
Computer Science and Engineering College of Engineering The Ohio State University

Nested Classes

Lecture 24

Computer Science and Engineering The Ohio State University

Introduction

So far, all our class declarations have
been outermost in a .java file

Inside a package, which can be inside
another package, etc
Called top-level classes

Java also permits class declarations to
appear within smaller scopes
Recall?

The members of a class include: fields,
methods, and other classes

Computer Science and Engineering The Ohio State University

Nested Classes

A class declared within something else (ie
not at package level) is called a nested class
4 kinds of nested classes
1. Static nested classes

Static members of an enclosing class
2. Inner classes

Nonstatic members of an enclosing class
3. Local classes (or local inner classes)

Declared inside a method, like a local variable
4. Anonymous classes (or anonymous inner classes)

Declared/used at same time, nameless

Computer Science and Engineering The Ohio State University

Role: Helper Classes
Sometimes a class, H, is needed by exactly one other
class, C

H bundles state into 1 object for C to use
H implements an interface that C needs to instantiate

Example:
class SlowSetOfChar extends

AbstractSet<Character> {
private . . . //fields representing set
public Iterator<Character> iterator () {

//problem: can not instantiate interface
return new Iterator<Character>();
//ok: class that implements Iterator<Charac>
return new MySlowIteratorOfChar();

}
}
Key point: clients of SlowSetOfChar do not need to
know about MySlowIteratorOfChar class!

Computer Science and Engineering The Ohio State University

Example: Transcript
/**
* @mathmodel t : sequence of <<Q,C,W,G>>
* @convention (exists k : dateList.length = k,
* courseList.length = k,
* creditList = k,
* gradeList.length = k)
*/
public class Transcript {
private ArrayList<Quarter> dateList;
private ArrayList<CourseNumber> courseList;
private ArrayList<Integer> creditList;
private ArrayList<Grade> gradeList;
. . .
public addEntry(Course c, Offering t, Grade g) {
//extend all 4 lists by extracting info from c/t/g
. . .

}
}

Computer Science and Engineering The Ohio State University

Solution 1: Transcript
/**
* @mathmodel t : sequence of <<Q,C,W,G>>
*/

public class Transcript {
private ArrayList<TranscriptLine> transcriptList;
. . .
public addEntry(Course c, Offering t, Grade g) {

//extend list by extracting info from c/t/g
TranscriptLine entry = new TranscriptLine();
. . .

}
}

class TranscriptLine { //one more top-level class
Quarter Q;
Course C;
int W;
Grade G;

}

Computer Science and Engineering The Ohio State University

Solution 2: Transcript
/**
* @mathmodel t : sequence of <<Q,C,W,G>>
*/
public class Transcript {
class TranscriptLine { //inner class
Quarter Q;
Course C;
int W;
Grade G;

}

private ArrayList<TranscriptLine> transcriptList;
. . .
public addEntry(Course c, Offering t, Grade g) {
//extend list by extracting info from c/t/g
TranscriptLine entry = new TranscriptLine();
. . .

}
}

Computer Science and Engineering The Ohio State University

Visibility

Two choices for top level classes:
Public, or package-private (ie default)

Inner classes are like any other member:
Public, package-private, protected, or private

Regardless of inner class’s visibility:
Inner class can access outer’s private members!
Outer class can access inner’s private members!

Can be static
Makes it a static nested class

Computer Science and Engineering The Ohio State University

Solution 3: Transcript
public class Transcript {
private class TranscriptLine { //private inner class
private Quarter Q; //same visibility as public
private Course C;
private int W;
private Grade G;

}

private ArrayList<TranscriptLine> transcriptList;
. . .
public addEntry(Course c, Offering t, Grade g) {
//extend list by extracting info from c/t/g
TranscriptLine entry = new TranscriptLine();
entry.G = new Grade(g);
. . .

}
}

Computer Science and Engineering The Ohio State University

Instantiation and Access
Typically, an inner class is private

Instantiate in outer class with new()
Inner innerObject = new Inner();
Outer’s access of Inner: use reference
innerObject.innerMethod();
Inner’s access of Outer: use (qualified) this
g(); //Inner’s g if it exists, else Outer’s
this.g(); //same as above
Outer.this.g(); //Outer’s g

Inner classes can also be public
Can be instantiated/used outside of Outer
Outer outerObject = new Outer();
Outer.Inner innerObject = outerObject.new

Inner();
innerObject.innerMethod();

Computer Science and Engineering The Ohio State University

Inner Class vs Static Nested Class

Instances of an inner class are always
associated with a (one!) instance of
their outer class

Called “enclosing instance”
Thus, instance of outer class must be
created first

Instances of static nested classes are
not associated with any instances of
their outer class

Thus, can only access static members of
outer class

Computer Science and Engineering The Ohio State University

Good Practice: Use Static Nested
Prefer static nested classes over inner classes
Bad rule: considering when static nested must be used

If nested class will itself have static members
If nested class must be accessed from outer’s static methods

Better rule: Use inner classes only if
Nested class needs access to instance members of outer class

Otherwise, use static nested classes
Degenerate case: Nested class has no methods
Common case: Nested class methods use only arguments and
nested class’s fields
Note: There are instances of a static nested class!

Clients of outer access static nested through class name
public class Animal {
public static class Migration { . . . }

}
Animal.Migration x = new Animal.Migration();

Computer Science and Engineering The Ohio State University

Solution 4: Transcript
public class Transcript {
private static class TranscriptLine { //static nested
private Quarter Q;
private Course C;
private int W;
private Grade G;

}

private ArrayList<TranscriptLine> transcriptList;
. . .
public addEntry(Course c, Offering t, Grade g) {
//extend list by extracting info from c/t/g
TranscriptLine entry = new TranscriptLine();
. . .

}
}

Computer Science and Engineering The Ohio State University

Roll: Event Handlers
Recall rolls for H and C

H bundles state into 1 object for C to use
H implements an interface that C needs to
instantiate

Common example of #2: Event handlers
More general description: “call-backs”

Recall Swing components and listeners
Event handlers implement an interface
interface ActionListener {
void actionPerformed (ActionEvent e);

}
Component has a method for registering a listener
public abstract class AbstractButton {
void addActionListener (ActionListener l)

}

Computer Science and Engineering The Ohio State University

Example: ActionListener
public class SimpleWindow extends JFrame {
public SimpleWindow() {

. . .
Button test = new Button();
BHandler handler = new BHandler();
test.addActionListener(handler);
setVisible(true);

}

private static class BHandler implements
ActionListener {
public void actionPerformed(ActionEvent event) {
JOptionPane.showMessageDialog(null,

"You pressed: " + event.getActionCommand());
}

}
}

Computer Science and Engineering The Ohio State University

Example: ActionListener
public class SimpleWindow extends JFrame {
public SimpleWindow() {

. . .
Button test = new Button();
//common idiom: anonymous object
test.addActionListener(new BHandler());
setVisible(true);

}

private static class BHandler implements
ActionListener {
public void actionPerformed(ActionEvent event) {
JOptionPane.showMessageDialog(null,

"You pressed: " + event.getActionCommand());
}

}
}

Computer Science and Engineering The Ohio State University

Anonymous Classes
Simultaneous declaration and use

Occur within an expression
Usually an argument in a method call
test.addActionListener(/*here*/);

Anonymous class has no class name
Can not use as declared type
AnonClass anObject = new AnonClass();
Instead, use some other (named) type, and have
anonymous class subtype it
SomeInterface anObject = new AnonClass();
Replace constructor name with declaration
SomeInterface anObject = new SomeInterface() {
public void methodName() { . . . }

};
Result is either

Compact clean code, or
Dense impenetrable code

Computer Science and Engineering The Ohio State University

Anoymous ActionListener
public class SimpleWindow extends JFrame {
public SimpleWindow() {

. . .
Button test = new Button();
//anonymous class
test.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
JOptionPane.showMessageDialog(null,
"You pressed: " + event.getActionCommand());

}
});
setVisible(true);

}

//no need for an inner class!
}

Computer Science and Engineering The Ohio State University

Example of Anonymous Class
In java.util:

public class Arrays {
public static <T> void sort (T[] a, Comparator<T> c)
{

. . .
}

}
interface Comparator<T> {
int compare (T o1, T o2);

}

In client code somewhere:
Arrays.<String>sort (args, new Comparator<String>() {
public int compare (String s1, String s2) {
return s1.length() – s2.length();

}
});

Computer Science and Engineering The Ohio State University

Compilation

Source (.java) --> byte code (.class)
Example:
$ javac Classname.java

Produces:
Classname.class

If class Outer contains a nested class,
Nested, two class files are produced

Example:
$ javac Outer.java

Produces:
Outer.class Outer$Inner.class

Computer Science and Engineering The Ohio State University

Good Practice: Use Sparingly

Proper use makes code smaller and
cleaner
Improper use makes code hard to
understand
Stick with basic patterns:

Bundling state (static nested)
Adaptors (inner)
Event handlers (inner or anonymous)

ie Call-backs (inner or anonymous)
ie Single-method interface implementations
(inner or anonymous)

Avoid local classes all together (very rare)

Computer Science and Engineering The Ohio State University

Summary
Four kinds of nested classes

Static nested, inner, local, anonymous
Mutual access of private members
Static vs inner:

Inner have enclosing instance
Anonymous classes declared & used at same time
Use: helper class used by 1 other class

Bundle state
Instantiate interface

Commonly encountered “interface instantiation”
Event handlers (Swing)
Thread creation
Iteration

	Nested Classes
	Introduction
	Nested Classes
	Role: Helper Classes
	Example: Transcript
	Solution 1: Transcript
	Solution 2: Transcript
	Visibility
	Solution 3: Transcript
	Instantiation and Access
	Inner Class vs Static Nested Class
	Good Practice: Use Static Nested
	Solution 4: Transcript
	Roll: Event Handlers
	Example: ActionListener
	Example: ActionListener
	Anonymous Classes
	Anoymous ActionListener
	Example of Anonymous Class
	Compilation
	Good Practice: Use Sparingly
	Summary

