
Computer Science and Engineering College of Engineering The Ohio State University

Collections Framework:
Part 2

Lecture 18

Computer Science and Engineering The Ohio State University

Collection Implementations

Java SDK provides several implementations
of Collection subinterfaces

List
ArrayList, LinkedList

Queue (and Deque)
PriorityQueue, LinkedList

Set (and SortedSet)
HashSet, TreeSet, LinkedHashSet, EnumSet

These differ in concrete implementation
Differences in algorithmic complexity
Different refinements of interface semantics

Computer Science and Engineering The Ohio State University

Iterable Collection Hierarchy

Collection

Queue

implements

extends
Iterable

Set

List

SortedSetHashSet

PriorityQueue

LinkedList

ArrayList

TreeSet

Iterator

ListIterator

Deque

Computer Science and Engineering The Ohio State University

List Implementations
ArrayList: a resizable-array

Adding or removing elements at the end, or getting an
element at a specific position is fast – O(1)
Adding or removing elements from the middle is more
expensive – O(n-i)
Can be efficiently scanned (using indices) without
creating an Iterator object
Good for: lists that are scanned frequently, lists where
most additions/removals are at the ends

LinkedList: a doubly-linked list
Getting an element at position i is more expensive –
O(i)
But once you are there, addition/removal is fast – O(1)
Good for: lists where most of additions/removals are
not at the ends

Computer Science and Engineering The Ohio State University

Customizing Collections

To support creation of new collection
classes, SDK provides several abstract
classes

Skeleton implementation of base
functionality
Can not be instantiated directly
Can be extended, providing appropriate
implementation details

Example: add method throws exception
unless overridden

Computer Science and Engineering The Ohio State University

Iterable Collection Hierarchy

AbstractList

AbsCollection

AbstractQueue

Collection

Queue

implements

extends
Iterable

SetAbstractSet

List

SortedSetHashSet

PriorityQueue

LinkedList

AbsSeqList

ArrayList

TreeSet

Iterator

ListIterator

Deque

Computer Science and Engineering The Ohio State University

Maps

While Collections contain individual
elements, Maps contain key-value pairs

A map can not contain duplicate keys
It maps each key to at most one value
Recall Resolve’s Bag vs Partial_Map

Provided as a generic interface
interface Map<K,V>

K: type of key, V: type of value
Example
Map<String, PhoneNumber> phoneBook

SortedMap further guarantees that keys are
in ascending order

Computer Science and Engineering The Ohio State University

Map Hierarchy

Map

SortedMap

implements

extends

Computer Science and Engineering The Ohio State University

Map Interface
Three views of contents

Set of keys
Collection of values
Set of key-value pairs (ie mappings)

Main methods for obtaining these views
public Set<K> keySet()
public Collection<V> values()
public Set<Map.Entry<K,V>> entrySet()

These views are backed by the actual Map
Removing element from one of these views removes
the key-value pair from the Map
Adding an element to one of these views is not allowed
Recall: While iterating, make such modifications only
through the iterator

Arbitrary iteration order
Independent order for keys / values in same Map
Subinterface SortedMap provides this guarantee

Computer Science and Engineering The Ohio State University

Map Interface Cont’d

More methods for working with Map
Modifying contents
public V get(Object key)
public V put(K key, V value)
public V remove(Object key)
public void clear()

Statistics and searching
public int size()
public boolean isEmpty()
public boolean containsKey(Object key)
public boolean containsValue(Object value)

Computer Science and Engineering The Ohio State University

Map Hierarchy

EnumMap

AbstractMap Map

SortedMap

implements

extends

TreeMap

HashMap

Computer Science and Engineering The Ohio State University

Utility Class: java.util.Collections
Static methods for many common tasks

Ordering and permuting
public void sort(List list)
public void shuffle(List list)
public void reverse(List list)
public void rotate(List list, int distance)
public void swap(List list, int i, int j)
Modifying contents
public <T> void fill(List<T> list, T obj)
public <T> void copy(List<T> src, List<T> dst)
Statistics and searching
public int frequency(Collection c, Object o)
public boolean disjoint(Collection c1,

Collection c2)
public <T> T min(Collection<T> c)
public <T> T max(Collection<T> c)

Computer Science and Engineering The Ohio State University

Utility Class: java.util.Arrays
Not part of the “Collections Framework”
Static methods for common tasks:

Ordering
public void sort(int[] a)
public void sort(int[] a, int i, int j)
Modifying contents
public void fill(int[] a, int val)
public void fill(int[] a, int i, int j, int v)
Statistics and searching
public int binarySearch(int[] a, int key)
Core methods
public boolean equals(int[] a1, int[] a2)
public int hashCode(int[] a)
public String toString(int[] a)

All are overloaded (for primitives and Object)

Computer Science and Engineering The Ohio State University

Good Practice: Avoid Legacy Types

java.util has been around since 1.0
“Collections Framework” since 1.2

For backwards compatibility, it still contains
some classes that have been superseded

The use of these older classes is deprecated
The only reason for using them is to interface with
legacy code

The “legacy collections” are:
Enumeration – prefer Iterator interface
Stack – prefer Deque (a subinterface of Queue)
Dictionary – prefer Map interface
Hashtable – prefer HashMap class*
Vector – prefer ArrayList class*
*Aside: Vector and Hashtable are still used today,

but only for multithreaded code

Computer Science and Engineering The Ohio State University

Good Practice: Know the Libraries

Example: Print (contents of) an array
int[] a = . . .
System.out.println(a); //gibberish
System.out.println(Arrays.toString(a));

Example: Find identical entries in two
phone books

Map tmp = new HashMap(h1);
tmp.entrySet().retainAll(h2.entrySet());
Set result = tmp.keySet();

Computer Science and Engineering The Ohio State University

Supplemental Reading

Sun “Collections Framework” trail
For Collections utility class, see
“Algorithms” section of collections trail

Computer Science and Engineering The Ohio State University

Summary

Collection Implementations
ArrayList, LinkedList, PriorityQueue,
HashSet

Maps
Key/value pairs, with unique keys
Interfaces: Map, SortedMap
Classes: HashMap, EnumMap, TreeMap

Utility Classes
Collections, Arrays

	Collections Framework:�Part 2
	Collection Implementations
	Iterable Collection Hierarchy
	List Implementations
	Customizing Collections
	Iterable Collection Hierarchy
	Maps
	Map Hierarchy
	Map Interface
	Map Interface Cont’d
	Map Hierarchy
	Utility Class: java.util.Collections
	Utility Class: java.util.Arrays
	Good Practice: Avoid Legacy Types
	Good Practice: Know the Libraries
	Supplemental Reading
	Summary

