
Computer Science and Engineering College of Engineering The Ohio State University

CVS

Lecture 21

Computer Science and Engineering The Ohio State University

Classic tool for tracking changes to a
project and allowing team access

Can work across networks
Key Idea: Repository

The place where originals and all
modifications to them are kept
A new team members checks out their
own, private copy from the repository
Everyone can commit changes from their
own copy to the repository
Everyone can update their own copy with
the latest changes in the repository

CVS: Concurrent Version System

Computer Science and Engineering The Ohio State University

Motivation

Team-based development
Developers share and extend common code
base
Team members comply with standards
(coding conventions, comment templates,…)
Bug fixes applied to deployed version 1.0
while development continues, in parallel on
version 2.0

Every team project needs some kind of
code management and versioning system

Computer Science and Engineering The Ohio State University

Key Idea: The Repository
Repository holds master

copy of all files
Never edited directly
Stores history too

Developers have local
copy in their own
workspace

All work occurs here
Update:

Bring local copies up to
date with repository

Commit:
Send local edits to
repositoryAyesha

Matt

repository

commit

commit

update

update

Computer Science and Engineering The Ohio State University

Conflicts and Merging

update
commit

Optimistic team model
Anyone can modify any file any time (no locking)
Most edits can be safely merged automatically
Assumption: real conflicts are rare

Error: working
version out-of-date

Conflict: requires
attention

Merge

Matt

Ayesha

repository
1 32

Computer Science and Engineering The Ohio State University

Tagging, Branching, and Merging

Repository is a tree of versions
Development of main product occurs as a
series of revisions along trunk

A tag names a particular revision
Once tagged, a version is immutable

Branches off of trunk or off of other
branches

Bug fixes of a particular release
Exploring different development paths

Branches can be merged back to trunk
Speculative direction pans out

Computer Science and Engineering The Ohio State University

A History of Revisions

trunk
1.0

1.0.1

2.0

2.0.1 2.0.2

branch maintenance
branch

tag

release

merge

2.1

Computer Science and Engineering The Ohio State University

Overview of Workflow
Create and initialize the repository

Once, by 1 person
Add repository location to Eclipse

Once, by each team member
Populate repository/local project with content:

Once, by 1 person: Put existing local project in
repository
Once, by every other team member: Check out
existing project from repository to local machine

Synchronizing with the repository
Repeated frequently by everyone

Update local files from repository
Run all unit tests
Make changes in local project files
Run all unit tests (make sure they pass!)
Commit local files to repository

Computer Science and Engineering The Ohio State University

Demo: Create the Repository

Log in to solaris/linux machine
Two ways to set the “root” of the repository

Environment variable
$ setenv CVSROOT “/project/c421aa01/CVSREP”

Command line flag (-d)
-d /project/c421aa01/CVSREP

Command:
$ cvs init
$ cvs –d /project/c421aa01/CVSREP init

Creates repository root, administrative files
Never edit anything in the repository directly
Confirm group permissions are properly set

$ ls –la

Computer Science and Engineering The Ohio State University

$ cd /project/c421aa01/
$ ls
Lab1/ Lab2/
$ cvs –d /project/c421aa01/CVSREP init
$ ls –la
…
drwxrwsr-x 3 brutus c421aa01 80 Nov 7 16:34 CVSREP/
…

Create the Repository

Computer Science and Engineering The Ohio State University

Demo: Add a Repository Location

Open perspective “CVS Repository Exploring”
Right-click in CVS Repositories view

New > Repository Location…
Fill in fields pointing to initialized repository

Host: stdsun.cse.ohio-state.edu
Path: /project/c421aa01/CVSREP
User: brutus (ie your cse login name)
Password: • • • • • • • (ie your solaris password)
Connection Type: extssh

Open source projects typically have
repositories that permit anonymous access

Use of repository, rather than simply downloading
the code from a URL, simplifies staying up-to-date
with releases

Computer Science and Engineering The Ohio State University

Demo: Populate the Repository

Right click on project
Team > Share Project…

Select CVS repository to use
Enter module name

Common practice: Choose CVS module name to
be same as (local, Eclipse) project name

Select files to put in repository
Omit generated files (eg .class files in bin)

Add these to .cvsignore
Include other meta files like Eclipse preferences,
.project, .classpath, .cvsignore…

Computer Science and Engineering The Ohio State University

Demo: Populate a Local Project

File > Import… > Projects from CVS
Select CVS repository to use
Check “Use an existing module”

Select desired module from list

“Check out as” wizard
Common practice: Choose (local, Eclipse) project
name to be same as CVS module name
Select HEAD to get latest version

Package explorer view shows different icons
for project and contents

Reflects association with a repository
eg Marks updated files with “>”

Computer Science and Engineering The Ohio State University

Demo: Synchronize with Repository

Basic operations, right-click on project
Team > Commit…

Document commit with brief description (make
first line very descriptive)

Team > Update
Safe merges are done automatically

Alternative: Team Synchronizing perspective
Highlights changes in compare editor view
Can commit/update from this perspective
For non-automergable conflicts, review conflicts
and copy/edit to local file as appropriate
When done, choose “Mark as merged” for this file,
then commit

Computer Science and Engineering The Ohio State University

Update before committing
Integrates everyone else’s changes

Update when you are ready for someone
else’s work

Availability of new modules that may affect your
code

Commit when confident that your work can
be used by others

Do not wait until perfection!
Do make sure your new version compiles!

When to Update/Commit

Computer Science and Engineering The Ohio State University

Good Practices: Golden Rule

Never break the build
Applies (primarily) to trunk, although
breaking a multi-developer branch is
almost as bad
Frequent commits are a good thing, but
your partial code should not prevent
another developer from building and
testing their modifications

(Almost) Never break a test case
Other developers may think their (local)
changes are responsible for new errors
when they next update

Computer Science and Engineering The Ohio State University

Good Practice: Repository Contents

Frameworks
JRE, JUnit, Eclipse, …
Warning: big (binary) resources are very slow

Team standards/conventions
Comment templates, javadoc templates,…
Eclipse can export project-specific preferences
including templates, coding conventions, etc

Small sample application
Vanilla application that uses (minimally) the
various frameworks relevant to the product
Checklist for workstation configuration and
building to help new team members get up to
speed quickly

Computer Science and Engineering The Ohio State University

Good Practice: Not In Repository

Generated code
eg Java byte code, javadoc html

FIXME comments in trunk
OK for developer branches, but should be resolved
before merging into trunk

TODO comments in trunk (?)
Team convention whether or not to allow these
Good reasons on each side of argument:

Useful for bookmarking tasks needing attention (by self or
others!)
Lazy cruft that will accumulate over project lifespan

Advice: the more agile the process, the more
permissible TODO comments are in the trunk
Always OK for developer branches

Computer Science and Engineering The Ohio State University

Good Practices: Process

Daily build schedule
The “heartbeat” of the project

Release means: tag + create branch for
maintenance
Always tag before a merge

Simplifies roll-back if merge goes horribly wrong

Adopt team standard style:
Tag names (versions, major, minor, bug fixes…)
Light comment template (brief 1-liners are best)

Computer Science and Engineering The Ohio State University

Pitfalls

Incomplete commits
Common problem: forgetting to add a new
file

Binary vs ASCII files
Binary files must be explicitly marked as
such to prevent end-of-line mangling

Computer Science and Engineering The Ohio State University

Shortcomings

Binary files have no meaningful diffs
.pdf, .doc, .jar

Nontransactional commits
operations are file-by-file
no guarantee of all-or-nothing commit

Slow for large binaries
large binaries/executables/jars can be
provided outside the repository

Computer Science and Engineering The Ohio State University

Alternative: SVN
“Subversion” (subversion.tigris.org)
Increasingly popular in open source community
Repository stored as a series of diffs

Faster update and commits
Support recently added to Eclipse, but still flakey
Advantages:

File attributes are part of stored properties
Transactional commits
Versions refer to entire project (eg directories, not file
by file)
No need to explicitly mark binaries
Support for renaming resources (vs delete and re-add)
Better authentication management for remote access
Faster, especially for large binaries

Computer Science and Engineering The Ohio State University

SVN Notes
Create repository (on stdlogin)

$ umask 7
$ svnadmin create /project/c421aa01/repos

--fs-type fsfs
$ umask 77

Configure repository (SVN perspective)
Create new location

URL: svn+ssh://stdlogin.cse.ohio-
state.edu/project/c421aa01/repos

Create subfolder structure
New > Create remote folder
Typical subfolders: trunk, branches, tags

Check in project
Java perspective: Team > Share Project > SVN
Check “Use Specified Folder Name” and give a URL
under trunk folder, like repos/trunk/Sudoku

Computer Science and Engineering The Ohio State University

Summary

Model
Single, shared repository
Individual private working copies
Optimistic check-out model (no locking)

Basic operations
Update: brings working copy up to date
Commit: sends local changes to repository

Structure
Trunk, tags, branches

Good practices
Alternative: SVN

	CVS
	CVS: Concurrent Version System
	Motivation
	Key Idea: The Repository
	Conflicts and Merging
	Tagging, Branching, and Merging
	A History of Revisions
	Overview of Workflow
	Demo: Create the Repository
	Create the Repository
	Demo: Add a Repository Location
	Demo: Populate the Repository
	Demo: Populate a Local Project
	Demo: Synchronize with Repository
	When to Update/Commit
	Good Practices: Golden Rule
	Good Practice: Repository Contents
	Good Practice: Not In Repository
	Good Practices: Process
	Pitfalls
	Shortcomings
	Alternative: SVN
	SVN Notes
	Summary

