
Computer Science and Engineering College of Engineering The Ohio State University

Primitive/Reference Types
and Value Semantics

Lecture 2

Computer Science and Engineering The Ohio State University

Primitive Types

Java contains 8 primitive types
boolean, byte, short, int, long, float, double, char

Variable declaration
<type> <identifier> {= <expression>};
short index;
boolean isDone = true;
int counter = 3;
float tip = cost * 0.15;

Language defines size and range of each
type (ie number of bytes)

Also defines “default initial values”, but these
default values are not used for local variables!

Computer Science and Engineering The Ohio State University

Size and Range of Primitive Types

Type Size
(bytes)

Range

boolean 1 bit true or false

byte 1 -128 to 127

short 2 -32768 to 32767

int 4 -2147483648 to 2147483647

long 8 -9223372036854775808 to 9223372036854775807

float 4 about ±10±38, 7 significant digits

double 8 about ±10±308, 15 significant digits

char 2 Unicode UTF-16 code unit

Computer Science and Engineering The Ohio State University

Literals (ie Constants)

Boolean
true, false

Character
With single quotes, eg ’Q’
\n, \t, \\, \’, \”, \uxxxx (for unicode)

Integer
29, 035, 0x1D (ie decimal, octal, hexadecimal)
Sizes: 29 vs 29L (default int vs long)

Floating-point
18., 18.0, 1.8e1, .18E+2, 180.0e-1
Sizes: 18.0 vs 18.0F (default double vs float)

String
With double quotes, ”like this”

Computer Science and Engineering The Ohio State University

Good Practice: Upper Case L for Long

When writing a long constant, use an
upper case ‘L’

long x = 13L;

Lower case ‘l’ is syntactically correct,
but potentially confusing

long y = 13l; //y is 13. surprise!

For consistency, prefer ‘F’ to ‘f’
Common usage, however, is lower case ‘f’
float t = 1.0f; //no confusion

Less important since lower case version
does not create confusion

Computer Science and Engineering The Ohio State University

Hierarchy of Primitive Types

A type is a set of possible values
Some types are “bigger” (ie have more
possible values) than others

Every int is a long, so long is a “bigger” type
Subset inclusion

long
int

int

longbigger

smaller

-3
28

20331

5033493226

-345043343241

Computer Science and Engineering The Ohio State University

Hierarchy of Primitive Types

int

long

float

double

byte

short
char

boolean

widening

narrowing

Computer Science and Engineering The Ohio State University

Casting and Widening

Widening is automatic when needed (ie
implicit)

int i = 13; //no type conversion
long x = 12; //int to long (widening)
long y = i; //int to long (widening)

Widening can be forced by an explicit cast
int sum = 76;
int count = 10;
float average = sum/count;

//no type conversion, result is 7
average = sum/(float)count;

//int to float (widening), result is 7.6

Computer Science and Engineering The Ohio State University

Casting and Narrowing

Narrowing requires explicit cast
int i = 12L; //error: requires cast
int i = (int) 12L; //long to int (narrowing)
byte j = (byte) i; //int to byte (narrowing)

Cast is a promise by program that the
narrowing type conversion is ok
May result in loss of information

Casting float to int truncates decimals
Casting long to int discards top bytes

Warning: Widening can lose information
too!

How?

Computer Science and Engineering The Ohio State University

Hierarchy of Primitive Types

int

long

float

double

byte

short
char

boolean

widening
(implicit)

narrowing
(requires cast)

Computer Science and Engineering The Ohio State University

Value Semantics

A variable is the name of a memory
location that holds a value

Declaration binds the variable name to
a memory location

short counter;

Assignment copies contents of memory

counter = start;

8.65tip

?counter

?counter 14start

14counter 14start

Computer Science and Engineering The Ohio State University

Value Semantics: Assignment

Assignment is a copy
Example: What is the final value of
balanceA? balanceB?

int balanceA = 300;

int balanceB = balanceA;

balanceB = balanceB + 150;

300balanceA

300balanceB 300balanceA

450balanceB 300balanceA

Computer Science and Engineering The Ohio State University

Value Semantics: Parameters

Parameters are copied
Example: What is the final value of
balanceA?

void increaseByOneFifty(int cash) {

cash = cash + 150;

}
…
int balanceA = 300;

increaseByOneFifty(balanceA);

300balanceA

300balanceA

300cash

450cash

Computer Science and Engineering The Ohio State University

Reference Types

Class types, provided by:
Java standard libraries

String, Integer, Date, System, …
Programmer

Person, Animal, Savings, HelloWorldApp

Arrays
Can contain primitive or reference types

int[], float[], String[], …
Indexed starting from 0

Just one literal for references: null

Computer Science and Engineering The Ohio State University

Value Semantics (of References!)

Recall: A variable is the name of a memory location
that holds “a value”

For reference types, the “value” in the memory location
is a pointer to the actual object!

Declaration binds the variable to a memory location
(which contains a pointer)

java.util.Date d;
Savings accountA;
Animal[] zoo;

Explicit object creation with new()
java.util.Date d = new java.util.Date();
Savings accountA = new Savings(300);
Animal[] zoo = new Animal[50];

zoozoo 6b97fd or

d ?

accountA ?

zoo ?

d 44ae03

accountA 934b2b

zoo 6b97fd

6b97fd

Computer Science and Engineering The Ohio State University

Using Arrays
An array type does not include the length

int[] ids = new int[rosterSize];
int searchRoster(int[] students) { ... }

Array length
Set at run time, can not change after initialization
int[] ids = new int[rosterSize];

Available as a property with .length
void examine (int[] ids) {

for (int i = 0; i < ids.length; i++) {…}

Iteration: “foreach” loop (keyword is still for)
int sum = 0;
for (int a : ids)
sum += a;

float average = sum/(float)ids.length

Computer Science and Engineering The Ohio State University

Assignment Creates an Alias

Assignment copies the pointer
Example: What is the final balance of (the object
pointed-to by) accountA? accountB?

//(the object pointed-to by) accountA
has a balance of $300

Savings accountB = accountA;

accountB.deposit(150);

accountA balance
is $300

accountAaccountB balance
is $300

accountAaccountB balance
is $450

Computer Science and Engineering The Ohio State University

balance
is $...

Parameter Passing Creates an Alias

Parameter passing copies the pointer
Example: What is the final balance of
(the object pointed-to by) accountA?

void increaseByOneFifty(Savings cash) {

cash.deposit(150);

}
…
//accountA has a balance of $300

increaseByOneFifty(accountA);

accountA

cash

Computer Science and Engineering The Ohio State University

Testing for Equality

For references p, q consider: p == q
Compares pointers for equality
Do they refer to the same object?

How do we test if objects are equal?
Define a boolean method equals()
p.equals(q)

p

q

p

q

Fri Sept 26 9:50:12 EDT 2008

Fri Sept 26 9:50:12 EDT 2008

Fri Sept 26 9:50:12 EDT 2008

Computer Science and Engineering The Ohio State University

Supplemental Reading

IBM developerWorks paper
“Pass-by-value semantics in Java
applications”
http://www.ibm.com/developerworks/java
/library/j-passbyval/

Computer Science and Engineering The Ohio State University

Summary

Primitive Types and operators
Type conversions with casting

Widening is implicit
Narrowing requires an explicit cast

Value Semantics
Assignment operator performs a copy
Parameters are “pass by value” (ie copied)

Reference Types
Reference and referent (ie object)
Variable is the reference, not the referent
Assignment copies reference, creates alias
Parameter passing copies reference, creates alias

	Primitive/Reference Types and Value Semantics
	Primitive Types
	Size and Range of Primitive Types
	Literals (ie Constants)
	Good Practice: Upper Case L for Long
	Hierarchy of Primitive Types
	Hierarchy of Primitive Types
	Casting and Widening
	Casting and Narrowing
	Hierarchy of Primitive Types
	Value Semantics
	Value Semantics: Assignment
	Value Semantics: Parameters
	Reference Types
	Value Semantics (of References!)
	Using Arrays
	Assignment Creates an Alias
	Parameter Passing Creates an Alias
	Testing for Equality
	Supplemental Reading
	Summary

