
Computer Science and Engineering College of Engineering The Ohio State University

Assertions, Specifications,
and Design-by-Contract

Lecture 19

Computer Science and Engineering The Ohio State University

Wider vs Narrower Interfaces

Recall behavioral
subtyping
Substitution
principle

If a client is correct
wrt a “wide” type,
that same client is
still correct wrt a
“narrower” one

Question: When
designing an
interface, how
wide/narrow should
it be?

Person

Student

Creature

Undergrad

Computer Science and Engineering The Ohio State University

Design Issue #1: Which is Better?
Answer: It depends!
A wider spec:

Demanding on inputs,
tolerant on outputs
Easier to implement
Harder to use
Less powerful

A narrower spec:
Tolerant on inputs,
demanding on outputs
Harder to implement
Easier to use
More powerful

High-level tradeoff
Generality/flexibility,
vs power/performance

Person

Student

Creature

Undergrad

Easier to
implement

Easier to
use

Computer Science and Engineering The Ohio State University

Wider vs Narrower Methods

Consider a method selectTransport
Return value: Vehicle or Bicycle?
Argument: Person or Student?
Vehicle Person

? selectTransport(? a)
Bicycle Student

Vehicle is wider than Bicycle
Person is wider than Student

V e h i c l e P e r s o n
? selectTransport(? a)

Bicycle Student

Computer Science and Engineering The Ohio State University

Wider vs Narrower Methods

Bicycle m(P e r s o n a)

V e h i c l e m(P e r s o n a)Bicycle m(Student a)

V e h i c l e m(Student a)

Easier to
implement

Easier to
use

Computer Science and Engineering The Ohio State University

Good Practice: Which Declared Type?

How specific should the declared type of an
argument / return value be?

Vehicle selectTransport(Person a)
Bicycle selectTransport(Person a)
Vehicle selectTransport(Student a)
Bicycle selectTransport(Student a)

Typical advice:
“As specific as possible, without revealing
implementation details”
“As general as possible, while still being useful to
client”

The right way to think about it:
The type is dictated by the mathematical
(abstract, client-side) model

Computer Science and Engineering The Ohio State University

Requires Clause
Obligation on client

If client satisfies this obligation, component
method must terminate without an exception,
satisfying ensures

If requires is not satisfied, method could do
anything, including:

Terminate in whatever state it wants
Not terminate
Throw an exception

This last case, though, should be included in
specification

Document the “exceptional requires clause”
Condition under which method throws exception

Also document this case’s ensures clause

Computer Science and Engineering The Ohio State University

Requires and Throws
@requires n is even
void f(int n) { … }

@requires n is even
@throws IllegalArgumentException if #n is odd
void g(int n) { … }

f(5); //anything could happen
g(7); //must throw exception

Requires
clause
(@requires)

All states

Exceptional
requires
clause
(@throws)

Computer Science and Engineering The Ohio State University

Design Issue #2: Violated Requires

How should a violation of the requires
clause be handled?

What to include in “exceptional requires”?
Answer: Use checked exceptions when

Client can not unilaterally guarantee that the
requires holds (lack of control)
It is likely to be prohibitively expensive for
the client to check whether the requires holds

Recall example of lack of control
Guaranteeing existence of a file

Wrong answer:
Include everything outside of requires clause
Exceptional requires clause is !requires

Computer Science and Engineering The Ohio State University

Example: BigNatural Constructors

BigNatural has 2 constructors
//@requires v >= 0
SlowBigNatural(int v) { ... }
//@requires s is a well-formed representation of
// natural number with no leading 0’s
SlowBigNatural(String s) { ... }

Checking first requires is easy for client
So, do NOT use an exception for negative argument

Checking second requires is hard for client
So, CAN use an exception for malformed argument

Or, another design:
Provide a (static) boolean method that returns whether
or not a String is well-formed
Burden now back on client to check that the requires
holds, presumably by using this method

Performance cost for checking twice?

Computer Science and Engineering The Ohio State University

Comparison
if (v >= 0) { //sometimes safe to omit
b = new SlowBigNatural(v);
. . .

}

try { //compiler: can never omit!
b = new SlowBigNatural(v);
. . .

}
catch (NegativeArgumentException e) {
. . . //some code to recover?

}

Computer Science and Engineering The Ohio State University

Disjoint Normal/Exception’l Requires
Prefer mutually exclusive requires and exceptional
requires clauses

class Collections {
/**
* Copies all of the elements from one list into
* another. After the operation, the index of each
* copied element in the destination list will be
* identical to its index in the source list. The
* destination list must be at least as long as the
* source list. If it is longer, the remaining elements
* in the destination list are unaffected.
*
* @param dest The destination list.
* @param src The source list.
* @throws IndexOutOfBoundsException if the destination
* list is too small to contain the entire source List.
*/

static <T> void copy (List<T> dest, List<T> src)

Computer Science and Engineering The Ohio State University

Disjoint Normal/Exception’l Requires
class Collections {

/**
* @requires |dest| >= |src|
* @alters dest
* @ensures |dest| = |#dest|
* Exists a list suf such that
* (#dest ends in suf and
* dest = src + suf)
* @param dest the destination list
* @param src the source list
* @throws IndexOutOfBoundsException
* if |dest| < |src|, dest = #dest
*/

static <T> void copy (List<T> dest,
List<T> src)

Computer Science and Engineering The Ohio State University

Good Practice: Doc Exceptions

Document every checked exception
@throws clause for each, giving exceptional requires

Throw (and document) exceptions at the right level of
abstraction

Avoid revealing implementation specifics
eg IndexOutOfBounds vs ArrayIndexOutOfBounds

Document “some” runtime exceptions
The ones the client should reasonably care about (?)
Never include these in method signature
Danger: no real enforcement mechanism

Consistency within project? Client attention?
Parent’s @throws for unchecked exceptions not inherited

Use {@inheritDoc} to explicitly bring this in
Documentation for checked exceptions is inherited (if child
declares)

Computer Science and Engineering The Ohio State University

Implications for JUnit

Throwing exceptions is part of
promised behavior

JUnit test cases should exercise this
behavior
Seeing exception is a “pass” for test case

@Test annotation with “expected”
parameter

@Test(expected=
IndexOutOfBoundsException.class)

public void empty() {
(new ArrayList<Object>()).get(0);

}

Computer Science and Engineering The Ohio State University

Assertions

An assertion is a statement that should
always evaluate to true
Keyword: assert

assert eval-expr [: detail-expr];
assert tail.next == null : “No list end”;

If the eval-expr does not evaluate to true, an
AssertionError is thrown

An error (ie extends Error) since an assertion
violation is unrecoverable
detail-expr can be either

A String (becomes the informal description)
A Throwable (gets chained as the cause)

Computer Science and Engineering The Ohio State University

Roles of Assertions
Checking convention (ie representation
invariant)

At the end of the constructor
At the end of every (mutator) method

Checking requires
Defensive programming: check assumptions

Checking ensures
Verify implementation has delivered promised
behavior

Checking flow-of-control
Example: “assert false” at a point that should
never be reached
Style note: “throw (new AssertionError())” usually
preferred to “assert false”

Checking loop invariants

Computer Science and Engineering The Ohio State University

Turning Assertions On (and Off)
Assertions are disabled by default

Enabled with a command-line argument
$ java MyProg -enableassertions
Class-level and package-level control

-ea (-da) to enable (disable) all assertions
-ea:edu.osu.Tester to enable only in class Tester
-ea:edu.osu... to enable only in package edu.osu

In Eclipse, use “VM arguments”
Java > Installed JREs > Edit > Default VM Args
(Or use Run Configurations for finer control)

Never use assertions with side-effects
Example: assert i++ < max;
Program behavior changes if assertions are on/off

Resist temptation to disable assertions for
performance

Benefit is likely to be negligible
Robustness always outweighs speed

Computer Science and Engineering The Ohio State University

Good Practice: Public Methods
Widely-accepted Java coding practice:

Never use assert to check requires of public
methods
Prefer a RuntimeException (eg
IllegalArgumentException)
OK for requires of private methods
OK for ensures of all methods (private and public)

But a violation of requires clause is not
recoverable (by client), so it should be an
Error, not an Exception!

Really, these contract checks belong in a separate
component (a checking wrapper)
But without better linguistic support for such
things, assertions will have to do

Contrary to Sun recommendations, use
asserts liberally, even for public methods

assert (requires || exceptional-requires)

Computer Science and Engineering The Ohio State University

Summary

Interface design: How wide should a
specification be?

Trade-off: Generality vs power
Interface design: How should a violation of
requires be handled?

Exceptions when client lacks enough control
Exceptions when check is too expensive for client

Exceptions
Part of component’s interface (visible)
Requires vs exceptional requires clauses

Testing exceptions with JUnit
Assertions

Can be turned on/off at execution time

	Assertions, Specifications, and Design-by-Contract
	Wider vs Narrower Interfaces
	Design Issue #1: Which is Better?
	Wider vs Narrower Methods
	Wider vs Narrower Methods
	Good Practice: Which Declared Type?
	Requires Clause
	Requires and Throws
	Design Issue #2: Violated Requires
	Example: BigNatural Constructors
	Comparison
	Disjoint Normal/Exception’l Requires
	Disjoint Normal/Exception’l Requires
	Good Practice: Doc Exceptions
	Implications for JUnit
	Assertions
	Roles of Assertions
	Turning Assertions On (and Off)
	Good Practice: Public Methods
	Summary

