
Computer Science and Engineering College of Engineering The Ohio State University

Exceptions

Lecture 16

Computer Science and Engineering The Ohio State University

Throwable Hierarchy

implements

extends

ExceptionError

Throwable Serializable

Error
Internal problems or resource exhaustion within VM
Thrown by Java SDK methods or VM itself
“unrecoverable”

Beyond the program’s ability to control or handle
Little you can do: abort the program

Exceptions
Problems within the application
Thrown by Java SDK or programmer application
“recoverable” (maybe)

Corrective actions within program may be possible

Computer Science and Engineering The Ohio State University

Error Hierarchy

implements

extends

Assertion
Error

ExceptionError

Throwable

OutOfMemory
Error

VirtualMachine
Error

Serializable

Computer Science and Engineering The Ohio State University

Exception Hierarchy

Runtime
Exception

implements

extends

ExceptionError

Throwable Serializable

IOException

Exceptions derived from RuntimeException
Examples: bad cast, out-of-bounds array access,
dereferencing a null pointer
Happen because an error exists in your program
“Your fault”

Exceptions that do not derive from RuntimeException
Example: trying to open a malformed URL
Happen because of externalities (the outside world)
“Not your fault”

Computer Science and Engineering The Ohio State University

Exception Hierarchy

Runtime
Exception

implements

extends

ExceptionError

Throwable Serializable

SQLException

IOException

IndexOutOf
BoundsException

ArrayIndexOutOf
BoundsException

NullPointer
Exception

Arithmetic
Exception

Computer Science and Engineering The Ohio State University

Throwable (sub)Hierarchy

Runtime
Exception

implements

extends

Assertion
Error

ExceptionError

Throwable

OutOfMemory
Error

VirtualMachine
Error

Serializable

SQLException

IOException

IndexOutOf
BoundsException

ArrayIndexOutOf
BoundsException

NullPointer
Exception

Arithmetic
Exception

Computer Science and Engineering The Ohio State University

Good Practice: When to Use
Reserve for “unexpected” or “unusual”
behavior

Good: to signal file does not exist
Bad: to signal end of file
Terrible: to signal end-of-line (ie for control flow)

Particularly appropriate when client can not
guarantee the requires clause of a method

Example: existence of a file. First checking for
the file does not help because file could be
deleted after check but before method is called

Concurrency of world with which program
interacts means that some requires clauses
can not be unilaterally guaranteed by client,
as required by design-by-contract

Computer Science and Engineering The Ohio State University

Syntax of Try/Catch Blocks
Vocabulary: Exceptions (and Errors) are

“thrown” by a component implementation
“caught” by a client

In client, a try/catch block is used to catch
try {
statements

} catch(exceptionType1 identifier1) {
handler for type1

} catch(exceptionType2 identifier1) {
handler for type2

} . . .

If nothing is thrown during execution of the
statements in the try clause:

Try clause finishes successfully
All catch clauses are ignored

Computer Science and Engineering The Ohio State University

Example
String filename = ...
try {
//Create the file
File f = new File(filename);
if (f.createNewFile()) {

... //file creation succeeded
}
else {

... //file already exists
}
... //either way, can use f here

} catch (IOException e) {
//deal with IO problem (eg disk full)

} catch (SecurityException e) {
//some permission problem

}

Computer Science and Engineering The Ohio State University

Catching a Throwable
If something is thrown during excecution of the
statements in the try clause:
1. The rest of the code in the try block is skipped
2. The catch clauses are examined top to bottom for the

first matching catch (based on type compatibility)
catch (SomeException e) matches subtypes of
SomeException

3. If an appropriate catch clause is found:
Body of catch clause is executed
Remaining catch clauses are skipped

4. If no such a catch clause is found:
The exception is thrown to outer block, which is either

A try block (that potentially handles it, in same manner)
A method body (resulting in it being thrown to its client)

Consequence:
A catch clause for a subclass of SomeException cannot
follow a catch clause for SomeException for the same try

Computer Science and Engineering The Ohio State University

Good Practice: Specific Catching

Can be tempting to bundle all exception
catching into one clause

try {
. . .

} catch (Exception e) {
. . .

}

Usually, however, properly handling an
exception is more type-specific
Therefore, catch each (relevant) exception
type separately
Similar concern as “coding to the interface”

An exception’s declared type should be specific
enough to provide information needed by the
client for recovery, but not more

Computer Science and Engineering The Ohio State University

Handling a Throwable
Implementations are layered

Objects are both clients and components

How should B handle the throwable e from C?
Three choices for body of catch clause in B

Handle the exceptional situation, effectively
masking the issue from A
Pass e on to A

But e might not make sense to A, which does not
even know about C!

Create and throw a new throwable, e2, for A
Exception chaining can link e2 to its cause (e)

Voter CitizenRollPollingPlace
e?

A B C

Computer Science and Engineering The Ohio State University

Good Practice: Never Suppress
An empty catch clause is a red flag

Usually indicates laziness
try {
. . .

} catch (IOException e) { }
There are very rare instances where “no action”
actually does properly handle the situation
If so, document code with clear justification

More subtle: catch clause that logs
try {
. . .
} catch (IOException e) {
e.printStackTrace();

}
This also effectively hides the exception without
actually having handled it

Computer Science and Engineering The Ohio State University

(Poor) Example
String filename = "/nosuchdir/somefile";
try {
//Create the file
new File(filename).createNewFile();

} catch (IOException e) {
//Display the exception that occurred
System.out.println(“Unable to create “
+ filename + “: “ + e.getMessage());

}

Output
Unable to create /nosuchdir/somefile:

The system cannot find the path
specified

Computer Science and Engineering The Ohio State University

Finally Clause
Some actions should be performed whether or not
exceptions occur

Example: releasing resources such as database or
network connections

Syntax
try {
. . .

} catch (IOException e) {
. . .

} finally {
. . . //always executed

}

The finally clause is executed:
After the try clause in the case of normal execution
After the catch clause in the case of an exception

Computer Science and Engineering The Ohio State University

Checked vs Unchecked Exceptions

Unchecked Exceptions
Ubiquity: Possible sources (statements) are common

Examples: any dereference could be of null, any memory
allocation could exhaust memory

Condition could arise in practically any method
Consequently, all methods allowed to throw them

Checked exceptions
Operation-specific

Examples: working with file system or network
Conditions could arise in limited number of methods
A method can only throw (checked) exceptions
explicitly declared in its signature
Image load() throws IOException, EOFException {...}

A client must catch all declared checked exceptions
These last two requirements are checked by compiler

Computer Science and Engineering The Ohio State University

Distinguishing Checked & Unchecked

Runtime
Exception

implements

extends

Assertion
Error

ExceptionError

Throwable

OutOfMemory
Error

VirtualMachine
Error

Serializable

SQLException

IOException

IndexOutOf
BoundsException

ArrayIndexOutOf
BoundsException

NullPointer
Exception

Arithmetic
Exception

“Unchecked Exceptions” “Checked Exceptions”

Computer Science and Engineering The Ohio State University

Rule

Unchecked exceptions are:
Subclasses of Error, or
Subclasses of RuntimeException

The rest are checked exceptions

Computer Science and Engineering The Ohio State University

Throwing Throwables
To signal an exceptional situation

Component creates a new throwable object
Component throws it with throws keyword

Syntax
String readData(Scanner in) throws EOFException {
. . .
while(. . .) {
if (!in.hasNext()) { //EndOfFile encountered
if(n < len) {
throw (new EOFException(“File too long”));

}
. . .
}
return s;

}
For checked exceptions: Dynamic type of the thrown
exception must be subclass of an exception type
declared in method signature

Computer Science and Engineering The Ohio State University

Creating new Exception Classes
Throwable hierarchy can be subclassed to create new
application-specific exception types

class TemperatureException extends Exception { ... }

Inherit Throwable’s String for informal description
t = new TemperatureException(“Engine overheated”);
throw (new EOFException(“File too long”));

Why create new exception types?
New class can declare new fields and methods

Can provide more structured information to client
Eg TemperatureException includes value of temperature
that triggered the exception

Client catch clause is determined by exception type
Can distinguish a problem for which distinct handling logic
will (likely) be required on client’s side
Eg TemperatureExceptions will require modifying the
engine’s temperature before repeating the operation

Computer Science and Engineering The Ohio State University

Good Practice: New Exceptions

Use standard exceptions if possible
Good litmus test: are particular methods
needed to aid in recovery?

Prefer checked exceptions
Extend Exception, not Error or
RuntimeException

Naming convention
Class name ends in “Exception” (see Java
libraries)

Computer Science and Engineering The Ohio State University

Catching Checked Exceptions

Choices for body of catch clause
corresponding to checked exception e

Mask the problem by handling the
exceptional situation
Rethrow e on up to client and declare
exception type in signature (throws)
Create and throw a new throwable, e2, on
up to client

e2 could be checked, in which case it
must be declared in signature
e2 could be unchecked, in which case it
should not be declared in signature

Computer Science and Engineering The Ohio State University

Exception Chaining
Body of a catch clause often creates and throws a new
throwable

Used to change the type of exception
Map failure to a mode that makes sense to client

Original exception, however, might still be useful
Example: Debugging by looking at the trail of
cascading exceptions

Chaining: A Throwable has a cause (another throwable)
catch (SQLException e) {
ServletException se = new ServletException();
se.setCause(e);
throw se;

}

At client (or higher), original exception can be retrieved
catch (ServletException e) {
Throwable cause = e.getCause();

Computer Science and Engineering The Ohio State University

Summary

Throwable hierarchy
Errors, exceptions (& run-time exceptions)
Checked vs unchecked throwables

Mechanics
Try/catch block
Declaration in method signatures
Exception chaining

	Exceptions
	Throwable Hierarchy
	Error Hierarchy
	Exception Hierarchy
	Exception Hierarchy
	Throwable (sub)Hierarchy
	Good Practice: When to Use
	Syntax of Try/Catch Blocks
	Example
	Catching a Throwable
	Good Practice: Specific Catching
	Handling a Throwable
	Good Practice: Never Suppress
	(Poor) Example
	Finally Clause
	Checked vs Unchecked Exceptions
	Distinguishing Checked & Unchecked
	Rule
	Throwing Throwables
	Creating new Exception Classes
	Good Practice: New Exceptions
	Catching Checked Exceptions
	Exception Chaining
	Summary

