Recipe
	JUnit with Inheritance
	Base Class Test Fixture
	Derived Class Test Fixture
	JUnit with Factory Methods
	New Base Class Test Fixture
	New Derived Class Test Fixture
	Good Practice: Static Factories
	Summary

