
Computer Science and Engineering  College of Engineering  The Ohio State University

JUnit

Lecture 9



Computer Science and Engineering  The Ohio State University

Testing
Testing helps increase our confidence in our 
code

“If it isn’t tested, assume it doesn’t work”
Testing is a comparison:

Expected behavior of the component
See Javadoc description

Actual behavior of the component
Run the code

Three parts:
Implementation, specification, test cases

Some believe in test-driven development
Write tests first!
Then write code so that all tests compile
Then refine code so that all tests pass
Repeat: write more tests, refine code so they pass



Computer Science and Engineering  The Ohio State University

Writing Good Tests
Goal: to expose problems!

Assume role of an adversary
Failure == success

Test boundary conditions
eg 0, Integer.MAX_VALUE, empty array

Test different categories of input
eg positive, negative, and zero

Test different categories of behavior
eg each menu option, each error message

Test “unexpected” input
eg null pointer, last name includes a space

Test representative “normal” input
eg random, reasonable values



Computer Science and Engineering  The Ohio State University

Primitive Testing: println

Console IO to observe actual behavior
Compare IO with expected output
See TestRandom example
Advantages:

Testing code is simple, easy, intuitive

Problems:
Exhaustive testing means lots of output
Comparison is tiresome and error-prone
Difficult to automate



Computer Science and Engineering  The Ohio State University

More Serious Testing: JUnit

A “framework” for testing Java code
Frameworks are libraries with gaps
Programmer writes classes following 
particular conventions to fill in gaps
Result is the complete product

Current version of JUnit: 4 (4.4)
JUnit 4.3.1 is bundled with Eclipse 3.4
Big changes from JUnit 3.8
Beware: most information available online 
is about 3.8



Computer Science and Engineering  The Ohio State University

Example: RandomWithParityTest
import static org.junit.Assert.*;
import org.junit.Test;

public class RandomWithParityTest {
private RandomWithParity p; //coding to the interface

@Test public void minRange() {
p = new UnfilteredRandom();
int actual = p.generateNumber(1);
assertEquals (“Smallest range”, 0, actual % 2);

}
@Test public void maxRange() {

p = new UnfilteredRandom();
int actual = p.generateNumber(Integer.MAX_VALUE);
assertEquals (“Largest range”, 0, actual % 2);

}
}
Running from the command line (with JUnit in the classpath): 

java  org.junit.runner.JUnitCore  RandomWithParityTest
But we will use Eclipse instead (more later …)



Computer Science and Engineering  The Ohio State University

Vocabulary

Test case
Exercises a single unit of code / behavior / functionality
Test cases should be small (ie test one thing)
Test cases should be independent
In JUnit: A public method marked with @Test

Test fixture
Exercises a single class 
A collection of test cases
In JUnit: A class containing @Test methods

Test suite
Exercises all (or most) classes in a program
A collection of test fixtures
In JUnit: A class marked with @Suite



Computer Science and Engineering  The Ohio State University

Execution Model: Multiple Instances

minRange()

maxRange()

RWPTest()

p

minRange()

maxRange()

RWPTest()

p

RandomWithParityTest



Computer Science and Engineering  The Ohio State University

Execution Model: Implications

Separate instances of test class created
One instance / test method

Do not use test cases with side effects
Passing or failing one test case should not affect 
the others

Do not rely on order of tests
Method listed first not guaranteed to be executed 
first

Fixture: common set-up to all test cases
Field for instance of class being tested
Factor initialization code into its own method
Mark this method(s) with @Before



Computer Science and Engineering  The Ohio State University

Good Practice: @Before

Initialize a fixture with a setup method 
(ie marked with @Before) rather than 
the constructor
Reasons:

If the code being tested throws an 
exception during the setup, the output is 
much more meaningful
Symmetry with @After method for 
cleaning up after a test case



Computer Science and Engineering  The Ohio State University

Example: RandomWithParityTest
import static org.junit.Assert.*;
import org.junit.Test;
import org.junit.Before;
public class RandomWithParityTest {
private RandomWithParity p;

@Before public void initialize() {
p = new UnfilteredRandom();

}

@Test public void minRange() {
int actual = p.generateNumber(1);
assertEquals (“Smallest range”, 0, actual % 2);

}

@Test public void maxRange() {
int actual = p.generateNumber(Integer.MAX_VALUE);
assertEquals (“Largest range”, 0, actual % 2);

}
}



Computer Science and Engineering  The Ohio State University

Execution Model

minRange()

maxRange()

RWPTest()

p

minRange()

maxRange()

RWPTest()

p

RandomWithParityTest

2

2

initialize()

initialize()1

1



Computer Science and Engineering  The Ohio State University

Practice: Anachronisms
Common, but out-dated, idioms (to avoid)
Test method names start with “test”

This used to be a requirement (prior to JUnit 4)
Now use @Test annotation and name method 
something appropriate

Set up (tear down) method named setUp (tearDown)
This used to be a requirement (prior to JUnit 4)
Now use @Before (@After) annotation and name 
method something appropriate

A static method called suite()
public static junit.framework.Test suite() {
return new JUnit4TestAdapter(ThingTest.class);

}

Allows JUnit 4 tests to be run by older JUnit 
frameworks and tools



Computer Science and Engineering  The Ohio State University

Assertions

Different kinds of tests
Static methods of org.junit.Assert
assertEquals (message, expected, actual);
assertTrue (message, condition);
assertFalse (message, condition);
assertNull (message, object);
assertNotNull (message, object);

Timed tests
Parameterize @Test with timeout
Long argument is number of ms allowed for 
@Test(timeout=100) public void maxRange() {

int actual = p.generateNumber(1);
assertTrue (“Largest range”, actual%2==0);

}



Computer Science and Engineering  The Ohio State University

Good Practice: assertEquals
Prefer assertEquals to assertTrue

assertEquals is overloaded
Expected and actual can be primitives or references

Failed test case produces useful output
org.junit.ComparisonFailure: Age at birth expected: 

<0> but was: <1>
Compare with assertTrue
java.lang.AssertionError: Age at birth

Use 3-argument version
1st argument: String to display on failure
assertEquals(String msg, int expected, int actual)

For now, avoid using assertEquals to directly 
compare instances of your own classes

assertEquals on Java classes (Integer, String…)? OK
assertEquals on your classes (Pencil…)? later



Computer Science and Engineering  The Ohio State University

Good Practice: Comparing Floats

Never compare floating point numbers 
directly for equality

assertEquals(“Low-density experiment”, 
1.456, calculated);

Numeric instabilities make exact equality 
problematic

Better approach: Equality with 
tolerance

assertEquals(“Low-density experiment”, 
1.456, calculated, 0.001);



Computer Science and Engineering  The Ohio State University

Eclipse Demo

New > JUnit Test Case
First screen of wizard:

Checkbox “New JUnit 4 Test”
Enter name of test class (eg ThingTest)
Enter name of “class under test” (eg Thing)
If warning “JUnit 4 not on build path” appears, 
click link to add it to build path

Second screen of wizard:
Select methods to test
Generates one test case / selected method
But you will need many more than that

To run, Run As… > JUnit Test Case



Computer Science and Engineering  The Ohio State University

Specification vs Implementation

Tests can be written for either
Specification tests test only behavior promised in 
Javadoc of interface
Implementation tests test all behavior 
documented in Javadoc of class

Examples:
Interface does not guarantee order of elements in 
a returned array, but implementation always has 
them in sorted order
RandomWithParity guarantees only even/odd 
values, AlternatingCoin gives 0,1,0,…

Specification tests work for all (correct) 
classes implementing the given interface

See RandomWithParityTest



Computer Science and Engineering  The Ohio State University

Test Suite
To run multiple test classes, they can be bundled 
together into a test suite

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({
RandomWithParityTest.class,
CoinAlternatingTest.class,
UnfilteredRandomTest.class,

})
public class VegasSuite {
//the class remains completely empty, 
//used only as holder for above annotations

}

Eclipse also allows running “all JUnit tests in package”
Preferred because no extra book-keeping, but Eclipse-specific



Computer Science and Engineering  The Ohio State University

Good Practice: Organization

Keep test classes in the same project as 
the code

They are part of the build
Helps to keep tests current

Name test classes consistently
eg WritingStickTest tests WritingStick

Group tests in same package, but 
different source folder as the code

Eg project X9, package osu.cse:
Code: X9/src/osu/cse/WritingStick.java
Tests: X9/test/osu/cse/WritingStickTest.java

Tests can see public and package-visible stuff



Computer Science and Engineering  The Ohio State University

Supplemental Reading

JUnit web site
http://www.junit.org
See “Getting Started”

JUnit FAQ
http://junit.sourceforge.net/doc/faq/faq.htm

JUnit cookbook
http://junit.sourceforge.net/doc/cookbook/cookbo
ok.htm

IBM developerWorks
“An Early Look at JUnit 4”
http://www-
128.ibm.com/developerworks/java/library/j-
junit4.html
Assumes JUnit 3.8 background



Computer Science and Engineering  The Ohio State University

Summary

Nature of testing
Specification, implementation, test cases

JUnit overview
Test case: method marked with @Test
Test fixture: class collecting common tests
Test suite: set of fixtures
Assertions

Execution model
Multiple instantiation of test class
Independence of test cases
No ordering guarantee


	JUnit
	Testing
	Writing Good Tests
	Primitive Testing: println
	More Serious Testing: JUnit
	Example: RandomWithParityTest
	Vocabulary
	Execution Model: Multiple Instances
	Execution Model: Implications
	Good Practice: @Before
	Example: RandomWithParityTest
	Execution Model
	Practice: Anachronisms
	Assertions
	Good Practice: assertEquals
	Good Practice: Comparing Floats
	Eclipse Demo
	Specification vs Implementation
	Test Suite
	Good Practice: Organization
	Supplemental Reading
	Summary

