
Computer Science and Engineering College of Engineering The Ohio State University

File IO

Lecture 20

Computer Science and Engineering The Ohio State University

I/O Package Overview

Package java.io
Core concept: streams

Ordered sequences of data that have a source (for
input) or a destination (for output)

Two major flavors:
Byte streams

8 bits at a time, data-based (binary) information
Input streams and output streams

Character streams
16 bits at a time, text-based information
Readers and writers

See Java API documentation for details

Computer Science and Engineering The Ohio State University

Byte Streams
Two abstract base classes: InputStream and OutputStream
InputStream (for reading bytes) defines:

An abstract method for reading 1 byte at a time
public abstract int read()

Returns next byte value (0-255) or -1 if end-of-stream
encountered
Concrete input stream overrides this method to provide useful
functionality

Methods to read an array of bytes or skip a number of bytes
OutputStream (for writing bytes) defines:

An abstract method for writing 1 byte at a time
public abstract void write(int b)

Upper 24 bits are ignored
Methods to write bytes from a specified byte array

Close the stream after reading/writing
public void close()
Frees up limited operating system resources

All of these methods can throw IOException

Computer Science and Engineering The Ohio State University

Example 1: Measuring File Size
import java.io.*;
class CountBytes {
public static void main(String[] args)

throws IOException {
InputStream in = new FileInputStream(args[0]);
int total = 0;
while (in.read() != -1) {

total++;
}
in.close();
System.out.println(total + ” bytes”);

}
}

Computer Science and Engineering The Ohio State University

Standard Streams

Three standard streams for console IO
System.in

Input from keyboard
System.out

Output to console
System.err

Output to error (console by default)

These streams are byte streams!
System.in is an InputStream, the others are
PrintStreams (inherit from OutputStream)
Would be more logical for these to be character
streams not byte streams, but they predate the
inclusion of character streams in Java

Computer Science and Engineering The Ohio State University

Example 2: Console Streams
import java.io.*;
class TranslateBytes {
public static void main(String[] args)

throws IOException {
byte from = (byte)args[0].charAt(0);
byte to = (byte)args[1].charAt(0);
int x;
while((x = System.in.read()) != -1)

System.out.write(x == from ? to : x);
}

}

If you run “java TranslateBytes b B” and enter text
bigboy via the keyboard the output will be: BigBoy

Computer Science and Engineering The Ohio State University

Character Streams
Two abstract base classes: Reader and Writer
Similar methods to byte stream counterparts
Reader abstract class defines:

public int read()
Returns value in range 0..65535 (or -1)

public int read(char[] cbuf)
Returns number of characters read

public void skip(int n)
Writer abstract class defines:

public void write(int c)
public void write(char[] cbuf)
public abstract void flush()

Ensures previous writes have been sent to destination
Useful for buffered streams

Both classes define:
public void close()

Computer Science and Engineering The Ohio State University

Converting Byte/Character Streams
Conversion streams: InputStreamReader and
OutputStreamWriter

Subclasses of Reader and Writer respectively
InputStreamReader

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)
An encoding is a standard map of characters to bits (eg UTF-16)
public int read()
Reads bytes from associated InputStream and converts them to
characters using the appropriate encoding for that stream

OutputStreamWriter
public OutputStreamWriter(OutputStream out)
public OutputStreamWriter(OutputStream out, String enc)
public void write(int c)
Converts argument to bytes using the appropriate encoding and
writes these bytes to its associated OutputStream

Closing the conversion stream also closes the associated byte
stream – may not always desirable

Computer Science and Engineering The Ohio State University

The File Class
Useful for retrieving information about a file or a
directory

Represents a path, not necessarily an underlying file
Does not open/close files or provide file-processing
capabilities

Three constructors
public File(String name)
public File(String pathToName, String name)
public File(File directory, String name)

Main methods
boolean canRead() / boolean canWrite()
boolean exists()
boolean isFile() / boolean isDirectory()
String getAbsolutePath() / String getPath()
String getParent()
String getName()
long length()
long lastModified()

Computer Science and Engineering The Ohio State University

Working with Files
A file can be identified in one of three ways

A String object (file name)
A File object
A FileDescriptor object

Sequential-Access file: read/write at end of stream only
FileInputStream, FileOutputStream, FileReader,
FileWriter
Each file stream type has three constructors

Random-Access file: read/write at a specified location
RandomAccessFile
A file pointer is used to guide the starting position
Not a subclass of any of the four basic IO classes
(InputStream, OutputStream, Reader, or Writer)

Supports both input and output
Supports both bytes and characters

Computer Science and Engineering The Ohio State University

Example: A Random Access File
public static void main(String args[]) {

RandomAccessFile fh1 = null;
RandomAccessFile fh2 = null;

try {
fh1 = new RandomAccessFile(args[0], “r”);
fh2 = new RandomAccessFile(args[1], “rw”);

} catch (FileNotFoundException e) {
. . .

}

try {
int bufsize = (int) (fh1.length())/2;
byte[] buffer = new byte[bufsize];
fh1.readFully(buffer, 0, bufsize); //read half of file
fh2.write(buffer, 0, bufsize); //write all of array

} catch (IOException e) {
. . .

}
}

Computer Science and Engineering The Ohio State University

Efficient IO
Buffering greatly improves IO performance
Example: BufferedReader for character input
streams

public BufferedReader(Reader in)
The buffered stream “wraps” the unbuffered
stream

Example declarations of BufferedReaders
An InputStreamReader inside a BufferedReader
Reader r = new InputStreamReader(System.in);
BufferedReader in = new BufferedReader(r);
A FileReader inside a BufferedReader
Reader fr = new FileReader(“fileName”);
BufferedReader in = new BufferedReader(fr);
Then you can invoke in.readLine() to read from
the stream line by line

Computer Science and Engineering The Ohio State University

Example
public static void main (String[] args) {

try {
Reader fr = new FileReader(args[0]);
BufferedReader br = new BufferedReader(fr)
String line = br.readLine();

while (line != null) {
System.out.println("Read a line:");
System.out.println(line);
line = br.readLine();

}
br.close();

} catch(FileNotFoundException e) {
System.out.println(“File not found: ” + args[0]);

} catch(IOException e) {
System.out.println(“File unreadable: ” + args[0]);

}
}

	File IO
	I/O Package Overview
	Byte Streams
	Example 1: Measuring File Size
	Standard Streams
	Example 2: Console Streams
	Character Streams
	Converting Byte/Character Streams
	The File Class
	Working with Files
	Example: A Random Access File
	Efficient IO
	Example

