
Computer Science and Engineering College of Engineering The Ohio State University

Implementation Inheritance

Lecture 12

Computer Science and Engineering The Ohio State University

Recall: Interface Inheritance
void select (Person p) {

//declared type of p is:
//dynamic type of p is:

person
student

Every student
is a person

Person

Student

SmartPerson

OsuStudent

implements

extends

Computer Science and Engineering The Ohio State University

Recall: Behavioral Subtyping

A Student can do everything a Person can do
Everywhere a Person is expected, a Student
can be used instead

void select (Person p) {
if (p.getAge() > 18) {

p.summons(trialDate);
... etc ...

Every method promised in Person interface:
Is implemented in SmartPerson class
Is promised in Student interface
Is implemented in OsuStudent class

Are two separate implementations of getAge
really necessary (or even a good idea)?

Computer Science and Engineering The Ohio State University

More Extreme Example

Every method
promised in
Creature interface:

Also promised in
Person, Student,
and Undergrad
interfaces
Must be
implemented in
DnaCreature,
SmartPerson,
OsuStudent, and
CseMajor classes!

Person

Student

SmartPerson

OsuStudent

Creature
DnaCreature

Undergrad

OsuStudent

CseMajor

Computer Science and Engineering The Ohio State University

Implementation Inheritance

Keyword: extends
public class OsuStudent extends SmartPerson {
. . .

}

OsuStudent has SmartPerson’s members
(fields + methods, including implementation)
If omitted, java.lang.Object is implicit

Person

Student

SmartPerson

OsuStudent

implements

extends

Computer Science and Engineering The Ohio State University

Class Hierarchy

Inheritance is transitive
Every class inherits from
java.lang.Object

CseMajor CseGrad

OsuStudent

SmartPerson

Object

OsuFaculty

extends

DnaCreature

Parent

Child

Base

Derived

Super

Sub

Computer Science and Engineering The Ohio State University

Class and Interface Hierarchies

Person

Student

SmartPerson

OsuStudent

Creature
DnaCreature

Undergrad

OsuStudent

CseMajor

Object

implements

extends

Computer Science and Engineering The Ohio State University

Class and Interface Hierarchies

CseMajor CseGrad

OsuStudent

SmartPerson

Object

OsuFaculty

Voter

Salaried

implements

extends

Voter v = new SmartPerson();
v = new OsuStudent();
v = new CseGrad();
v = new OsuFaculty();

Computer Science and Engineering The Ohio State University

Class and Interface Hierarchies

CseMajor CseGrad

OsuStudent

SmartPerson

Object

OsuFaculty

Voter

Salaried

implements

extends Runable Cloneable

Tenurable

OsuFaculty extends SmartPerson, Object
OsuFaculty implements Salaried, Tenurable, Voter, Runable, Cloneable

Computer Science and Engineering The Ohio State University

Mechanics
A class extends exactly one other class

“single inheritance” (unlike C++ “multiple inheritance”)
A subclass has all the members of its superclass

Not the private members
Not the constructors (ie just fields and methods)

Subclass can add new members (hence “extends”)
New fields and new methods
Defines its own constructor(s)

Subclass can modify inherited methods
Changes behavior
“overriding”

Computer Science and Engineering The Ohio State University

Example: Code
class SmartPerson implements

Person {

private String name;

SmartPerson() {
name = “Baby Doe”;

}

SmartPerson(String name) {
this.name = name;

}

void rename(String name) {
this.name = name;

}

String getName() {
return name;

}
}

class OsuStudent implements
Student extends SmartPerson {

private int identity;

OsuStudent() {
identity = 0;

}

OsuStudent(String name, int
identity) {
super(name);
this.identity = identity;

}

boolean winsTicketLottery () {
return (identity % 13 == 0);

}

String showInfo () {
return “ [” + getName() +

identity + “]”;
}

}

Computer Science and Engineering The Ohio State University

Example: Graphical View

winsTicket…()

identity

showInfo()

OsuStudent()

rename()

getName()

SmartPerson()

name

rename()

getName()

SmartPerson()

name

SmartPerson p = new SmartPerson()

OsuStudent s = new OsuStudent()

Computer Science and Engineering The Ohio State University

Constructing New Instances

Members of OsuStudent:
Its own: identity, winsTicketLottery(), showInfo()
Its parent’s: rename(), getName()
Its parent’s parent’s: see java.lang.Object

eg clone(), equals(), hashCode(),…

When a new instance is created:
First, the parent’s constructor is invoked

Can be done explicitly with super()
Otherwise, parent’s default constructor is called

Next, any initialization blocks are executed
Finally, the child’s constructor is executed

Computer Science and Engineering The Ohio State University

Overriding Methods
Overriding: a subclass declares a method that is already
present in its superclass
Note: signatures must match (otherwise it is just
overloading)

class SmartPerson {
String showInfo() {

return getName();
}

}
class OsuStudent extends SmartPerson {
String showInfo() {

return “ [” + getName() + identity + “]”;
}

}

Question: which method is called?
SmartPerson p = new OsuStudent();
System.out.println(p.showInfo());
Declared type: SmartPerson, dynamic type: OsuStudent

Computer Science and Engineering The Ohio State University

Overriding: Graphical View

winsTicket…()

ID

showInfo()

getName()

showInfo()

rename()

nameOsuStudent s = new OsuStudent()
s.showInfo(); //impl: B

SmartPerson p = s;
p.winsTicketLottery(); //error
p.showInfo(); //impl: A or B?

B

A

Computer Science and Engineering The Ohio State University

Polymorphism
Answer: The dynamic type determines which method is
called

SmartPerson p = new OsuSudent();
p.showInfo() //calls OsuStudent version

Informal model:
Method invocation is a run-time message to the object
That (run-time) object receives the request, performs
the action, and returns the result

Goal: we get the right behavior regardless of which
specific actual (ie run-time, ie dynamic) type we have

Person[] csePeople = … //students & faculty in CSE
for (int i = 0; i < csePeople[].length; i++) {
...csePeople[i].showInfo()...;

}

Note: This applies to methods only, not fields
Fields can not be overridden, only hidden

Computer Science and Engineering The Ohio State University

Good Practice: @Override
Use @Override annotation with all methods
intended to override a method in a
superclass

class OsuStudent extends SmartPerson {
@Override
String getInfo() {

. . .
}

}

Compiler complains if there is no matching
method in superclass

Prevents accidental overloading if a mistake is
made in the signature

Beware: Differences between Java 5 & 6

Computer Science and Engineering The Ohio State University

Hook methods
Dynamic type of this controls which method executes
Hook method: Called internally, intended to be overridden

class Course {
void enroll(Student s) {

if (this.checkEligibility(s)) { … }
}
boolean checkEligibility(Student s) {

//determines whether s has prereqs for this course
}

}

class Tutorial extends Course {
boolean checkEligibility(Student s) {

//determines whether s has paid fees
}

}
Yo-yo problem:

Must trace up & down class hierarchy to understand code
Course workshop = new Tutorial();
workshop.enroll(s);

Computer Science and Engineering The Ohio State University

Protected

We have seen three levels of visibility
private: concrete representation
default (ie package): trusted and co-located
public: abstract interface to all clients

Writing a subclass often requires:
More access than a generic client
Less access than whole concrete representation

Solution: new visibility level
Keyword: protected
Protected members are inherited but are not part
of the public interface to generic clients
Warning: anyone can extend your class and then
has access to protected members

Computer Science and Engineering The Ohio State University

Good Practice: Limited Use
Getting it right is hard
Unless you have an explicit need for an open (ie
extendable) class hierarchy, prevent others from
extending your classes
Keyword final prevents extensions

public final class Faculty {
. . .

}

public class Administrator extends Faculty {
. . . //compiler complains

}

If you do have a specific need to allow extensions, design
for it carefully

Use protected diligently and carefully (it’s a huge increase
in visibility over private or even over package!)
Chances are, it will still be broken

Computer Science and Engineering The Ohio State University

Summary

Implementation (class) inheritance
Declaration syntax: extends just like interfaces
Vocabulary: super/sub, base/derived, parent/child

Class and interface hierarchies
Constructing new instances

Overriding and polymorphism
Signature must match exactly (use @Override)
Dynamic type controls implementation
Hook methods: dynamic type of this

Protected visibility
Limiting extension: final

	Implementation Inheritance
	Recall: Interface Inheritance
	Recall: Behavioral Subtyping
	More Extreme Example
	Implementation Inheritance
	Class Hierarchy
	Class and Interface Hierarchies
	Class and Interface Hierarchies
	Class and Interface Hierarchies
	Mechanics
	Example: Code
	Example: Graphical View
	Constructing New Instances
	Overriding Methods
	Overriding: Graphical View
	Polymorphism
	Good Practice: @Override
	Hook methods
	Protected
	Good Practice: Limited Use
	Summary

