
Computer Science and Engineering College of Engineering The Ohio State University

Generics

Lecture 10

Computer Science and Engineering The Ohio State University

A Simple Component

Client-side view: Pencil
interface Pencil {

String toString();
void setColor(Colors newColor);
void sharpen(int remove);

}

Implementer’s view: LeadedPencil
class LeadedPencil implements Pencil {

private static final int STD_LENGTH = 10;
private Colors color;
private int length;
. . . etc . . .

}

See code listings for full documentation

Computer Science and Engineering The Ohio State University

Pencils

LeadedPencil

Pencil

implements

Computer Science and Engineering The Ohio State University

Background

Methods are parameterized by the values of
their formal arguments

void enableLaunch (boolean go) { … }
In a sense, there are 2 enableLaunch()’s:

one where go begins with value true
one where go begins with value false

Could define enableLaunchT(), enableLaunchF()
boolean isEven (int i) { … }

In a sense, there are 4,294,967,296 versions of
isEven() (half return true, half return false)
Could define isEven0(), isEven1(), isEven2(), …

void println (String s) { … }
In a sense, there are ?? versions of println()

Computer Science and Engineering The Ohio State University

Motivation: Using Components

Consider a box that holds a pencil
See BoxOfPencil.java
Box contains at most one pencil
Methods: size, contains, insert, removeAny

Aside: Notice “coding to the interface”
Method signatures contain interface types
boolean contains(Pencil target)
void insert(Pencil item)
Pencil removeAny()
Specifications also contain this type

Recall: Declared vs Dynamic type
The dynamic type of these arguments and return
values will be a reference to an instance of a class
that implements Pencil (eg LeadedPencil)

Computer Science and Engineering The Ohio State University

Box of Pencils

LeadedPencil

Pencil

implements

BoxOfPenciluses

Computer Science and Engineering The Ohio State University

Using a Different Component

Now consider a box that holds a string
See BoxOfString.java

(Aside: Is it coded to the interface?)
These two class definitions differ only in:

The argument type of contains()
The argument type of insert()
The return type of removeAny()
The types mentioned in specifications

All the rest is identical!
BoxOfPencil and BoxOfString are like two
instantiations of a generic class definition

Parameterized by type (not value)

Computer Science and Engineering The Ohio State University

Example: Generic Box Interface

Declaration
interface Box<T> { . . . }

In body of interface declaration, T can now
be used as a type

boolean contains(T target)
void insert(T item)
T removeAny()

See Box.java
Vocabulary:

T is a type variable/parameter, or a naked type
Box (ie without < >’s) is called a raw type

Computer Science and Engineering The Ohio State University

Box of Pencils

LeadedPencil

Pencil

implements

Box<Pencil>uses

Computer Science and Engineering The Ohio State University

Example: Generic Implementation

Declaration
class PlasticBox<T> implements Box<T> {
. . .
PlasticBox() { . . . }

}

In body of class definition, T can now be
used as a type

In fields
private T value
In methods
public void insert (T item)

See PlasticBox.java
Note: Name of constructor in class definition is
PlasticBox(), not PlasticBox<T>()

Computer Science and Engineering The Ohio State University

Box of Pencils

LeadedPencil

Pencil

implements

Box<Pencil>uses

PlasticBox<Pencil>

Computer Science and Engineering The Ohio State University

Example: Client Use of Generic

To use generic type: classname<type>
Usual rules of coding to the interface apply

Box<Pencil> bp = new PlasticBox<Pencil>();
bp.insert(new LeadedPencil());
Pencil p = bp.remove();

// the following are all errors...
String s = bp.remove();
LeadedPencil p2 = bp.remove();
Box<Pencil> bp2 = new PlasticBox<String>();
Box<Pencil> bp3 = new Box<Pencil>();

Computer Science and Engineering The Ohio State University

Example: Comparable Interface

Some classes have natural orderings
eg Integer(3) < Integer(14)

java.lang.Comparable
public interface Comparable<T> {

int compareTo(T o)
}

Returns -ve, 0, or +ve if this object is <,
=, or > argument o

Typical use
if (p1.compareTo(p2) < 0) // p1 < p2
if (p1.compareTo(p2) == 0) // p1 == p2
if (p1.compareTo(p2) > 0) // p1 > p2

Computer Science and Engineering The Ohio State University

Good Practice: Total Ordering

compareTo should induce a total
ordering on its type parameter

Reflexive
x.compareTo(x) == 0

Transitive
x.compareTo(y) < 0 && y.compareTo(z) < 0

==> x.compareTo(z) < 0

Antisymmetric
x.compareTo(y) <= 0 && y.compareTo(x)<=0

==> x.equals(y)

Total
Any two instances of T can be compared

Computer Science and Engineering The Ohio State University

Implementing Comparable
Simple case for typical use

class LeadPencil implements
Pencil, Comparable<LeadPencil> {

int compareTo(LeadPencil o) { . . . }
}

Or even better (coding to the interface!)
class LeadPencil implements

Pencil, Comparable<Pencil> {
int compareTo(Pencil o) { . . . }

}

Or even better (but we’ll talk about extends later)
interface Pencil extends Comparable<Pencil> { ... }
class LeadPencil implements Pencil {

int compareTo(Pencil o) { . . . }
}

Computer Science and Engineering The Ohio State University

Example: Lists

Array size fixed by instantiation with new
Integer[] A = new Integer[145];

What if you need the array to grow?
Allocate new (larger) array
Copy old values into new

Better approach: java.util.List<T>
Generic interface
Holds an ordered list of Ts
Can be accessed by index like an array
But also has a dynamically changeable size

Implementations: ArrayList, Vector
ArrayList more efficient, need Vector for threads

Computer Science and Engineering The Ohio State University

Using List (and ArrayList)
import java.util.List;
import java.util.ArrayList;

List<String> list = new ArrayList<String>();
list.add(“Hello”);
list.add(“there”);
list.add(0,”Sam”);
System.out.println(list.get(1)); //”Hello”

foreach (String str : list) {
System.out.println(str);

} //prints “SamHellothere”

Computer Science and Engineering The Ohio State University

Methods of List

Array-like
set / get for index-based access

Adding items
add(T) / add(int,T)
Causes the List to grow

Removing items
remove(int) / removeRange(int,int)

Memory management
isEmpty / size

Computer Science and Engineering The Ohio State University

Type Erasure
Note: PlasticBox<Pencil> and PlasticBox<String> are
not two separate classes

They are two generic type versions of one class,
PlasticBox
Box<Pencil> b1 = new PlasticBox<Pencil>();
Box<String> b2 = new PlasticBox<String>();
assert b1.getClass() == b2.getClass(); //passes

Think of <Pencil> as additional information at
declarations and at new expressions, so the compiler
can do appropriate type casting and type checking
At run-time, no generic type information remains in
PlasticBox objects

The type parameter, T, has been “erased”
Left with one class: PlasticBox<?>

All of this is needed so that the JVM does not
have to know about and deal with generic types

Computer Science and Engineering The Ohio State University

Box of Pencils at Run Time

LeadedPencil

Pencil

implements

Box<?>uses

PlasticBox<?>

Computer Science and Engineering The Ohio State University

Consequences of Type Erasure

All type-instances share the same static
members

static int nextID; //shared by all Box<?>

Static members can not refer to naked type
private static T value; //compile error

New instances and arrays of naked type can
not be created

T value = new T(); //compile error
T[] myArray = new T[50]; //compile error

Casts ignore parameter type information
Box<String> x = (Box<String>) b; //unchecked
Box<?> y = (Box<?>) b; //ok

Computer Science and Engineering The Ohio State University

A Few Other Issues

A number of other restrictions due to type
erasure

eg cannot parameterize with primitive types: no
List<int>; use List<Integer> instead
eg cannot have arrays of generic types: no
Box<String>[] ; use ArrayList<Box<String>>

Can also parameterize a method instead of
an entire class/interface – generic method

public static <T> T getMiddle(T[] a)

Type bounds
eg <T extends Serializable>

Wildcard types

Computer Science and Engineering The Ohio State University

Summary

Genericity through type parameters
Declaration of generic interfaces/classes
Use of generic interfaces/classes

Comparable interface
Total ordering, strongly typed thanks to
generics

List (and ArrayList)
Like arrays, but better!

	Generics
	A Simple Component
	Pencils
	Background
	Motivation: Using Components
	Box of Pencils
	Using a Different Component
	Example: Generic Box Interface
	Box of Pencils
	Example: Generic Implementation
	Box of Pencils
	Example: Client Use of Generic
	Example: Comparable Interface
	Good Practice: Total Ordering
	Implementing Comparable
	Example: Lists
	Using List (and ArrayList)
	Methods of List
	Type Erasure
	Box of Pencils at Run Time
	Consequences of Type Erasure
	A Few Other Issues
	Summary

