Javadoc

Computer Science and Engineering B College of Engineering ® The Ohio State University

Lecture /

Motivation

Computer Science and Engineering ® The Ohio State University

O Over the lifetime of a project, it is easy for
documentation and implementation to
diverge
B Usually, documentation and code are not both

simultaneously living entities

OO0 Goal: Single point of control over change
B Basic principle of software design (modularity)
B If decision X changes, 1 modification needed
B Alternative: changes needed in A, B, C, etc

O When that is not possible:
B Make (logical) coupling between A, B, C obvious
B When they get out of whack, code starts to smell
B [tems need to be co-located and visually linked

Bad Practice: Hungarian Notation

Adding programming language type as prefix

to variable name

B eg Done (f for “flag” ie boolean)

B Obfuscation, inconsistencies, redundancy, concrete
coupling

Adding semantic information to variable

name, however, can be useful

¥ eg SunAzimuth

B Can help to expose unit errors
iIT (radSunAzimuth == degMoonAzimuth) ...

inTableCircumference = 2*Pl*cmTableRadius

Basics

Computer Science and Engineering ® The Ohio State University

0 Convention for formatting source code
comments

B Not compiler enforced, but other tools exist

O Place comments between /7** and */

B Comment must appear immediately before class,
Interface, method, field

B Overview and package level comments available
too

O Includes standard set of tags

B @author, @param, @return, @see, @throws...

B Each tag begins line, followed by text description
0 Process code with javadoc tool

B Produces linked, html output
B Examples: the JDK APl documentation

Javadoc Comments

Computer Science and Engineering ® The Ohio State University

O Comment = main description + block tags
B First sentence of main description is “summary”
OTerminated by “.” followed by white space/new line

OAppears at the top of page (for methods) and in
package/index info (for classes)

B Write comments in html (<p>, <pre>...)
B Use html character entities (< > &)
B Avoid <hl> <h2>

0 Block tags

B @param, @return, @see, @throws, @deprecated,
@author, @version, @since ...

O Inline tags
B Used within text of a documentation comment

m {@link}, {@code}, {@literal}, {@value},
{@inheritDoc}, ...

Example

Computer Science and Engineering ® The Ohio State University

/**
* Returns an Image object that can then be painted on the screen.
* The url argument must specify an absolute {@link URL}. The name
* argument is a specifier that i1s relative to the url argument.
* <p>
* This method always returns immediately, whether or not the
* 1mage exists.
*
* @author Sun
* @param url an absolute URL giving the base location of the image
* @param name the location of the image, relative to the url argument
* @return the iImage at the specified URL
* @see Image
*/

public Image getlmage(URL url, String name) {

}

Standard Javadoc Tags

Computer Science and Engineering ® The Ohio State University

O @param: documents a single parameter of a method
B Use one for each parameter of the method
B Syntax: @param parameter-name description
B Example:
@param max the maximum number of words to be read
O @return: documents the return value of a method
B Example:
@return the number of words actually read

O @throws: documents an exception thrown by the
method
B Use one for each type of exception the method throws

B Example:

@throws NullPointerException The name i1s {@code
null}

Standard Javadoc Tags (cont’d)

Computer Science and Engineering ® The Ohio State University

O @see: creates a cross-reference link to other javadoc
documentation

B Forms a “See also” section at the end of the documentation

B Qualify the identifier sufficiently
O Specify class/interface members by using a # before the member
O If a method is overloaded, list its parameters

B Specify classes/interfaces with their simple names
O Give full name if class/interface is from another package

B Examples:

@see
@see
@see
@see
@see
@see
@see

#getName
Attr

com.hostname.
com.hostname.
com.hostname.

com.hostname.

attr _Attr

attr _Attr#getName

attr _Attr#Attr(String, Object)
attr _Attr#Attr(String)

Attribute Specification

B You can also use a label after an entity reference. The label will
be the actual text displayed.

@see #getName Attribute Names

Standard Javadoc Tags (cont’d)

O

Computer Science and Engineering ® The Ohio State University

{@link}: similar to @see, but it embeds a cross reference in
the text of your comments

B Syntax: {@link package.class#member [label]}
B Identifier specification follows the same requirement for @see
B Example:

Changes the value returned by calls to {@link #getValue}

@deprecated: marks that an identifier should no longer be
used. It should suggest a replacement.

B Example:
@deprecated Use {@code setVisible(true)} instead

@author (requires —author command line option)
B Only one author name per @author paragraph
@version (requires —version command line option)

@since: denote when the tagged entity was added to your
system

Example: Graphics.java Output Documentation
$ javadoc —author Graphics.java

Miscellaneous Features

Computer Science and Engineering ® The Ohio State University

O User-defined custom tags with —tag option

B @requires for methods (m) and constructors (c)
$ javadoc —tag requires:cm:”Requires:” Graph.java

O -linksource for producing html version of source
code

O Omitting leading asterisks makes leading white
space meaningful
B Useful for visually formatting cut-and-paste code

O {@literal} and {@code} inline tags: do not interpret the
contents as HTML or as nested javadoc tags

B {@literal xx
xx} gives xx
xx in documentation,
iInstead of HTML
 (break)

B {@code yyyy} = <code=>{@literal yyyy}</code> (uses
the “code” font)

Demo with Eclipse

Computer Science and Engineering ® The Ohio State University

O Viewing Javadoc for JDK or current project
B Mouse hover, or F2 for Javadoc of method in editor window
B Shift+F2 opens browser (prettier HTML display)
B (Aside: F3 opens source!)
B Javadoc view

O Generating Javadoc
B Add boiler-plate comments to a method/class/interface
O Source > Generate Element Comment (Shift+Alt+J)

B Customize these templates

O Window > Preferences > Java > Code Style > Code
Templates > Comments

B Project > Generate Javadocs...
O For details, see a later slide

O Formatting and validating Javadoc
B Source > Format (Ctrl+Shift+F)
B Window > Preferences > Java > Compiler > Javadoc

Package Documentation

Computer Science and Engineering ® The Ohio State University

O A package is not defined in one source file

O To generate package comments, add a package.html
file in the package directory

B The contents of the package.html between <body> and
</body> will be read as if it were a doc comment.

B @deprecated, @author, and @version are not used in a
package comment

B The first sentence of the body is the summary of the
package.

B Any @see and {@link} tag must use the fully qualified form
of the entity’s name, even for classes and interfaces within
the package itself

O You can also provide an overview comment for all
source files by placing a overview.html file in the parent
directory

B The contents between <body> and </body> is extracted

B The comment is displayed when the user selects “Overview”

Good Practice: A Uniform Style

[l Consistency among team members

B Omit ()’s from method names
[1Except: for overloaded methods, list parameter types in ()s

B Phrase for param’s beginning with article + type

@param ch to be 1nserted 1n the
selected buffer

m 31d person descriptive

* the 1Image observer to the queue of active
observers.

B Required vs optional tags

B Ordering of block tags
[lparam, return, throws, author, see, deprecated

[1 Sun’s style guide
B “How to Write Doc Comments for Javadoc”
B http://java.sun.com/j2se/javadoc/writingdoccomments/
B Virtually an industry-wide standard

Good Practice: Doc the Contract

[J Javadoc comments describe a component’s contract not
its implementation

M Describe what a method does, not how it does it
B What a client component needs to know
B Contract is usually more stable than implementation
[1 Describe method assumptions
B Preconditions on arguments
[leg, observer must be non-Null, list must contain target
B Preconditions on object state

L1In terms of “public” (ie externally checkable, abstract)
state

[1 Describe method guarantees

B Postconditions on return value

[leg, @return true if and only if target is within image
boundary

B Postconditions on object state
[1 Describe class invariants

Tension? APl vs Code

O

Computer Science and Engineering ® The Ohio State University

Documenting the contract is good
B What clients need
B See Java standard libraries API

Documenting the implementation is good
B What future code maintainers need
B “Programmer’s Guide”

For which purpose should you use Javadoc?
B Answer: both!

No contradiction if each component consists
of both an interface and a class
B Interface is the abstract component
O Its Javadoc is for clients
B Class is the concrete component
O Its Javadoc is for implementers

Custom Tags: Client’s View

Computer Science and Engineering ® The Ohio State University

O Interface-level tags

@mathmodel

O Abstract fields that define client-side view of state space
@mathdef

O Definitions derivable from abstract state

@constraint

O Invariant holding on abstract state

@initially

O Requirements on initialization (ie constructors)

O Method-level tags within interfaces

@requires

O Precondition (on abstract state and arguments) expected
by method

@alters
O Parts of abstract state the method is allowed to modify

@ensures
O Postcondition (on abstract state) guarantee by method

Custom Tags: Implementer’s View

Computer Science and Engineering ® The Ohio State University

O Class-level tags
B @convention
O Invariant holding on concrete representation
B @correspondence
O Mapping from concrete representation to abstract
state
O Constructor and method-level tags
B None (the specification is in the interface)

B Exception: helper (ie private) methods
O Use @requires, @alters, @ensures for these methods

O Predicates are on concrete representation (ie fields)
and arguments

Using Custom Tags W|th Ecllpse

Computer Sci and Engin ng ® The Ohio State Un ity

O See:
B Interface RandomWithParity
B Classes AlternatingCoin and UnfilteredRandom

O Project > Generate Javadocs...

B Javadoc command: Browse to installed JDK
directory, then bin/javadoc

O eg /class/csed421/local/jdk1.6.0 07/bin/javadoc
B Next, then Next again

B Inside “Extra Javadoc options” box copy the text
from csed421JavadocTags.txt (available from class
web site)

B Finish
O After doing this once, these Javadoc options

become defaults so you don’t have to re-
enter them every time

Bad Practices: Miscellaneous

End-of-function comments
public void setRate (int frequency) {

} //setRate
B Obviated by modern editors with code folding

Commenting bug fixes

B Version control is a better place for this than
Javadoc (more on version control later)

Comments with no additional value
B Repeating the parameter name as the description

Leaving boiler-plate comments in code

B Automatically generated Javadoc with obvious
boiler plate code should never appear in repository

® Don’t leave it hanging around your own code

Shortcomings

0 Java-specific
O HTML output is the only first-class citizen

B Sun provides only one doclet (produces HTML)
B Others have been written by 3" parties

0 Geared towards APl documentation
B Contract specification (sort of, see below) only
B | eaves out documentation for architecture,
algorithms, defect tracking, etc
0 No tags for pre/post conditions or invariants

B These conditions should be checked by assertions
(not exceptions) so @throws is not helpful

B Several extensions exist (eg JML, our set of custom
tags patterned after RESOLVE)

Alternative: Doxygen

Computer Science and Engineering ® The Ohio State University

O Javadoc-like comment tags and formatting
B comment block with description and tags
® author, param, return etc
O Supports multiple programming languages
B C/C++, Java, C#, PHP, Python,...
B Comment syntax language dependent
0 Supports multiple output formats
B html, rtf, pdf, latex, man, xml, ...
B Documentation text less html-ized
0 Better support for design-by-contract
B Has built-in tags for @pre, @post, @invar

Summary

Computer Science and Engineering ® The Ohio State University

0 Structure of Javadoc comments

B Free-form initial prose

B Block tags (and in-line tags)
[0 Standard tags

B @param, @return, @deprecated, @author, ...
0 Custom tags for interfaces

B @mathmodel, @mathdef, @constraint, @initially
B @requires, @alters, @ensures

[0 Custom tags for classes
B @convention, @correspondence

O Eclipse support

	Javadoc
	Motivation
	Bad Practice: Hungarian Notation
	Basics
	Javadoc Comments
	Example
	Standard Javadoc Tags
	Standard Javadoc Tags (cont’d)
	Standard Javadoc Tags (cont’d)
	Miscellaneous Features
	Demo with Eclipse
	Package Documentation
	Good Practice: A Uniform Style
	Good Practice: Doc the Contract
	Tension? API vs Code
	Custom Tags: Client’s View
	Custom Tags: Implementer’s View
	Using Custom Tags with Eclipse
	Bad Practices: Miscellaneous
	Shortcomings
	Alternative: Doxygen
	Summary

