
Computer Science and Engineering College of Engineering The Ohio State University

Logging and Debugging

Lecture 25

Computer Science and Engineering The Ohio State University

Motivation
Ever had one of these to deal with?

JUnit red bar
a java.lang.NullPointerException exception
any unexpected and wrong behavior

What do you do?
Stare at the code until you figure it out
Make random changes and try again
Ask someone for help
Insert many System.out.println()’s

Problems with the last approach
Cluttered code ends up in deployment
If problems re-emerge, re-add the println’s?
“If the trace is useful now, it will be useful later”

Better approaches, indicative of experience:
Use a real logging facility to save tracing information
Use a debugger to interactively inspect execution

Computer Science and Engineering The Ohio State University

Logging

General framework for recording (during
execution):

System information
Error messages
Fine-grain tracing output

See java.util.logging
Common in enterprise-scale, industrial-
strength applications; uncommon in small
programs

“Programming in the large”
Flexibility and Customizability

Support for many output devices and formats
Dynamic control over output (no recompilation)

Computer Science and Engineering The Ohio State University

Taxonomy of java.util.logging

Message
A string and a level
of importance

Logger
Client-side view of
logging functionality

Handler
Performs output
Different classes for
sending to different
destinations:

ConsoleHandler,
FileHandler,
SocketHandler Outside World

Application

Logger

Handler

Message

Computer Science and Engineering The Ohio State University

Extended Taxonomy
Logger can have
multiple Handlers

Or none (more later)
Filters

Optional for Loggers
and Handlers
Fine control for
squelching messages
Control usually done
through levels

Formatters
What output looks like
SimpleFormatter,
XMLFormatter

Defaults (no Filters,
SimpleFormatter)
usually sufficient

Handler

Outside World

Application

Logger

Handler

Message

Filter
Filter
Filter

Formatter

Filter
Filter

Filter

Computer Science and Engineering The Ohio State University

Message Levels
Logger discards messages below a certain level

void setLevel(Level newLevel);

Default configuration shows INFO and higher:
myLogger.setLevel(Level.INFO);

Handlers have similar controls
7 Levels, which are totally ordered:

For an end-user (ie suitable for general consumption)
SEVERE
WARNING
INFO

For a sys. admin (ie technical sytems information)
CONFIG

For a developer (ie can assume familiarity with code)
FINE
FINER
FINEST

Computer Science and Engineering The Ohio State University

Usage Guidelines
SEVERE: significant or complete loss of some function

“Power lost - running on backup”
Failure of application
Absence of a configuration file that completely debilitates the
application (there is no good fall back)

WARNING: problem adversely affecting operations
“Database connection lost, retrying...”

INFO: event within normal operation
“Startup complete”

FINE: significant events explaining flow/state of system
“Loading graphics package”
Object creation

FINER: major flow-of-control points in execution
“Building pie chart”
Method entry/exit, or throwing exception

FINEST: low-level debug tracing
“Starting bubble sort: value = ” + size
Intraprocedural tracing

Computer Science and Engineering The Ohio State University

Logger Creation
Each Logger instance has a String name
Created through a static factory, getLogger

Guarantees only one instance per name is created
static Logger getLogger(String Name);
Can be cached in a field, or called in each method
class Student {
private static final Logger logger =
Logger.getLogger(Student.class.getName());
. . .

}

Usual practice: 1 Logger / class in a package
Named following fully-qualified class name

Eg “edu.osu.cse.421.Student”

Computer Science and Engineering The Ohio State University

Logger Methods
Basic method for adding a message

void log(Level level, String msg);
Example
logger.log(Level.FINEST, “Found target at

position ” + i);
Convenience methods for each level

severe, warning, info, config, fine, finer, finest
Example
logger.info(“Configuration complete”);

Convenience methods for some events
entering, exiting, throwing
Associated log message has level FINER
Two string parameters: class name, method name
Example
logger.entering(“Student”, “getValue”);
logger.entering(getClass().getName(),

“getValue”);

Computer Science and Engineering The Ohio State University

Example Code
package edu.osu.cse.421;
class Student {

private static final Logger logger =
Logger.getLogger(Student.class.getName());

public boolean myMethod(int p1, Object p2) {
logger.entering(getClass().getName(), "myMethod");
logger.log(Level.FINER, "First argument: " + p1);
logger.log(Level.FINER, "Second argument: " + p2);

//Method body

logger.exiting(getClass().getName(), "myMethod");
logger.log(Level.FINER, "Returning: " + result);
return result;

}
}

Computer Science and Engineering The Ohio State University

Bad Practice: Logger.global

Logger provides a convenience static
field global

A globally visible logger
Does not need to be explicitly constructed
Simplifies quick and easy logging

It might be tempting to
replace: System.out.println(s);
with: Logger.global.info(s);

But benefit over println is marginal

Computer Science and Engineering The Ohio State University

Performance Consideration

Entering/Exiting methods overloaded
void entering (String, String, Object[]);

Used to display value of parameters (and possibly
this object too)

Concern: Stringifying these objects can be
expensive
Solution: Short-circuit check whether
message level is too fine to matter anyway

boolean isLoggable(Level level)

Returns true if and only if level messages would
be passed on by logger
Handler might still filter them out of course

Computer Science and Engineering The Ohio State University

Example Code
package edu.osu.cse.421;
class Student {

private static final Logger logger =
Logger.getLogger(Student.class.getName());

public boolean myMethod(int p1, Object p2) {
if (logger.isLoggable(Level.FINER)) {

logger.entering(getClass().getName(), "myMethod",
new Object[]{Integer.valueOf(p1), p2});

}

// Method body

if (logger.isLoggable(Level.FINER)) {
logger.exiting(getClass().getName(), "myMethod",

Boolean.valueOf(result));
}
return result;

}
}

Computer Science and Engineering The Ohio State University

Handlers
Recall:

Handlers do the work of publishing messages to a
device/destination
One Logger can have multiple Handlers

Predefined Handlers in java.util.logging:
ConsoleHandler, FileHandler, StreamHandler,
SocketHandler

Default configuration uses ConsoleHandler
Output goes to screen

To associate a Handler with a Logger
Use Logger method addHandler()
FileHandler h = new FileHandler(“test.log”);
logger.addHandler(h);

Computer Science and Engineering The Ohio State University

Logging Hierarchy
Every logger has a parent logger

Follows naming scheme
“edu.osu.cse.421”, if it exists, is parent of
“edu.osu.cse.421.Student”

Default logging level is null
Receives parent’s logging level

When message meets logger’s level
Passed along to associated handlers
Passed up to parent’s handlers

Ignores parent’s logging level
Root logger

Named “” (the empty string)
By default, has level INFO, and has 1 handler
(a ConsoleHandler)

Computer Science and Engineering The Ohio State University

Logging Hierarchy: Default

“”
Level = INFO

Logger

“edu.osu.cse.421.Student”
Level = null

Logger

ConsoleHandler

Computer Science and Engineering The Ohio State University

Logging Hierarchy: General

“”
Level = INFO

Logger

“edu.osu.cse”
Level = null

Logger

“edu.osu.cse.494.Student”
Level = FINER

Logger

ConsoleHandler

FileHandler

FileHandler

Computer Science and Engineering The Ohio State University

Logger Organization: Alternative

One logger/class simplifies controlling output
based on structural concerns
A different segmentation would be based on
functional concerns
Example

AppLog: General application events
SQLLog: SQL-related processing activities
ThreadLog: Events related to managing the
thread pool
RequestLog: Requests into the system, including
the time to fulfill the request
DbConnectLog: Events related to managing the
database connection pool

Computer Science and Engineering The Ohio State University

Eclipse Support

Lots of boiler-plate code
Approach 1: Modify method body template

Window > Preferences > Java > Code Style >
Code Templates > Method Body

Approach 2: Create new code template
Window > Preferences > Java
Editor > Templates > New

Name: logger
Pattern: private static final Logger logger =
Logger.getLogger(${enclosing_type}.class.getNa
me());

Now you can type “logger” inside any class, then
use content-assist to fill in the rest

Computer Science and Engineering The Ohio State University

Configuration

Default set in an external properties
file

${JDK_HOME}/jre/lib/logging.properties

Defaults can be overridden
Provide a new file, eg mylog.prop
Run program with command-line
argument

-Djava.util.logging.config.file=mylog.prop

Computer Science and Engineering The Ohio State University

Example Properties File
Specify the handlers to create in the root logger
(all loggers are children of the root logger)
The following creates two handlers
handlers = java.util.logging.ConsoleHandler,

java.util.logging.FileHandler

Set the default logging level for the root logger
.level = ALL

Set the default logging level for new ConsoleHandler instances
java.util.logging.ConsoleHandler.level = INFO

Set the default logging level for new FileHandler instances
java.util.logging.FileHandler.level = ALL

Set the default formatter for new ConsoleHandler instances
java.util.logging.ConsoleHandler.formatter =

java.util.logging.SimpleFormatter

Set the default logging level for the logger named edu.osu.cse.494
edu.osu.cse.494.level = ALL

Computer Science and Engineering The Ohio State University

Debugging

Debuggers give us a way to stop a program
and examine its contents
Breakpoint: A stop sign

Whenever execution reaches that point, it stops
Viewing state

Examine value of variables, fields, memory
A good toString method helps!

Watch certain variables or expressions
Change the value of variables

Advancing execution
Step-into/over/return to take a small step forward
(into next method / one line / out of method)
Resume to continue (until next breakpoint)

Computer Science and Engineering The Ohio State University

To Ponder

We could, for instance, begin with cleaning
up our language by no longer calling a bug a
bug but by calling it an error. It is much
more honest because it squarely puts the
blame where it belongs, viz. with the
programmer who made the error. The
animistic metaphor of the bug that
maliciously sneaked in while the programmer
was not looking is intellectually dishonest as
it disguises that the error is the
programmer's own creation.

E. W. Dijkstra (EWD 1036), “On the cruelty of
really teaching computer science”

Computer Science and Engineering The Ohio State University

Summary

Logging components from java.util.logging
Messages, Loggers, Handlers
(Also Filters and Formatters)

Message Levels
End-users: SEVERE, WARNING, INFO
Administrators: CONFIG
Developers: FINE, FINER, FINEST

Logger
Creation with static factory
Basic methods (log, info/fine/etc, entering/etc)
Eclipse support for boiler-plate code

Configuration with external properties file
Debugging in Eclipse

	Logging and Debugging
	Motivation
	Logging
	Taxonomy of java.util.logging
	Extended Taxonomy
	Message Levels
	Usage Guidelines
	Logger Creation
	Logger Methods
	Example Code
	Bad Practice: Logger.global
	Performance Consideration
	Example Code
	Handlers
	Logging Hierarchy
	Logging Hierarchy: Default
	Logging Hierarchy: General
	Logger Organization: Alternative
	Eclipse Support
	Configuration
	Example Properties File
	Debugging
	To Ponder
	Summary

