
Computer Science and Engineering College of Engineering The Ohio State University

Immutability

Lecture 8

Computer Science and Engineering The Ohio State University

Vocabulary: Accessors & Mutators

Accessor:
A method that reads, but never changes, the
(abstract) state of an object

Concrete representation may change, so long as
change is not visible to client
eg Lazy initialization

Examples: getter methods, toString
Formally: Alters clause does not include “this”

recall RESOLVE functions
Mutator method:

A method that may change the (abstract) state of
an object
Examples: setter methods
Formally: Alters clause includes “this”

recall RESOLVE procedures
Constructors not considered mutators

Computer Science and Engineering The Ohio State University

An Epoch Interface
// Math model: (beginning, ending) in Time X Time
// Math def: length = ending – beginning
// Constraint: length > 0
// Initially: constructor (Date t1, Date t2)
// requires t1 isBefore t2
// ensures beginning = t1, ending = t2
public interface Epoch {

// Returns: beginning
public Date getStart();

// Returns: ending
public Date getEnd();

// Requires: factor >= 0
// Alters: this.ending
// Ensures: length =~= (1+factor) * #length
public void stretch(float factor);

}

Computer Science and Engineering The Ohio State University

Questions

What is an invariant in general?
Ans:

What is an invariant for Epoch?
Ans:

Why is this an invariant?
Ans:

Computer Science and Engineering The Ohio State University

Relying on an Invariant
public class CreditCard {

BigDecimal interest (BigDecimal balance, Epoch e) {
long msTime = e.getEnd().getTime();
msTime = msTime – e.getStart().getTime();
assert (msTime > 0); //always true

... //code to calculate interest on balance
}

BigDecimal forgiveness (Epoch e) {
Date oldDueDate = e.getEnd();
e.stretch(0.5);
assert (oldDueDate.compareTo(e.getEnd()) < 0);

//oldDueDate < e.ending, always true
}

}

Computer Science and Engineering The Ohio State University

A Fixed Epoch Interface
// Math model: (beginning, ending) in Time X Time
// Math def: length = ending – beginning
// Constraint: length > 0
// Initially: constructor (Date t1, Date t2)
// requires t1 isBefore t2
// ensures beginning = t1, ending = t2
public interface FixedEpoch {

// Returns: beginning
public Date getStart();

// Returns: ending
public Date getEnd();

}

Computer Science and Engineering The Ohio State University

A Broken Time Period Class
public class Period implements FixedEpoch {

private Date start;
private Date end;

public Period(Date start, Date end) {
assert (start.compareTo(end) < 0); //start < end

this.start = start;
this.end = end;

}

public Date getStart() {
return start;

}

public Date getEnd() {
return end;

}
}

Computer Science and Engineering The Ohio State University

Problem: Aliasing

Assignment in constructor creates an alias
Client and component both have references to the
same Date object

Class invariant can be undermined via alias
Date t1 = new Date(300);
Date t2 = new Date (500);
Period p = new Period (t1, t2);
t2.setTime(100); //modifies p’s rep

Solution: “defensive copying”
Constructor creates a copy of the arguments
Copy is used to initialize the private fields
Metaphor: ownership

Computer Science and Engineering The Ohio State University

A Better Period Class
public class Period implements FixedEpoch {

private Date start;
private Date end;

public Period(Date start, Date end) {
assert (start.compareTo(end) < 0); //start < end

this.start = new Date(start.getTime());
this.end = new Date(end.getTime());

}

public Date getStart() {
return start;

}

public Date getEnd() {
return end;

}
}

Computer Science and Engineering The Ohio State University

Good Practice: Copy First

When making a defensive copy of
constructor arguments:

First copy the arguments
Then check the validity of the parameters

Reason: multithreaded code
Consider a constructor that checks first,
then copies
Another thread of execution could change
the parameters after they pass the validity
check, but before they are copied into the
private fields

Computer Science and Engineering The Ohio State University

A Better+1 Period Class
public class Period implements FixedEpoch {

private Date start;
private Date end;

public Period(Date start, Date end) {
this.start = new Date(start.getTime());
this.end = new Date(end.getTime());

assert (this.start.compareTo(this.end) < 0);
}

public Date getStart() {
return start;

}

public Date getEnd() {
return end;

}
}

Computer Science and Engineering The Ohio State University

Problem 2: Aliasing (Again)

Return value in accessor creates an alias
Client can still obtain a reference to the class’s
internal representation (the private fields)
aka “privacy leak”, but really just an alias problem

Class invariant can be undermined via alias
Date t1 = new Date(300);
Date t2 = new Date (500);
Period p = new Period (t1, t2);
p.getEnd().setTime(100); //modifies p’s rep

Solution: “defensive copying”
Accessors create a copy of internal fields
Copy is returned to the client

Computer Science and Engineering The Ohio State University

A Better+2 Period Class
public class Period implements FixedEpoch {

private Date start;
private Date end;

public Period(Date start, Date end) {
this.start = new Date(start.getTime());
this.end = new Date(end.getTime());

assert (this.start.compareTo(this.end) < 0);
}

public Date getStart() {
return new Date(start.getTime());

}

public Date getEnd() {
return new Date(end.getTime());

}
}

Computer Science and Engineering The Ohio State University

Good Practice: Defensive Copies
Always make defensive copies when
needed

Problem: Aliases undermine the privacy of a
field
Solution: Prevent aliases to fields

Typical examples
Parameters in constructors and mutators
Return value from any method

Note: There are some types of fields for
which aliasing is never a concern!

Fields that are primitive (eg int, float)
Fields that are enumerations (eg Suit, Colors)
Fields that are… (next slide)

Computer Science and Engineering The Ohio State University

Immutability

An immutable object is one whose (abstract)
value can never change

Constructor allows initialization to different values
No mutator methods

Why would we want such a thing?
Because aliasing an immutable is safe!

Having multiple references to the same immutable
is indistinguishable from having multiple
references to different immutables that have the
same value
Defensive copies of immutables are not required!

Computer Science and Engineering The Ohio State University

How to Write an Immutable Interf.

Do not provide mutators
Check alters clause of all methods

Computer Science and Engineering The Ohio State University

How to Write an Immutable Class

Implement an (immutable) interface
Result: no mutators
You do that anyway, right?

Make all fields private
You do that anyway, right?

Ensure exclusive access to any mutable
objects referred to by fields

Rule: If the class has fields that refer to mutable
objects
1. Make defensive copies of parameters in

constructors and mutators
2. Make defensive copies for return values from

methods
Defensive copies not needed for fields that are
primitive, enumerations, or refer to immutable
objects

Computer Science and Engineering The Ohio State University

Examples

Period
Has fields that refer to mutables (Date)
Needs defensive copies

String
Lots of methods look like they could be mutators

eg toUpperCase(), substring(int,int),
replace(char,char)

But these methods actually return a String
String str = new String(“Hello there”);
str.toUpperCase();
System.out.println(str); //surprise

Wrapper classes
Integer, Long, Float, etc…

Computer Science and Engineering The Ohio State University

Good Practice: Immutable Idioms

Declare all fields to be final
Guarantees immutability for primitives
Underkill: For reference types, final is no
help

Still considered an idiom that signals intent
to write an immutable class

Overkill: Only abstract state needs to be
immutable

Concrete state (ie fields) can change so long
as client-view of object is unchanged

Declare class to be “final”
We will talk about what this qualifier
means for classes later

Computer Science and Engineering The Ohio State University

A Better+3 Period Class
public final class Period implements FixedEpoch {

private final Date start;
private final Date end;

public Period(Date start, Date end) {
this.start = new Date(start.getTime());
this.end = new Date(end.getTime());

assert (this.start.compareTo(this.end) < 0);
}

public Date getStart() {
return new Date(start.getTime());

}

public Date getEnd() {
return new Date(end.getTime());

}
}

Computer Science and Engineering The Ohio State University

Wrapper Classes

Every primitive type has a corresponding
wrapper class

Integer, Long, Float, Double, …
The classes are immutable

So no aliasing worries
Do not provide a zero-argument constructor
Do provide useful static constants

Integer.MAX_VALUE, Integer.MIN_VALUE
Do provide useful static methods

Converting from String to primitive: parseInt()
int i = Integer.parseInt(“33342”);

Converting from primitive to String: toString()
String str = Double.toString(123.99);

Computer Science and Engineering The Ohio State University

Boxing and Unboxing

Boxing: primitive --> wrapper
Integer integerObject = new Integer(42);

Unboxing: wrapper --> primitive
int i = integerObject.intValue();

Java does this automatically for you
Double price = 499.99; //auto-box
price = price + 19.90; //auto-unbox then box
But be very careful…
Integer i = new Integer(2);
Integer j = new Integer(2);
assert (i >= j); //success (unboxing)
assert (i <= j); //success (unboxing)
assert (i == j); //failure! (no unboxing)

Computer Science and Engineering The Ohio State University

Supplemental Reading

Bloch’s “Effective Java”
Item 13: Favor Immutability
Item 24: Make defensive copies when
needed

IBM developerWorks paper
“Java theory and practice: To mutate or
not to mutate?”
http://www.ibm.com/developerworks/java
/library/j-jtp02183.html

Computer Science and Engineering The Ohio State University

Summary

Defensive copying
Copy constructor arguments (reference types)
Return only copies of fields (reference types)

Immutable interfaces and classes
Each instance represents a distinct value
No mutators: no methods alter “this”

Methods can return a new instance
Defensive copying of mutable fields

Examples of immutables
String
Wrapper classes (Integer, Long, Float…)

Auto-boxing / auto-unboxing

	Immutability
	Vocabulary: Accessors & Mutators
	An Epoch Interface
	Questions
	Relying on an Invariant
	A Fixed Epoch Interface
	A Broken Time Period Class
	Problem: Aliasing
	A Better Period Class
	Good Practice: Copy First
	A Better+1 Period Class
	Problem 2: Aliasing (Again)
	A Better+2 Period Class
	Good Practice: Defensive Copies
	Immutability
	How to Write an Immutable Interf.
	How to Write an Immutable Class
	Examples
	Good Practice: Immutable Idioms
	A Better+3 Period Class
	Wrapper Classes
	Boxing and Unboxing
	Supplemental Reading
	Summary

