
Computer Science and Engineering College of Engineering The Ohio State University

Classes and Objects:
Members, Visibility

Lecture 4

Computer Science and Engineering The Ohio State University

Object-Oriented Programming

Fundamental component is an object
A running program is a collection of objects

An object encapsulates:
State (ie data)
Behavior (ie how state changes)

Each object is an instance of a class
Class declaration is a blueprint for objects
A class is a component type

eg Stack, String, Partial_Map, Sorting_Machine
An object is an instance of that component

Resolve:
object Pencil mathTool;

Java:
Pencil mathTool = new Pencil();

Computer Science and Engineering The Ohio State University

Graphical View of Instances

instance of
Pencil

mathTool
p1

my_pencil

p2

1 class/type (“Pencil”)
3 objects/instances
4 references/variables

Computer Science and Engineering The Ohio State University

Good Practice: Files and Classes

Declare one class per file
Give file the same name as the class
declaration it contains

class HelloWorldApp declaration appears
in HelloWorldApp.java
class Pencil is defined in Pencil.java

Computer Science and Engineering The Ohio State University

Example Class Declaration
class Pencil {

boolean hasEraser;
String color;
int length;

int sharpen (int amount) {
length = length - amount;
return length;

}

String getDescription () {
if (length < 15) {
return “small: ” + color;

}
else {
return “large: ” + color;

}
}

}

Computer Science and Engineering The Ohio State University

Members

Two kinds of members in a class declaration
Fields, ie data (determine the state)
boolean hasEraser;
String color;
int length;

Methods, ie procedures (access/modify the state)
int sharpen (int amount) {

length = length – amount;
return length;

}

(Much later: nested classes and nested
interfaces)

Computer Science and Engineering The Ohio State University

Graphical View of Object

sharpen()

getDescription()

length 14

consumeEraser()

hasEraser true

“red”

mathTool

An object of
type “Pencil”

state

behavior

color

A variable of type
“reference to
Pencil object”

An object of
type “String”

Computer Science and Engineering The Ohio State University

Object Creation and Deletion

Explicit object creation with new();
java.util.Date d = new java.util.Date();
Integer count = new Integer(34);
Pencil p1 = new Pencil(“red”);

Unlike C/C++, memory is not explicitly freed
References just go out of scope (“die”)
{

//create a Date object
java.util.Date d = new java.util.Date();
. . .

} //d out of scope, object is unreachable

Automatic garbage collection (eventually) deletes
unreachable objects

Computer Science and Engineering The Ohio State University

Initialization of an Object’s Fields

Implicit: Default initial values based on type
eg boolean is false, reference type is null
boolean hasEraser; //implicitly false

Explicit: Initialization with field declaration
int length = 14;

Special method: “constructor”
Syntax: name is same as class, no return type
class Pencil {
String color;
Pencil (String c) {
color = c;

}
}
Invoked by new(), so can have parameters
Runs after implicit/explicit field initialization

Computer Science and Engineering The Ohio State University

Default Initial Values

For fields only
Does not apply to
local variables!!

Type Default
boolean false

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char ‘\u0000’

reference null

Computer Science and Engineering The Ohio State University

Example Constructor
class Pencil {

boolean hasEraser;
String color;
int length = 14;

Pencil (String c) {
color = c;
hasEraser = (length >= 10);

}

. . . same methods as before . . .
}

Computer Science and Engineering The Ohio State University

Graphical View of Object

sharpen()

getDescription()

length 14

consumeEraser()

hasEraser true

“red”
color

Pencil()

Computer Science and Engineering The Ohio State University

Good Practice: Establish Invariant

Ensures clause of a constructor:
establishes the convention
(representation invariant) for this
instance

What is true of the state for all instances?
eg All long pencils have erasers
length >= 10 ==> hasEraser

So the state (false, “green”, 14) is not valid

A constructor can call other methods of
its own object

Danger! Convention (representation
invariant) might not hold at call point

Computer Science and Engineering The Ohio State University

Visibility

Members can be private or public
member-by-member declaration
private String color;
public int length;
public int sharpen (int amount) { . . . }

Private members
Can be accessed only by instances of same class
Provide concrete implementation / representation

Public members
Can be accessed by any object
Provide abstract view (client-side)

Computer Science and Engineering The Ohio State University

Example
class Pencil {
private String color;
private int length = 14;
private boolean isValid(String c) {…}
public Pencil(String c, int l) {…}
public String toString() {…}
public void setColor(String c) {…}

}

class CreatePencil {
public void m() {

Pencil p = new Pencil(“red”, 12);
p.setColor(“blue”);
p.color = “blue”;

}
}

OK
Compile-time Error

Computer Science and Engineering The Ohio State University

Graphical View of Member Visibility

“red”

isValid()

toString()

length 14

setColor()

Pencil()

color

private

public

Computer Science and Engineering The Ohio State University

Example

See PencilA.java
Concrete state (ie representation) is
hidden from clients
Abstract state (ie client-side view) is
accessed and manipulated through public
methods

See PencilB.java
Different representation
Exact same behavior as far as the outside
world is concerned

Computer Science and Engineering The Ohio State University

Good Practice: Member Declarations

Group member declarations by visibility
Java’s convention: private members at top

No fields should be public
Common (bad) idiom: Public “accessor” methods for
getting and setting private fields (aka getters/setters)
class Pencil {
private int length;
public int getLength() { . . . }
public void setLength(int) { . . . }

}
Better idiom: Provide public members for observing
and controlling abstract state

Recall from Resolve: “Client view first”
Eg PencilA and PencilB should have exactly the same
accessors (including signatures)

Computer Science and Engineering The Ohio State University

Method Invocation

Syntax: objectreference.member
p.color = “red”;
p.toString().length();

Reference is implicit inside a method that
was just called on this same object

class Pencil {
private String color;
public Pencil() {

color = “red”;
}}

Explicit reference to same object available as
this keyword (from within the method that
was called on this object)

this.color = “red”;

Computer Science and Engineering The Ohio State University

Good Practice: Formal Parameters

Constructor formal parameters that
are used directly to set object fields
can be given the same name as the
field

Formal argument “hides” class field
variable
Refer to the field using explicit this
class Pencil {
private int length;
Pencil(int length) {
this.length = length;

}

Computer Science and Engineering The Ohio State University

Method Overloading
A class can have more than one method with the same
name as long as they have different parameter lists

class Pencil {
. . .
public void setPrice(float newPrice) {

price = newPrice;
}
public void setPrice(Pencil p) {

price = p.getPrice();
}

}

How does the compiler know which method is being
invoked?

Answer: it compares the number and type of the
parameters and uses the matched one
p.setPrice(3.4);

Differing only in return type is not allowed

Computer Science and Engineering The Ohio State University

Multiple Constructors
Default constructor: no arguments

Fields initialized explicitly in declaration or implicitly to
language-defined initial values
Provided automatically only if no constructor defined
explicitly
class Pencil {
String color; //initialized implicitly to null
int length = 14; //initialized explicitly
…

}
Another constructor: one same-class argument

Pencil (Pencil p) { . . . }
One constructor can call another with this()

If another constructor called, must be the first statement
Pencil (Pencil p) {
this(p.color); //must be 1st line
length = 10;

}

Computer Science and Engineering The Ohio State University

Summary

Classes and objects
Class declarations and instantiations

Instance members
Fields, ie state
Methods, ie behaviors

Constructors
Visibility

private: Visible only to instances of same class
public: Visible to instances of any class

Overloading
Multiple implementations of same method name
Distinguished by formal parameter types

	Classes and Objects:�Members, Visibility
	Object-Oriented Programming
	Graphical View of Instances
	Good Practice: Files and Classes
	Example Class Declaration
	Members
	Graphical View of Object
	Object Creation and Deletion
	Initialization of an Object’s Fields
	Default Initial Values
	Example Constructor
	Graphical View of Object
	Good Practice: Establish Invariant
	Visibility
	Example
	Graphical View of Member Visibility
	Example
	Good Practice: Member Declarations
	Method Invocation
	Good Practice: Formal Parameters
	Method Overloading
	Multiple Constructors
	Summary

