
Computer Science and Engineering College of Engineering The Ohio State University

Interface Inheritance:
Behavioral Subtyping

Lecture 11

Computer Science and Engineering The Ohio State University

Intuition
Some interfaces have significant overlap in functionality

bicycles and vehicles
both have owners and both can move

students and persons
both have names and both can be selected for juries

rectangles and shapes
both have a color

These are all examples of an “is a” relationship
This is a common (but poor) intuitive litmus test

Interfaces define types, ie sets of possible values

vehicles
bicyclesEvery bicycle

is a vehicle

Computer Science and Engineering The Ohio State University

Extending Interfaces

One interface can extend another
interface X extends A, B { . . . }

X implicitly includes all methods declared
in A, B, and transitively above A and B

Convertible

CarBicycle

Vehicle

Parent

Child

Base

Derived

Super

Sub

Asset

Computer Science and Engineering The Ohio State University

Recall: Narrowing vs Widening

Recall primitive types (eg long, int)
Widening

Assign a “small” value to a variable of “big” type
This is always ok and so can be done implicitly
void f(int i) {
long x = i; //widening: always ok

Narrowing
Assign a “big” value to a variable of “small” type
The correctness of this cannot be checked by
compiler and so requires an explicit cast
void f(long x) {
int i = x; //narrowing: compile error
int j = (int)x; //ok? programmer promise!

Computer Science and Engineering The Ohio State University

Narrowing and Widening Objects

Subinterfaces are “smaller” types than
superinterfaces

person
student

Every student
is a person

Person

Student

SmartPerson

OsuStudent

implements

extends

Computer Science and Engineering The Ohio State University

Narrowing and Widening Objects

Widening
Assign a subinterface (declared type) to a variable
of superinterface (declared) type
This is always ok and so can be done implicitly
void f(Student s) {
Person p = s; //widening: always ok

Narrowing
Assign a superinterface (declared type) to a
variable of subinterface (declared) type
This can not be checked by the compiler and so
requires an explicit cast
void f(Person p) {
Student s = p; //compiler complains
Student s = (Student)p; //ok? prg promise!

Computer Science and Engineering The Ohio State University

Argument Passing
Method argument declared types must match signature

interface Course {
void enroll(Student s) { . . . }

}
interface Jury {
void select(Person p) { . . . }

}

Automatic (implicit) widening
Student s = …;
cse421.enroll(s); //ok (exact match)
someJury.select(s); //ok (automatic widening)

Cast for (explicit) narrowing
Person p = …;
someJury.select(p); //ok (exact match)
cse421.enroll(p); //compiler complains (narrowing)
cse421.enroll((Student)p); //ok? programmer promise!

Computer Science and Engineering The Ohio State University

Simple Rule

A variable / parameter of declared
type T can refer to an object of
dynamic type “at or below” T

Person

Student

SmartPerson

OsuStudent

Creature
DnaCreature

Undergrad

OsuStudent

CseMajor

void f(Creature c) {
. . .
int a = c.getAge();
. . .

}

int getAge()

Computer Science and Engineering The Ohio State University

Behavioral Subtyping
Informally, A is a behavioral subtype of B
when it does everything B does (and maybe
more)

Everywhere a B is expected, an A can be used
instead

Must satisfy the Substitution Principle:
Any correct client that uses a B is still correct
when given an A instead

Example:
A class uses Creature (eg void f(Creature c))
Actual argument might be a Creature, Person,
Student, or Undergrad
Implementation of f() should still be correct!

Note: This is a requirement on the
component provider (of A), not on the client

Computer Science and Engineering The Ohio State University

Substitution Principle

If Undergrad is a
subtype of Student

Any correct client of
Student is still
correct when given
an Undergrad

If Undergrad not a
subtype of Student

There exists some
correct client of
Student that is no
longer correct when
given an Undergrad

Student

Undergrad

Computer Science and Engineering The Ohio State University

Behavioral Subtyping Rules

Subtype constraint ⇒ supertype constraint
Hence the informal “is a” litmus test
This condition alone, however, is not sufficient

Each method in subinterface:
Requires less than in superinterface

Add disjuncts (or) to requires clause
Must work under more conditions
Contravariance of argument types

Ensures more than in superinterface
Add conjuncts (and) to the ensures clause
Must guarantee more to client
Covariance of return types

Computer Science and Engineering The Ohio State University

A is Narrower than B (A is-a B)

A’s invariant is “stronger”
InvA ==> InvB

For each method, A “requires less”
Prem

A <== Prem
B

Pren
A <== Pren

B

For each method, A “ensures more”
Postm

A ==> Postm
B

Postn
A ==> Postn

B

Aside:
Omitted requires/ensures stands for true
Anything ==> true

Computer Science and Engineering The Ohio State University

A is Narrower than B
//@mathmodel M
//@constraint InvA ==>
interface A {

//@requires PremA <==
//@ensures PostmA ==>
int m(int x, int y);

//@requires PrenA <==
//@alters this ==>
//@ensures PostnA ==>
void n(String s);

}

//@mathmodel M
//@constraint InvB
interface B {

//@requires PremB
//@ensures PostmB
int m(int x, int y);

//@requires PrenB
//@alters this
//@ensures PostnB
void n(String s);

}

Computer Science and Engineering The Ohio State University

Visualization: Spec of m()

B

A
x

y

Requires

(x==0) || (y==0)

x*y >= 0

Ensures

0 < m

10 < m < 100

0

Computer Science and Engineering The Ohio State University

Example: BigNatural & BigInteger

Should BigNatural extend BigInteger?
For behavioral subtyping, ask:

Is BigNatural’s invariant stronger?
Do all BigNatural methods require less?
Do all BigNatural methods ensure more?

Computer Science and Engineering The Ohio State University

BigNatural Extends BigInteger?
//@mathmodel n integer
//@constraint n >= 0
interface BigNatural {

//@alters n
//@ens n = #n+1
void increment();

//@alters n
//@ens n=max(0,#n-1)
void decrement();

}

//@mathmodel n integer
//@constraint
interface BigInteger {

//@alters n
//@ens n = #n+1
void increment();

//@alters n
//@ens n = #n-1
void decrement();

}

Computer Science and Engineering The Ohio State University

Example: BigNatural & BigInteger
Should BigNatural extend BigInteger?
Is invariant stronger? Yes!

BigNatural invariant is n >= 0
BigInteger invariant is true

Do methods require less? Yes!
increment() requires the same (true) in both
decrement() requires the same (true) in both

Do methods ensure more? No!
BigNatural decrement() ensures #n>0 ==> n=#n-1
BigInteger decrement() ensures n=#n-1

Example client code that illustrates the problem
BigInteger noop(BigInteger i) {
i.decrement();
i.increment();
return i;

}
noop() is correct for BigInteger, but not for BigNatural

Computer Science and Engineering The Ohio State University

Example: Square & Rectangle

These interfaces have similar abstract state
(mathematical model)

two components: length, width

These interfaces have similar public behavior
(methods)

getArea(): returns the area (ie length * width)
widthStretch(): changes width of figure
lengthStretch(): changes length of figure

Should we use inheritance?
Square extends Rectangle?
Rectangle extends Square?

Computer Science and Engineering The Ohio State University

Square Extends Rectangle?
//@mathmodel l,w
//@constraint l = w
interface Square {

//@ens getArea=l*w
float getArea();

//@alters l,w
//@ens w = i*#w
// (&& l = i*#l)
void widthStretch

(int i);
}

//@mathmodel l,w
//@constraint
interface Rectangle {

//@ens getArea=l*w
float getArea();

//@alters w
//@ens w = i*#w
// (&& l = #l)

void widthStretch
(int i);

}

Computer Science and Engineering The Ohio State University

Example: Square is a Rectangle?
Is invariant stronger? Yes!

Square invariant is length = width and both are >= 0
Rectangle invariant is length and width both >= 0

Do methods require less? Yes!
all methods require true in both classes

Do methods ensure more? No!
Square widthStretch(s) ensures length = #length * s
Rectangle widthStretch() ensures length = #length

Example client code that illustrates the problem
Rectangle alwaysTrue(Rectangle r) {
double intialArea = r.getArea();
double finalArea = r.widthStretch(2).getArea();
return(finalArea == 2*initialArea);

}

alwaysTrue is correct for Rectangle, but not for Square

Computer Science and Engineering The Ohio State University

Rectangle Extends Square?
//@mathmodel l,w
//@constraint
interface Rectangle {

//@ens getArea=l*w
float getArea();

//@alters w
//@ens w = i*#w
// (&& l = #l)
void widthStretch

(int i);
}

//@mathmodel l,w
//@constraint l = w
interface Square {

//@ens getArea=l*w
float getArea();

//@alters l,w
//@ens w = i*#w
// (&& l = i*#l)

void widthStretch
(int i);

}

Computer Science and Engineering The Ohio State University

Example: Rectangle is a Square?
Is invariant stronger? No!

Square invariant is length = width and both are >= 0
Rectangle invariant is length and width both >= 0

Do methods require less? Yes!
all methods require true in both classes

Do methods ensure more? No!
Square widthStretch(s) ensures length = #length * s
Rectangle widthStretch() ensures length = #length

Example client code that illustrates the problem
Square alwaysTrue(Square s) {
double intialArea = s.getArea();
double finalArea = s.widthStretch(2).getArea();
return(finalArea == 4*initialArea);

}

alwaysTrue is correct for Square, but not for Rectangle

Computer Science and Engineering The Ohio State University

Java Support for Subtyping

Java does not enforce behavioral contracts
Support for behavioral subtyping limited to
very weak promises, such as:

If B has a visible method m(), A has a visible
method m() with same signature

A can not decrease visibility of m()
Parameter types must match exactly

Real contravariance would allow A.m’s parameter
types to be supertypes of B.m’s parameter types

Return type can be a subtype (covariance)
If B’s method m() can not throw an exception of
type E, neither can A’s m()

A can not increase the list of possible
exceptions (we’ll talk about exceptions later…)

Computer Science and Engineering The Ohio State University

Summary
Interface extensions

Declaration syntax
Vocabulary: super/sub, base/derived, parent/child
Widening (up) is automatic
Narrowing (down) requires explicit cast

Behavioral subtyping
Substitution principle

Subtyping rules
Strengthen the constraint
Weaken the requires of each method
Strengthen the ensures of each method

Java rules (syntax)
Does not allow contravariance of argument types
Does allow covariance of return type

	Interface Inheritance: Behavioral Subtyping
	Intuition
	Extending Interfaces
	Recall: Narrowing vs Widening
	Narrowing and Widening Objects
	Narrowing and Widening Objects
	Argument Passing
	Simple Rule
	Behavioral Subtyping
	Substitution Principle
	Behavioral Subtyping Rules
	A is Narrower than B (A is-a B)
	A is Narrower than B
	Visualization: Spec of m()
	Example: BigNatural & BigInteger
	BigNatural Extends BigInteger?
	Example: BigNatural & BigInteger
	Example: Square & Rectangle
	Square Extends Rectangle?
	Example: Square is a Rectangle?
	Rectangle Extends Square?
	Example: Rectangle is a Square?
	Java Support for Subtyping
	Summary

