
Computer Science and Engineering College of Engineering The Ohio State University

java.lang.Object: Equality

Lecture 14

Computer Science and Engineering The Ohio State University

Class and Interface Hierarchies

CseMajor CseGrad

OsuStudent

SmartPerson

Object

OsuFaculty

Voter

Salaried

implements

extends Runable Cloneable

Tenurable

Computer Science and Engineering The Ohio State University

java.lang.Object

The root of all class hierarchies
This is a class called “Object”
There is also a class in java.lang called “Class”!

Provides several useful methods
getClass()

Returns Class of the object instance
String toString()

Returns String representing object value
boolean equals(Object)

Returns true iff argument is equal to object
int hashCode()

Returns an int “hash value” for object
Object clone() [but the actual class of the object
must implement interface java.lang.Cloneable]

Creates and returns a copy

Computer Science and Engineering The Ohio State University

The getClass() Method

Returns an instance of java.lang.Class
Generic class: Class<T>
String getName()

Name of the class as a string, eg “CseMajor”

Think of it as representing the object’s class
Student s1 = new OsuStudent();
Student s2 = new CseMajor();
System.out.println(s1.getClass().getName());
System.out.println(s2.getClass().getName());
if (s1.getClass() == s2.getClass()) { . . .

Of course (?) java.lang.Class extends Object!
Try not to think about this too hard

Computer Science and Engineering The Ohio State University

Good Practice: Core Methods

Always override toString()
Default implementation gives class name + @ + a
meaningless hex number

eg “BankAccount@3d4606bf”
Always override equals()

Default implementation checks object references
for equality
Pencil p1 = new LeadedPencil();
Pencil p2 = new LeadedPencil();
assert(!p1.equals(p2));

Always override hashCode()
Default implementation is memory address
What is a hashCode? Stay tuned...

Overriding clone(): some tricky issues
“Shallow” vs. “deep” copies

Computer Science and Engineering The Ohio State University

Overriding toString()

Spec in java.lang.Object
“A concise but informative representation that is
easy for a person to read.”

Automatically called when String needed
System.out.println(myAccount);
String msg = “Cell phone: “ + phoneNumber;

Ideally provides complete information
Can be at odds with being “concise”
Information about abstract (ie interface) state

Design decision: How specific to make spec?
Whatever is in spec, the client can use/exploit
Specific toString info ==> most useful to client
Vague toString info ==> most flexibility for future

Computer Science and Engineering The Ohio State University

Good Practice: String Conversion

Provide matching constructor to create
object from a String

String toString(): object --> String
Pencil(String): String --> new object

Especially common for immutables
See java.lang.Integer
Notice how carefully toString() is
documented
Caveat: Factory methods are better than
constructors here (we’ll talk about these
later)

Computer Science and Engineering The Ohio State University

Overriding equals()

Spec requires it to be an equivalence relation
Should also be consistent with compareTo

1. Reflexive
x.equals(x) == true

2. Symmetric
x.equals(y) <==> y.equals(x)

3. Transitive
x.equals(y) && y.equals(z) ==> x.equals(z)

4. Consistent (ie over time)
x.equals(y) == x.equals(y) == x.equals(y) ...

5. Robust to null
x.equals(null) == false

Computer Science and Engineering The Ohio State University

Naïve approach
class SmartPerson {
private String firstName;
private String lastName;

public boolean equals (SmartPerson p) {
return (firstName.equals(p.firstName) &&

lastName.equals(p.lastName));
}

}

.

Computer Science and Engineering The Ohio State University

Many Problems with Naïve Solution

On the surface, it looks promising
Reflexive, symmetric, transitive,
consistent

But (1): Not robust to null
if (p1.equals(null)) {… //run-time error

But (2): Wrong argument type
equals() has argument type Object
This implementation overloads (not
overrides) equals() in java.lang.Object

Computer Science and Engineering The Ohio State University

Another Attempt
class SmartPerson {
private String firstName;
private String lastName;

@Override
public boolean equals (Object o) {

if (o == null) return false;
SmartPerson p = (SmartPerson)o;
return (firstName.equals(p.firstName) &&

lastName.equals(p.lastName));
}

}

Computer Science and Engineering The Ohio State University

New Problems

Narrowing cast may fail
Person p = new SmartPerson();
IceCreamFlavor i = new SaltyCaramel();
if (p.equals(i)) {... //run-time error

We could keep patching it
Add instanceof test of run-time type

It would keep breaking
Inheritance complicates the analysis
Can an OsuStudent be equal to a CseMajor?

Bottom line: You can not do both
1. Have behavioral subtypes, and
2. Satisfy all the equivalence relation requirements

Computer Science and Engineering The Ohio State University

Standard Solution
class SmartPerson {

@Override
public boolean equals (Object o) {

if (o == this) return true;
if (o == null) return false;
if (!o.getClass().equals(this.getClass()))

return false;

SmartPerson p = (SmartPerson)o;
return (firstName.equals(p.firstName) &&

lastName.equals(p.lastName));
}

}

Computer Science and Engineering The Ohio State University

Complication: Extensions
class OsuStudent extends SmartPerson {

private BuckID identity;

@Override
public boolean equals (Object o) {

if (o == this) return true;
if (!super.equals(o)) return false;

OsuStudent s = (OsuStudent)o;
return identity.equals(s.identity);

}
}

Computer Science and Engineering The Ohio State University

Notes on equals()
Initial comparison (ie o == this)

Used only for performance reasons (a “shortcut”)
Objects must be of exactly the same class

Subclass instance never equal to superclass
instance

So much for “is a”!
For CseMajor c, and OsuStudent s,
assert(!c.equals(s))

Different classes that implement the same
interface can never be equal

For SlowBigNatural b1, and FastBigNatural b2
assert(!b1.equals(b2))

Two recipes for implementing equals()
Version 1 when overriding equals for the first time
Version 2 when some parent overrides equals

Computer Science and Engineering The Ohio State University

Overriding hashCode()

This method returns a “random” int
Must be consistent (ie repeatable)
Default implementation: memory address

Equal objects must have equal hashes
x.equals(y) ==> x.hashCode() == y.hashCode()

Must distinct objects have distinct hashes?
Not required for correctness
But helps performance when using collections

Rule: If you override equals(), override
hashCode()
Immutable objects can pre-compute and
then cache their hashcode value

Computer Science and Engineering The Ohio State University

Recipe for hashCode()
1. Initialize with a non-zero constant integer

int result = 17; //must be non-zero

2. For each field f that figures into equals:
a. Compute int hash code c for f

For primitive f, use f’s value
For reference f, recurse
For array f, examine each element

c = (f ? 0 : 1); //for boolean f
c = (int)f; //for byte/char/short/int f
c = Float.floatToIntBits(f); //for long f
c = f.hashCode(); //for reference f

b. Combine c into result through multiplication
result = 37*result + c; //use an odd prime

3. Return result

Computer Science and Engineering The Ohio State University

Basic Example
class SmartPerson {
private String firstName;
private String lastName;
private int age;

@Override
public int hashCode () {

int result = 17;
result = 37*result + firstName.hashCode();
result = 37*result + lastName.hashCode();
result = 37*result + age;
return result;

}
}

Computer Science and Engineering The Ohio State University

Example: hashCode for Immutable
class SmartPerson {
private int cachedHashCode = 0;

@Override
public int hashCode () {

if (cachedHashCode == 0) {
int result = 17;
. . . //code to compute hash from fields
cachedHashCode = result;

}
return cachedHashCode;

}
}

Computer Science and Engineering The Ohio State University

Supplemental Reading

Bloch’s “Effective Java”, chapter 3
See Safari Books Online link
Warning: favors instanceof over getClass()

Better for behavioral subtyping
Worse for creating an equivalence relation

IBM developerWorks paper
“Java Theory and practice: Hashing it out”
http://www.ibm.com/developerworks/java/l
ibrary/j-jtp05273.html

Various blogs (all slightly broken)
http://www.geocities.com/technofundo/tec
h/java/equalhash.html

Computer Science and Engineering The Ohio State University

Summary

java.lang.Object
Root of all class hierarchies
Contains useful methods
Several core ones should be overridden

toString()
Concise, complete, informative

equals()
Spec: An equivalence relation
Default implementation compares references
Comparing values is subtle because of inheritance
Overriding helps with JUnit

hashCode()
Equal objects must return equal hashes

	java.lang.Object: Equality
	Class and Interface Hierarchies
	java.lang.Object
	The getClass() Method
	Good Practice: Core Methods
	Overriding toString()
	Good Practice: String Conversion
	Overriding equals()
	Naïve approach
	Many Problems with Naïve Solution
	Another Attempt
	New Problems
	Standard Solution
	Complication: Extensions
	Notes on equals()
	Overriding hashCode()
	Recipe for hashCode()
	Basic Example
	Example: hashCode for Immutable
	Supplemental Reading
	Summary

