
Computer Science and Engineering College of Engineering The Ohio State University

Interfaces

Lecture 6

Computer Science and Engineering The Ohio State University

Syntax

An interface is a set of requirements
Describes what classes should do
Does not describe how they should do it

Example
public interface Salaried {
void setSalary(BigDecimal d);
BigDecimal getSalary();

}

To satisfy this interface, a class must provide
setSalary and getSalary methods with

matching signatures (checked by compiler)
matching behaviors (up to you)

Computer Science and Engineering The Ohio State University

Good Practice: Use BigDecimal

Amounts of money (with pennies)
should be represented with BigDecimal

java.math.BigDecimal
Methods for basic arithmetic operations
Rounds to given precision
Use BigDecimal(String) constructor, avoid
BigDecimal(double)

Double and float are always
dangerous, due to rounding errors

System.out.println(4.56); //prints 4.56
System.out.println(4.56*100);

//prints 455.99999999999994

Computer Science and Engineering The Ohio State University

Declaring an Interface
Looks like a class definition, except:

Keyword interface replaces class
Methods have no body
No constructors

Like a class, an interface can contain
Fields

Must be public static final (ie constants)
These qualifiers usually omitted (implicit)

Methods
Must be public abstract (ie bodiless)
These qualifiers usually omitted (implicit)
Can not be static

The interface itself is public or package visible

Computer Science and Engineering The Ohio State University

Examples
public interface Salaried {

void setSalary(BigDecimal d);
BigDecimal getSalary();

}

interface Voter {
int MINIMUM_AGE = 18;
Voter(short age); //compile-time error
void Register(District d);
boolean isRegistered();

}

Computer Science and Engineering The Ohio State University

Implementing an Interface
Declare a class that implements the interface

class Employee implements Salaried {. . .}
Supply definitions for all interface methods

public void setSalary (BigDecimal d) {
. . .

}
public BigDecimal getSalary() {
. . .

}
Note: public modifier of method can not be
omitted in class definition (even though it is
omitted in interface)
Class can declare more methods than required
by interface

Computer Science and Engineering The Ohio State University

Eclipse Demo

See (interface) Salaried
Generate class (boiler plate) from interface

New > Class
Add interface Salaried
Make sure checkbox to create “inherited abstract
methods” is selected

See (class) SafePencil
Generate interface from class

Refactor > Extract Interface…
Select methods to include in interface

Problem: concrete representation driving the
abstract view

Computer Science and Engineering The Ohio State University

Relationship with Resolve

Recall Resolve’s separation of client-side view
and implementer’s view
Client-side

Description of what a component does
Abstract state, the “mathematical model”
Requires and ensures clauses

Implementer’s side
Description of how component works
Concrete state, the “representation”

Matching concepts in Java
Interface: Client-side (“abstract instance/template”)
Class: Implementer (“concrete instance/template”)

Computer Science and Engineering The Ohio State University

Role of Interfaces vs Classes

Interfaces (should) provide
Method signatures
Mathematical model
Constraints (invariants on abstract state)
Method specifications

Classes (should) provide
Concrete representation (in private fields)
Concrete implementation (in method bodies)
Conventions (invariants on concrete
representation)
Correspondence (abstraction relation mapping
concrete representation to abstract state)

Computer Science and Engineering The Ohio State University

//Math Model: salary is a Real
//Constraint (Abs Inv): salary >= 0;
public interface Salaried {

//Requires: d >= 0;
//Alters: this.salary
//Ensures: this.salary = d
void setSalary(BigDecimal d);

//Returns: this.salary
BigDecimal getSalary();

}

Computer Science and Engineering The Ohio State University

Good Practice: Naming Interfaces

How should interfaces be distinguished from
classes in their names?
Resolve approach

Classes end in “_1” (or _2, _3,…)
eg Pencil vs Pencil_1

Microsoft approach
Interfaces start with “I”
eg IPencil vs Pencil

Java approach
No difference, both are nouns or adjectives
eg WritingStick vs Pencil

Computer Science and Engineering The Ohio State University

Instantiating an Interface

The declared type of a variable can be an
interface

interface Salaried { . . . }
Salaried payee; //ok

But interfaces cannot be instantiated directly
payee = new Salaried(); //compile-time error

Only classes can be instantiated directly
Variable of type I can refer to an instance of
a class that implements I

class Employee implements Salaried { . . . }
Salaried payee = new Employee(); //ok

(This might remind you of widening!)

Computer Science and Engineering The Ohio State University

Interfaces and Classes

Consultant

Employee Salaried

implements

Salaried s = new Employee();
Salaried s2 = new Consultant();
Salaried s3 = s;

Computer Science and Engineering The Ohio State University

Declared vs Dynamic Type
Declared type = set at compile time (by declaration)
Dynamic type = set at run time (by new)

Type1 variable = new Type2();

Examples
Employee p = new Employee(“Pierre”);
Salaried s = new Employee(“Liz”, 12345);
s = p; //dynamic type of s is:

Compiler can not infer dynamic type
void select (Salaried s) {
//declared type of s is: Salaried
//dynamic type of s is: ???
. . .

}

Operator instanceof tests the run-time type (avoid it!!)
if (s instanceof Employee) { ... }
else if (s instanceof Consultant) { ... }

Computer Science and Engineering The Ohio State University

Role of Declared Type
Declared type determines which members
can be used

class Employee implements Salaried {
public void setSalary (BigDecimal d) {...}
public BigDecimal getSalary() {...}
public void promote (int r) {...}

}
. . .
void select (Salaried s) {
s.setSalary(new BigDecimal(“59000.00”));
s.promote(0); //compile-time error

}

Only interface members can be
called/accessed by client

Class method is the code to execute when called
That method code can access all class members

Computer Science and Engineering The Ohio State University

Simple Rule

Rule: Interfaces can only be used as
declared types

= Interfaces are never dynamic types
= Interfaces are never instantiated
= All dynamic types are classes
= All run-time objects are constructed
from a class, not an interface

Declared Types Dynamic Types

Interfaces
Classes

Computer Science and Engineering The Ohio State University

“Coding to the interface” means all
declared types are interface types

All variable and field declarations use
interface types
Salaried lastHire = new Employee();

All argument and return types in method
signatures are interface types
public Voter choose(Salaried[] s) {...}

Good Practice: Code to Interface

Dynamic TypesDeclared Types

ClassesInterfaces

Computer Science and Engineering The Ohio State University

Implementing Multiple Interfaces

One class can implement several
interfaces

class Employee implements Salaried,
Voter {
. . .

}

Class must provide functionality from
all interfaces it implements

Union of method signatures
Satisfies the behavioral contracts of all
interfaces it implements

Computer Science and Engineering The Ohio State University

Multiple Interfaces

Consultant

Employee

Voter

Salaried

implements

Voter v = new Employee();
Salaried s = new Employee();
Salaried s2 = new Consultant();
Salaried s3 = v; //compile-time error

Computer Science and Engineering The Ohio State University

Summary

Declaring an interface
Method signatures without implementation
Static final fields (ie constants)
All implicitly public

Implementing an interface
Class provides implementation for all methods

Separation of client-side and implementation
Interface has abstract state, invariant, specs
Classes have concrete representation, convention

Declared vs dynamic type
Interfaces can not be instantiated

	Interfaces
	Syntax
	Good Practice: Use BigDecimal
	Declaring an Interface
	Examples
	Implementing an Interface
	Eclipse Demo
	Relationship with Resolve
	Role of Interfaces vs Classes
	Slide Number 10
	Good Practice: Naming Interfaces
	Instantiating an Interface
	Interfaces and Classes
	Declared vs Dynamic Type
	Role of Declared Type
	Simple Rule
	Good Practice: Code to Interface
	Implementing Multiple Interfaces
	Multiple Interfaces
	Summary

