
Computer Science and Engineering College of Engineering The Ohio State University

Javadoc

Lecture 7

Computer Science and Engineering The Ohio State University

Motivation

Over the lifetime of a project, it is easy for
documentation and implementation to
diverge

Usually, documentation and code are not both
simultaneously living entities

Goal: Single point of control over change
Basic principle of software design (modularity)
If decision X changes, 1 modification needed
Alternative: changes needed in A, B, C, etc

When that is not possible:
Make (logical) coupling between A, B, C obvious
When they get out of whack, code starts to smell
Items need to be co-located and visually linked

Computer Science and Engineering The Ohio State University

Bad Practice: Hungarian Notation

Adding programming language type as prefix
to variable name

eg fDone (f for “flag” ie boolean)
Obfuscation, inconsistencies, redundancy, concrete
coupling

Adding semantic information to variable
name, however, can be useful

eg radSunAzimuth
Can help to expose unit errors
if (radSunAzimuth == degMoonAzimuth) ...
inTableCircumference = 2*PI*cmTableRadius

Computer Science and Engineering The Ohio State University

Basics
Convention for formatting source code
comments

Not compiler enforced, but other tools exist
Place comments between /** and */

Comment must appear immediately before class,
interface, method, field
Overview and package level comments available
too

Includes standard set of tags
@author, @param, @return, @see, @throws…
Each tag begins line, followed by text description

Process code with javadoc tool
Produces linked, html output
Examples: the JDK API documentation

Computer Science and Engineering The Ohio State University

Javadoc Comments
Comment = main description + block tags

First sentence of main description is “summary”
Terminated by “.” followed by white space/new line
Appears at the top of page (for methods) and in
package/index info (for classes)

Write comments in html (<p>, <pre>…)
Use html character entities (< > &)
Avoid <h1> <h2>

Block tags
@param, @return, @see, @throws, @deprecated,
@author, @version, @since …

Inline tags
Used within text of a documentation comment
{@link}, {@code}, {@literal}, {@value},
{@inheritDoc}, ...

Computer Science and Engineering The Ohio State University

Example
/**
* Returns an Image object that can then be painted on the screen.
* The url argument must specify an absolute {@link URL}. The name
* argument is a specifier that is relative to the url argument.
* <p>
* This method always returns immediately, whether or not the
* image exists.
*
* @author Sun
* @param url an absolute URL giving the base location of the image
* @param name the location of the image, relative to the url argument
* @return the image at the specified URL
* @see Image
*/
public Image getImage(URL url, String name) {
. . .

}

Computer Science and Engineering The Ohio State University

Standard Javadoc Tags
@param: documents a single parameter of a method

Use one for each parameter of the method
Syntax: @param parameter-name description
Example:
@param max the maximum number of words to be read

@return: documents the return value of a method
Example:
@return the number of words actually read

@throws: documents an exception thrown by the
method

Use one for each type of exception the method throws
Example:
@throws NullPointerException The name is {@code

null}

Computer Science and Engineering The Ohio State University

Standard Javadoc Tags (cont’d)
@see: creates a cross-reference link to other javadoc
documentation

Forms a “See also” section at the end of the documentation
Qualify the identifier sufficiently

Specify class/interface members by using a # before the member
If a method is overloaded, list its parameters

Specify classes/interfaces with their simple names
Give full name if class/interface is from another package

Examples:
@see #getName
@see Attr
@see com.hostname.attr.Attr
@see com.hostname.attr.Attr#getName
@see com.hostname.attr.Attr#Attr(String, Object)
@see com.hostname.attr.Attr#Attr(String)
@see Attribute Specification
You can also use a label after an entity reference. The label will
be the actual text displayed.
@see #getName Attribute Names

Computer Science and Engineering The Ohio State University

Standard Javadoc Tags (cont’d)
{@link}: similar to @see, but it embeds a cross reference in
the text of your comments

Syntax: {@link package.class#member [label]}
Identifier specification follows the same requirement for @see
Example:
Changes the value returned by calls to {@link #getValue}

@deprecated: marks that an identifier should no longer be
used. It should suggest a replacement.

Example:
@deprecated Use {@code setVisible(true)} instead

@author (requires –author command line option)
Only one author name per @author paragraph

@version (requires –version command line option)
@since: denote when the tagged entity was added to your
system
Example: Graphics.java Output Documentation

$ javadoc –author Graphics.java

Computer Science and Engineering The Ohio State University

Miscellaneous Features
User-defined custom tags with –tag option

@requires for methods (m) and constructors (c)
$ javadoc –tag requires:cm:”Requires:” Graph.java

-linksource for producing html version of source
code
Omitting leading asterisks makes leading white
space meaningful

Useful for visually formatting cut-and-paste code
{@literal} and {@code} inline tags: do not interpret the
contents as HTML or as nested javadoc tags

{@literal xx
xx} gives xx
xx in documentation,
instead of HTML
 (break)
{@code yyyy} = <code>{@literal yyyy}</code> (uses
the “code” font)

Computer Science and Engineering The Ohio State University

Demo with Eclipse
Viewing Javadoc for JDK or current project

Mouse hover, or F2 for Javadoc of method in editor window
Shift+F2 opens browser (prettier HTML display)
(Aside: F3 opens source!)
Javadoc view

Generating Javadoc
Add boiler-plate comments to a method/class/interface

Source > Generate Element Comment (Shift+Alt+J)
Customize these templates

Window > Preferences > Java > Code Style > Code
Templates > Comments

Project > Generate Javadocs…
For details, see a later slide

Formatting and validating Javadoc
Source > Format (Ctrl+Shift+F)
Window > Preferences > Java > Compiler > Javadoc

Computer Science and Engineering The Ohio State University

Package Documentation
A package is not defined in one source file
To generate package comments, add a package.html
file in the package directory

The contents of the package.html between <body> and
</body> will be read as if it were a doc comment.
@deprecated, @author, and @version are not used in a
package comment
The first sentence of the body is the summary of the
package.
Any @see and {@link} tag must use the fully qualified form
of the entity’s name, even for classes and interfaces within
the package itself

You can also provide an overview comment for all
source files by placing a overview.html file in the parent
directory

The contents between <body> and </body> is extracted
The comment is displayed when the user selects “Overview”

Computer Science and Engineering The Ohio State University

Good Practice: A Uniform Style

Consistency among team members
Omit ()’s from method names

Except: for overloaded methods, list parameter types in ()s
Phrase for param’s beginning with article + type
@param ch the character to be inserted in the
selected buffer

3rd person descriptive
* Appends the image observer to the queue of active
observers.

Required vs optional tags
Ordering of block tags

param, return, throws, author, see, deprecated
Sun’s style guide

“How to Write Doc Comments for Javadoc”
http://java.sun.com/j2se/javadoc/writingdoccomments/
Virtually an industry-wide standard

Computer Science and Engineering The Ohio State University

Good Practice: Doc the Contract
Javadoc comments describe a component’s contract not
its implementation

Describe what a method does, not how it does it
What a client component needs to know
Contract is usually more stable than implementation

Describe method assumptions
Preconditions on arguments

eg, observer must be non-Null, list must contain target
Preconditions on object state

In terms of “public” (ie externally checkable, abstract)
state

Describe method guarantees
Postconditions on return value

eg, @return true if and only if target is within image
boundary

Postconditions on object state
Describe class invariants

Computer Science and Engineering The Ohio State University

Tension? API vs Code
Documenting the contract is good

What clients need
See Java standard libraries API

Documenting the implementation is good
What future code maintainers need
“Programmer’s Guide”

For which purpose should you use Javadoc?
Answer: both!

No contradiction if each component consists
of both an interface and a class

Interface is the abstract component
Its Javadoc is for clients

Class is the concrete component
Its Javadoc is for implementers

Computer Science and Engineering The Ohio State University

Custom Tags: Client’s View
Interface-level tags

@mathmodel
Abstract fields that define client-side view of state space

@mathdef
Definitions derivable from abstract state

@constraint
Invariant holding on abstract state

@initially
Requirements on initialization (ie constructors)

Method-level tags within interfaces
@requires

Precondition (on abstract state and arguments) expected
by method

@alters
Parts of abstract state the method is allowed to modify

@ensures
Postcondition (on abstract state) guarantee by method

Computer Science and Engineering The Ohio State University

Custom Tags: Implementer’s View

Class-level tags
@convention

Invariant holding on concrete representation
@correspondence

Mapping from concrete representation to abstract
state

Constructor and method-level tags
None (the specification is in the interface)
Exception: helper (ie private) methods

Use @requires, @alters, @ensures for these methods
Predicates are on concrete representation (ie fields)
and arguments

Computer Science and Engineering The Ohio State University

Using Custom Tags with Eclipse
See:

Interface RandomWithParity
Classes AlternatingCoin and UnfilteredRandom

Project > Generate Javadocs…
Javadoc command: Browse to installed JDK
directory, then bin/javadoc

eg /class/cse421/local/jdk1.6.0_07/bin/javadoc
Next, then Next again
Inside “Extra Javadoc options” box copy the text
from cse421JavadocTags.txt (available from class
web site)
Finish

After doing this once, these Javadoc options
become defaults so you don’t have to re-
enter them every time

Computer Science and Engineering The Ohio State University

Bad Practices: Miscellaneous
End-of-function comments

public void setRate (int frequency) {
…

} //setRate
Obviated by modern editors with code folding

Commenting bug fixes
Version control is a better place for this than
Javadoc (more on version control later)

Comments with no additional value
Repeating the parameter name as the description

Leaving boiler-plate comments in code
Automatically generated Javadoc with obvious
boiler plate code should never appear in repository
Don’t leave it hanging around your own code

Computer Science and Engineering The Ohio State University

Shortcomings

Java-specific
HTML output is the only first-class citizen

Sun provides only one doclet (produces HTML)
Others have been written by 3rd parties

Geared towards API documentation
Contract specification (sort of, see below) only
Leaves out documentation for architecture,
algorithms, defect tracking, etc

No tags for pre/post conditions or invariants
These conditions should be checked by assertions
(not exceptions) so @throws is not helpful
Several extensions exist (eg JML, our set of custom
tags patterned after RESOLVE)

Computer Science and Engineering The Ohio State University

Alternative: Doxygen

Javadoc-like comment tags and formatting
comment block with description and tags
author, param, return etc

Supports multiple programming languages
C/C++, Java, C#, PHP, Python,…
Comment syntax language dependent

Supports multiple output formats
html, rtf, pdf, latex, man, xml, …
Documentation text less html-ized

Better support for design-by-contract
Has built-in tags for @pre, @post, @invar

Computer Science and Engineering The Ohio State University

Summary

Structure of Javadoc comments
Free-form initial prose
Block tags (and in-line tags)

Standard tags
@param, @return, @deprecated, @author, …

Custom tags for interfaces
@mathmodel, @mathdef, @constraint, @initially
@requires, @alters, @ensures

Custom tags for classes
@convention, @correspondence

Eclipse support

	Javadoc
	Motivation
	Bad Practice: Hungarian Notation
	Basics
	Javadoc Comments
	Example
	Standard Javadoc Tags
	Standard Javadoc Tags (cont’d)
	Standard Javadoc Tags (cont’d)
	Miscellaneous Features
	Demo with Eclipse
	Package Documentation
	Good Practice: A Uniform Style
	Good Practice: Doc the Contract
	Tension? API vs Code
	Custom Tags: Client’s View
	Custom Tags: Implementer’s View
	Using Custom Tags with Eclipse
	Bad Practices: Miscellaneous
	Shortcomings
	Alternative: Doxygen
	Summary

