
Computer Science and Engineering College of Engineering The Ohio State University

Static Members,
Enumerations and Packages

Lecture 5

Computer Science and Engineering The Ohio State University

Example Class Declaration
class Pencil {

private int defaultLength = 10;
private String color;
private int length;

public Pencil (int length) {
if (length > 0) {
this.length = length;

}
else {
this.length = defaultLength;

}
}

public int sharpen (int amount) { . . . }

public String toString () { . . . }
}

Computer Science and Engineering The Ohio State University

One Pencil Instance

“red”

sharpen()

toString()

Pencil()

length 6

color

defaultLength 10

Computer Science and Engineering The Ohio State University

Multiple Pencil Instances

“red”

sharpen()

toString()

Pencil()

length 6

color

defaultLength 10

“blue”

sharpen()

toString()

Pencil()

length 3

color

defaultLength 10

“black”

sharpen()

toString()

Pencil()

length 3

color

defaultLength 10

Pencil

Computer Science and Engineering The Ohio State University

Object vs Class Members

Class member: only one copy, which is
shared by all instances

Keyword: static
static int defaultLength;
static void reset() { . . . }

class Pencil {
private static int defaultLength = 10;
private String color;
private int length;
. . .

}

defaultLength 10

Pencil

sharpen()

toString()

Pencil()

length 6

color

sharpen()

toString()

Pencil()

length 6

color

Computer Science and Engineering The Ohio State University

Multiple Pencil Instances

“red”

sharpen()

toString()

Pencil()

length 6

color

“blue”

sharpen()

toString()

Pencil()

length 3

color

“black”

sharpen()

toString()

Pencil()

length 3

color

defaultLength 10

Pencil

Computer Science and Engineering The Ohio State University

aka Instance vs Static Members

Static members available even before
instances (objects) are created!

From outside of class: classname.member
Pencil.defaultLength++; //must be public

From inside class: classname is optional

Conversely, static members can not
access instance members

ie this reference can not be used
public static void reset () {
length = defaultLength;

} Compile-time Error

Computer Science and Engineering The Ohio State University

Good Practice: Static Members
Do not access static members through object
references
Use class names instead

Do this: int t = Pencil.defaultLength;
Not this: int t = p1.defaultLength;

This applies within a class too
class Pencil {
private static int defaultLength = 10;
private int length;
public void reset() {

length = defaultLength; //correct
length = Pencil.defaultLength; //better

}
}

Computer Science and Engineering The Ohio State University

Example: println

System.out.println(“Hello”);

What is System?
A class from the Java standard library
See API documentation: java.lang.System

What is out?
A static field of System (available from class)
Type: reference to an instance of PrintStream

What is println?
An overloaded method in PrintStream
Different versions for printing string, int,
boolean…

Computer Science and Engineering The Ohio State University

Example: main()

public: so that the JVM can run this method
static: no instances of class created (yet)
void main(String[]): required signature

JVM looks to invoke the method with this name

args: array of command-line arguments
Any name can be used for formal parameter
“args” is just Java convention

class HelloWorldApp {
public static void main(String[] args) {
. . .

}
}

Computer Science and Engineering The Ohio State University

Example

See Artifact.java
Static members

Fields for: class creation time, first instantiation,
most recent instantiation, total number of
instantiations
Method for getting number of instantiations

Instance members
Field holding a float
Method for getting information (toString)

Constructor
Static initialization block (more on that later)

See ArtifactTester.java
Note output showing different times

Computer Science and Engineering The Ohio State University

Constant Fields: final
Modifier final on field means it cannot change

For primitive type, effectively a constant
final int i1 = 53;
final int i2 = (int) (Math.random()*20);
final int i3; //constructor must initialize
. . .
i2++;
For objects, only the reference is constant
final Pencil p = new Pencil(“blue”);
. . .
p = new Pencil();
p.sharpen(3);

Often used in conjunction with static
Class-wide constant value
static final int DEFAULT_LENGTH = 10;

Compile-time Error

Compile-time Error

OK

Computer Science and Engineering The Ohio State University

Good Practice: No Magic Numbers
“Magic Number”: a numeric constant in code

for (int i=0; i < 365; i++) { ... }

Some literals are acceptable
Booleans and references (true, false, null)
Integers: -1, 0, 1, 2

The rest should all be avoided
final int DAYS_PER_YEAR = 365;
for (int i=0; i < DAYS_PER_YEAR; i++) { ... }

See Java libraries (API, constant-values):
Integer.MAX_VALUE, Math.PI,
Float.POSITIVE_INFINITY, Thread.MAX_PRIORITY

Important benefits:
Single point of control over change
Legibility

http://java.sun.com/j2se/1.5.0/docs/api/constant-values.html

Computer Science and Engineering The Ohio State University

Outdated (bad) Idiom: int enums

Enumeration type: legal values a finite set of constants
Card suits (clubs, diamonds, hearts, spades)
Days of the week (D, M, T, W, R, F, S)

This could be done with static final fields
class PlayingCard {
public static final int CLUBS = 0;
public static final int DIAMONDS = 1;
public static final int HEARTS = 2;
public static final int SPADES = 3;
. . .

}

Later, use these named constants
int trump = . . . ;
if (trump == PlayingCard.CLUBS) { . . . }

Problem: no type safety! trump is just an int
if (trump == 23) { . . . }

Computer Science and Engineering The Ohio State University

Enum Types
Declared like a class, keyword enum

Contains a list of enum constants
enum Suit {
CLUBS, DIAMONDS, HEARTS, SPADES

}

These constants are (implicitly) static fields
Suit trump = Suit.SPADES; //do not use new()!
if (trump == Suit.CLUBS) { . . . }

Can also contain fields & methods (and nested types)
Automatically provided (static) methods include:

values() – returns array of constants
Suit.values()[0] == Suit.CLUBS;

valueOf(String) – returns constant with that name
Suit.valueOf(“CLUBS”) == Suit.CLUBS;

ordinal() – returns constant’s position in declaration list
Suit.CLUBS.ordinal() == 0;

Computer Science and Engineering The Ohio State University

Packages: Component Catalogs

A package is a grouping of classes
Hierarchical: subpackages within packages
Sun standard libraries organized in packages

java.lang, java.util, java.util.logging
see http://java.sun.com/javase/6/docs/api

A package provides
Logical structuring: related classes are bundled
Encapsulation: another level of access control
Distinct namespace: classes in different packages
can have the same name without conflict

Convention to guarantee uniqueness of package
name: reverse of company’s domain name
org.w3c.dom, edu.ohio-state.cse

http://java.sun.com/javase/6/docs/api

Computer Science and Engineering The Ohio State University

Declaration
Use package statement at top of source file

Must appear first, before any class declarations
package edu.ohio-state.cse;
class Pencil { . . . }

This file must be in a directory matching
package name

Pencil.java in ???/edu/ohio-state/cse
Eclipse handles this correspondence for you

At most one package declaration in a file
If there is no package declaration, class is in
unnamed default package

This is fine only for very small programs (like the
ones you will write for this class)

Computer Science and Engineering The Ohio State University

Access Control
Another level of visibility: package

Default for members (public/private omitted)
Package-visible members are accessible by all
classes in the same package
package edu.ohio-state.edu;
class Pencil {
private String color;
int length;
. . .

}

Classes are public or package (default)
Public classes available outside package
public class Math { . . . }
Package classes available only within same
package
class Pencil { . . . }

Computer Science and Engineering The Ohio State University

Type Imports
Fully-qualified type name is package.class

java.util.Date d = new java.util.Date();

Do not confuse this “.” with member access
Shorthand: import statement at top of file

To import a single public type
import java.util.Date;
Date d = new Date();

To import all public types, use wildcard *
import java.util.*;
Date d = new Date();

* does not import subpackages
All classes implicitly import java.lang.*
Static members can be explicitly imported

import static java.lang.Math.exp;
exp(x); //instead of Math.exp(x)

Can use wildcard * as well

Computer Science and Engineering The Ohio State University

Good Practice: Naming Conventions

Avoid name conflicts with packages and reserved
keywords
Package names: lowercase letters

java.util, java.net, java.io, . . .
Class names: start with uppercase letter

Math, Pencil, PriorityQueue, . . .
Variable, field and method names: start with
lowercase letters

x, out, myColor, abs(), getName(), isEven() . . .
Constant names: all uppercase letters

PI, DEFAULT_LENGTH, DAY_OF_WEEK . . .

Type parameters: single letter upper case
E (element) T (type) V (value type)

Computer Science and Engineering The Ohio State University

Initialization Block

Statement block outside methods/constructors
Executed before the body of any constructor

Without initialization block
class Body {

private long idNum;
private String name = “”;
private Star orbits;
private static long nextID = 0;

Body() {
idNum = nextID++;

}

Body(String name, Star orbits)
{

this();
this.name = name;
this.orbits = orbits;

}
}

With initialization block
class Body {

private long idNum;
private String name = “”;
private Star orbits;
private static long nextID = 0;

{
idNum = nextID++;

}

Body(String name, Star orbits)
{

this.name = name;
this.orbits = orbits;

}
}

Computer Science and Engineering The Ohio State University

Static Initialization Block
Similar to initialization block, but:

Can only reference static members
Executed only once, when class is first loaded
class Primes {

static int[] primes = new int[4];

static {
primes[0] = 2;
for(int i = 1; i < primes.length; i++) {

primes[i] = nextPrime(i);
}

}
//declaration of static nextPrime(int). . .

}

Computer Science and Engineering The Ohio State University

Summary

Static members (ie class members)
Instance member belongs to one objects
Static member is shared amongst instances

Enumerated types
Packages (ie component catalogs)

Declaration
Another level of visibility
Import statements

Syntactic shorthand for frequent use
Static imports

Initialization blocks, including static
initialization

	Static Members, Enumerations and Packages
	Example Class Declaration
	One Pencil Instance
	Multiple Pencil Instances
	Object vs Class Members
	Multiple Pencil Instances
	aka Instance vs Static Members
	Good Practice: Static Members
	Example: println
	Example: main()
	Example
	Constant Fields: final
	Good Practice: No Magic Numbers
	Outdated (bad) Idiom: int enums
	Enum Types
	Packages: Component Catalogs
	Declaration
	Access Control
	Type Imports
	Good Practice: Naming Conventions
	Initialization Block
	Static Initialization Block
	Summary

