
Computer Science and Engineering  College of Engineering  The Ohio State University

Inheritance: Applications and 
Consequences

Lecture 13



Computer Science and Engineering  The Ohio State University

Class and Interface Hierarchies

CseMajor CseGrad

OsuStudent

SmartPerson

Object

OsuFaculty

Voter

Salaried

implements

extends Runable Cloneable

Tenurable

OsuFaculty extends SmartPerson, Object
OsuFaculty implements Salaried, Tenurable, Voter, Runable, Cloneable



Computer Science and Engineering  The Ohio State University

Abstract Classes
A class can be declared to be abstract

abstract class Design { . . . }

Can not be instantiated (same as interfaces)
May contain abstract methods

An abstract method has no implementation
abstract class Design {
void setLabel() { . . . }
abstract int getCost();

}

Only a subclass that implements all of these abstract 
methods can be instantiated

class Drawing extends Design {
@Override int getCost() { . . . }

}

Otherwise, the subclass is abstract too
Combination of interface and class



Computer Science and Engineering  The Ohio State University

Class and Interface Hierarchies

CseMajor CseGrad

OsuStudent

SmartPerson

Object

OsuFaculty

Voter

Salaried

implements

extends Runable Cloneable

Tenurable

Instantiable?
Yes: Object, OsuStudent, OsuFaculty, CseMajor, CseGrad
No : SmartPerson, Runable, Clonable, Voter, Salaried, Tenurable



Computer Science and Engineering  The Ohio State University

Abstract Classes vs. Interfaces

Similarities
Neither can be instantiated

Differences
Abstract classes permit:

Constructors
Static methods
Fields (but these are not part of public 
interface anyway, right?)
Visibilities: private/protected/default/public
Implementations

Interfaces permit:
Multiple inheritance



Computer Science and Engineering  The Ohio State University

Controlling Inheritance: final

Ultimate control: disallow
Declare class to be final
final class CseMajor { ... }

Abstract classes can not be final
final abstract class SmartPerson { ... }

Finer granularity: Disallow certain methods to 
be overridden

Declare method to be final
abstract class SmartPerson {
final int getAge() { . . . }

Permitted in abstract classes, but an abstract 
method can not be final
unlike C++ (explicitly permit overriding with virtual)



Computer Science and Engineering  The Ohio State University

Hook and Template Methods

Recall pattern:
Base class contains both template and hook 
methods
Template method calls this.hook method
Hook methods are overridden in derived classes
Template method is not

To support this pattern:
Template method is declared final
Hook methods are declared abstract

So base class declared abstract too
Hook methods are declared protected

See divide-and-conquer example
solve() is the template method



Computer Science and Engineering  The Ohio State University

Hook and Template Idiom
public abstract class Course {

public final void enroll(Student s) {
if (checkEligibility(s)) { … }

}
protected abstract boolean

checkEligibility(Student s);
}

public class Tutorial extends Course {
@Override
protected boolean

checkEligibility(Student s) {
//determines whether s has paid

}
}



Computer Science and Engineering  The Ohio State University

JUnit Pattern
Goal: Separate interface and implementation 
tests

Former are based on abstract client-side view
Latter based on concrete implementers view

Approach:
Test fixture for interface tests is a base class
Test fixture for implementation tests extends it

JUnit tests require an object (class instance)
In base class:

Use protected member(s) of interface type
abstract @Before method

In derived class:
Override @Before method to instantiate class and 
initialize the protected member(s)

See RandomWithParity example



Computer Science and Engineering  The Ohio State University

JUnit with Inheritance

OsuStudentTest

OsuStudent Graded
implements

extends

GradedTest protected Graded g;
@Before
public abstract void setUp();
@Test
public void someTest1() {...}
@Test
public void someTest2() {...}

@Override @Before
public void setUp() {
g = new OsuStudent();

}



Computer Science and Engineering  The Ohio State University

Limitations of This JUnit Pattern

Limitation 1: Single inheritance
If interface A extends B, no problem: test fixture 
ATest simply extends test fixture BTest!
But interface A extends B, C is trouble
Reason: with classes we are limited to single 
inheritance

Limitation 2: Complex construction
Assumes test cases do not require a particular 
constructor call for the class under test (all use 
default constructor)
What if this is not the case? (eg BigNatural)
Solution: Factory methods (We’ll see these later)



Computer Science and Engineering  The Ohio State University

Javadoc
Javadoc comments (main description, 
@param, @return) are implicitly inherited 
when omitted for a method

In a class that overrides a method in superclass
In an interface that overrides a method in 
superinterface
In a class that implements a method in interface

Javadoc generates “Overrides” block for first 
two, and “Specified by” block for last one

Links to comment for that parent method
{@inheritDoc} explicitly inherits parent’s 
comment

Replaced by text of parent’s comment; can add 
text around it to augment with specifics of child
Use in main description, @param, @return



Computer Science and Engineering  The Ohio State University

Narrowing
Recall that narrowing requires explicit cast

Programmer promise that this is OK
void v(OsuStudent s) {
(CseMajor)s.assignJavaLab();

}

What if the programmer is wrong?
Results in run-time failure (an “exception”)

Programmer can check first if it is OK
Operator: instanceof
if (v instanceof BankAccount) {
(BankAccount)v.deposit();
. . . 

Beware:
Any use of instanceof in code is a red flag
Especially bad smell: switch() based on instanceof



Computer Science and Engineering  The Ohio State University

Surprise?

Static methods are inherited
But, they do not get polymorphic run-
time selection

Implementation selected according to 
declared type
Yet another reason to invoke static 
methods through class (not an instance)



Computer Science and Engineering  The Ohio State University

Example
public class Base {
public static int f() {

return 4;
}

}
public class Derived extends Base {
public static int f() {

return 8;
}

}
…
Base b = new Derived();
System.out.println(b.f());
//What does this print?



Computer Science and Engineering  The Ohio State University

Good Practice: Static Members
Do not access static members through object 
references
Use class names instead

Do this: int t = Pencil.defaultLength;
Not this: int t = p1.defaultLength;

This applies within a class too
class Pencil {
private static int defaultLength = 10;
private int length;
public void reset() {

length = defaultLength;        //correct
length = Pencil.defaultLength; //better

}
}



Computer Science and Engineering  The Ohio State University

Better Version
public class Base {
public static int f() {

return 4;
}

}
public class Derived extends Base {
public static int f() {

return 8;
}

}
…
System.out.println(Base.f());
System.out.println(Derived.f());
//What does this print?



Computer Science and Engineering  The Ohio State University

Inheritance Myths

class A extends B implies A is a 
behavioral subtype of B
No!  Overriding methods could break 
everything



Computer Science and Engineering  The Ohio State University

Inheritance Myths

If I don’t override any methods, 
everything is fine
No!  Adding new methods could break 
the invariant!



Computer Science and Engineering  The Ohio State University

Summary
Abstract classes

Contain abstract methods
Missing some implementation
Like interfaces, can not be instantiated

Final methods
Can prevent overriding specific methods

Template and hook pattern
Template class and hook methods all abstract
Template method is final

Leveraging inheritance for JUnit
Javadoc features
Static methods can not be overridden
Inheritance myths


	Inheritance: Applications and Consequences
	Class and Interface Hierarchies
	Abstract Classes
	Class and Interface Hierarchies
	Abstract Classes vs. Interfaces
	Controlling Inheritance: final
	Hook and Template Methods
	Hook and Template Idiom
	JUnit Pattern
	JUnit with Inheritance
	Limitations of This JUnit Pattern
	Javadoc
	Narrowing
	Surprise?
	Example
	Good Practice: Static Members
	Better Version
	Inheritance Myths
	Inheritance Myths
	Summary

