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Abstract—Many smartphone apps can consume an unneces-
sarily high amount of energy, shortening battery life. Although
users can easily notice the undesired fast battery drain, it is
almost impossible for them to precisely remember how the
abnormal battery drain (ABD) is triggered, making it difficult for
developers to fix the problem. Therefore, app developers are in an
urgent need for a tool that can provide them helpful information.
In this paper, we propose eDelta, a framework that assists

developers in pinpointing the APIs with high energy deviation,
which usually have a high probability of being relevant to the non-
deterministic ABD. Specifically, eDelta performs comparative
trace analysis to identify APIs that have significant energy con-
sumption deviation in different user traces. With the information
provided by eDelta, developers can substantially reduce the
time they spend searching for the ABD root causes. We have
prototyped eDelta in Android 4.4 and evaluated it with twenty
real-world apps. Our results show that eDelta can effectively
pinpoint the APIs with high energy deviation and those APIs
indeed cause ABD. Specifically, it reduces, on average, 94.6% of
the amount of code that the developers would need to search for
ABD root causes.

I. INTRODUCTION

With the rapid growth of different apps on smartphone, soft-

ware defects are becoming common in these apps. One main

reason is that the learning curve of developing smartphone

apps has been made low enough for many novice developers

to freely release creative, but poorly written, software [1]. In a

recent study [2], 40% of app developers are reported working

completely on their own and 26% of app developers have less

than 2 years of experience in writing apps.

Among the app defects, a new type called abnormal battery

drain (ABD) has been troubling many smartphone users [3].

ABD refers to abnormally fast draining of a smartphone’s

battery which can be caused by different issues such as API 1

misuses (e.g., forget to call wakelock.release() API in certain

code path, thus unnecessarily keep CPU awake) and inefficient

design (e.g., an app keeps retrieving GPS information to render

an invisible map when it is in the background) resulting in

overusing the system resources. ABD issues have adversely

affected app developers via negative user feedback. A recent

user study [4] report 55% of users would give a bad review

after experiencing heavy battery drain. Therefore, app develop-

ers are in an urgent need for a tool that can help them identify

the ABD root causes.

1In this work, API refers to the programming interface provided by Android
SDK framework, not user-defined functions.

While users can easily notice the ABD symptom, it is almost

impossible for them to precisely remember how these energy

anomalies are triggered, which makes it hard for developers

to correct such ABD defects. For example, reports from users

usually only describe symptoms and may not be helpful for

the developers to even verify the existence of the issue [5].

Unfortunately, while there have been tools to detect ABD for

phone users [3], to our best knowledge, there are few studies

which can help developers fix ABD issues. In this work, we

observe that an ABD is often triggered in a certain code path

and by a particular user input, similar to other software defects

[6]. Due to the non-deterministic nature of such software

defects, the traces collected from different users may or may

not have the ABD manifested. Thus, energy deviation exists

for the same API across different traces and such deviation

can be used for ABD detection.

Prior research on ABD detection can be categorized into

two groups: 1) Source-based methods [6] (often performed

in the testing phase before app release) that help developers

analyze the app source code, and 2) trace-based methods [7]

(often performed in the wild) that help app users detect which

app causes ABD by diagnosing the usage traces. Most source-

based methods are designed from the developers’ perspective.

For example, no-sleep ABD can be detected by analyzing

when the wakelock is acquired and released [6]. While source-

based methods are powerful and can even detect ABD cases

that rarely manifest, they are usually designed specially for

a particular type of ABD (e.g., no-sleep). Therefore, ABD

with previously unknown causes is hard to diagnose via

this method. Existing work on trace-based detection focuses

mainly on helping users (instead of developers) detect which

app causes ABD, and are therefore often coarse-grained [3],

[7]. For example, eDoctor [3] is designed to “identify the

problematic app for an ABD issue”. eDoctor detects the

app that causes ABD and provides the corresponding repair

solution (e.g., uninstall the app) to users. Although such tools

can indeed help users, the information they provide is too

coarse-grained and therefore is insufficient for developers to

fix the ABD problem in their code.

In this paper, we propose eDelta, an automated trace-based

detection framework that assists app developers in pinpointing

the APIs with high energy deviation through comparatively

analyzing the collected traces. Certain APIs maintain high

power consumption in some traces and low power consump-
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tion in other traces. These APIs exhibit energy deviation and

usually have a high probability of being relevant to the ABD.

This observation is intuitive [8] and has been verified by

our evaluation results. Thus, with the reported information,

developers can directly go to the pinpointed code segments to

fix the ABD problem.

In particular, eDelta consists of two parts: 1) online track-

ing on smartphones, and 2) offline diagnosis on a remote

server. For online tracking, eDelta first instruments selected

APIs. Then, the instrumented app is provided to users for

collecting usage traces. Since traces can come from phones

with different hardware and software configurations, we adopt

the model scaling technique proposed in [9] to make their

power data comparable. After trace collection, eDelta starts

offline diagnosis that features a trace segmentation approach
and a statistical analysis algorithm. For effective analysis, we

separate the collected traces into different segments based on

their usage scenarios (e.g., foreground/background). After that,

eDelta checks if the power consumption of an instrumented

API from some traces is much higher than, i.e., deviates

from, that of the same API in other traces under the same

usage scenarios. If yes, this API has a high probability of

being relevant to the ABD problem. If such APIs cannot be

successfully identified with sufficient confidence, the ABD

might be caused by some APIs that are not instrumented.

Developers can then instrument more APIs and loop back

to the online tracking part for collecting more traces. This

iterative process finally identifies more APIs with high energy

deviation that helps developer to fix the ABD.

In summary, this paper makes the following major contri-

butions:

• We propose eDelta, a framework that assists app devel-

opers in pinpointing the APIs with high energy deviation.

• We design a trace segmentation approach that separates

the collected traces into different usage scenarios for

effective analysis of different APIs.

• We design a statistical algorithm to detect the APIs with

high energy deviation.

• We have prototyped eDelta in Android. Our results show

that the APIs with high energy deviation reported by

eDelta can usually effectively help developers fix the

ABD caused by different issues. Overall, eDelta can

reduce 94.6% of the amount of code that the developer

would need to search for fixing the ABD.

The rest of this paper is organized as follows. Section II

discusses the related research. Section III introduces the design

of eDelta. Section IV presents our evaluation results. Section

V concludes the paper.

II. RELATED WORK

Our work is closely related to two major research topics,

energy bug detection and power modeling and monitoring.
Method Detect ABD Apps Detect API Misuses
Trace-based Solution [3], [7], [10] N/A

Source-based Solution N/A [6], [11]

TABLE I: Existing work related to energy bug detection.

Energy Bug Detection. As shown in Table I, the existing

work can be mainly divided into two categories: 1) Detecting

which app causes the ABD, and 2) detecting a particular type

of API misuse. For the first category, eDoctor [3] tries to

cluster the app execution of a user’s phone into different phases

based on the resource utilization. While the phase detection

is effective in identifying the abnormal app, it is too coarse

grained for developers to diagnose the root cause of ABD

within an app. Oliner et al. [7] design a collaborative tool to

detect energy bugs and energy hogs. All these approaches in

the first category aim to help phone users by detecting the

ABD app. In contrast, eDelta helps developers to fix the ABD

problem in their app code through pinpointing the APIs with

high energy deviation.

For the second category, different approaches have been

proposed to detect the wakelock related energy bug through

analyzing source code and pinpointing wakelock related API

misuses [6], [11]. Since these solutions are designed for

detecting a particular type of ABD (e.g., no sleep), they can

hardly detect the ABDs with previously unknown causes.

Unlike these approaches, the APIs with high energy deviation

reported by eDelta can help developers fix the ABD caused

by different issues such as API misuse and inefficient design.

Power Modeling and Monitoring. Recent studies have

proposed different power modeling methodologies. Yoon et

al. [12] have presented AppScope, which monitors an app’s

hardware usage at the kernel level. Zhang et al. [13] have

designed PowerTutor, an online power estimation tool. Pathak

et al. [8] have proposed Eprof, an energy profiler based

on a finite state machine power model. Although energy

characterization of mobile devices has improved greatly, they

focus on a different purpose and do not directly provide

information about ABD to developers. This is because high

energy consumption is not necessarily energy misuse. There is

not a priori specification of abnormal battery drain. In contrast,

we detect power deviations through comparatively analysis

which have higher probability of being relevant to ABD.

III. DESIGN AND IMPLEMENTATION

A. Overview

Mobile Apps

Action Tracker Utilization Tracker

Online Tracking

Download Utilization Log

Action Log

Offline Diagnosis

Analyzer

Power
Estimator

Update

Fig. 1: System Architecture of eDelta.

1) System Architecture: Figure 1 shows the architecture of

eDelta. It mainly consists of two parts: 1) online tracking on

smartphones and 2) offline diagnosis on a remote server. The
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online tracking part includes two main components, Action
Tracker and Utilization Tracker. Action Tracker records the

specific API calls from the suspect app in real time. Uti-

lization Tracker records the utilization of system components

during the execution of the suspect app. Offline diagnosis

contains two main components, including Power Estimator
and Deviation Analyzer. Power Estimator calculates the power

consumed by each instrumented API in the suspect app at

the thread level. Deviation Analyzer first separates the traces

into different usage scenarios and then adopts a statistical

approach to pinpoint the APIs with high energy deviation.

This is based on the observation that the collected traces often

contain different usage scenarios (e.g., interact with the app in

the foreground, put the app in the background). In Android,

an action (API) usually maintains different behaviors within

different usage scenarios. For instance, in some navigation

apps, LocationManager (API provided by Android system to

access the location service) consumes about 500 mW when the

app is in the foreground (GPS is turned on to render user’s

current location on the map), while it consumes 0 mW when

the app is switched to the background (GPS is turned off). We

assume that an API should consume similar power within the

same scenario across different traces. The APIs that maintain

high energy deviation within the same scenario have a high

probability of being relevant to the ABD.

To better illustrate the framework, we briefly describe the

workflow of eDelta as follows. When facing an ABD report

of an app, the developer does not know where to fix the ABD

issue in the app code. So the developer first instruments the app

with eDelta’s Action Tracker. To reduce the runtime overhead

caused by logging, eDelta selectively instruments related APIs

that are not excessively fine grained, yet can sufficiently reveal

important diagnosis information. After that, when users run

the instrumented apps on their phones, the invocations of

selected APIs and utilization of system hardware components

are logged into two trace files, respectively. The instrumented

version does not impact user perceived usage experience

and the performance overhead is negligible according to our

evaluation results. Next, the collected traces (usage traces and

system utilization traces) are sent to a remote server when

the smartphone is being charged and the WiFi is active. Thus

the communication overhead can be negligible. After receiving

the logs, a diagnosis engine running on the back-end server

identifies and reports APIs (and corresponding class name in

which the APIs are called) that exhibit high energy deviation.

Developers can then directly go to the relevant code segments

to fix the ABD problem.

Specifically, eDelta provides the following information to

help developers correct the ABD. First, it reports the APIs

with high energy deviation. Second, it reports the power and

corresponding action traces.

2) A Motivation Example: As mentioned above, abnormal

battery drain can be caused by different issues (e.g., API

misuses in certain code paths, or app design problem) that

manifest energy deviation across different traces. We believe
the APIs with significant energy deviation usually contain

P
(

W
)

( )   ( )

Create() Resume() ItemSelect()Main
Thread ItemClick() Pause() Destroy()

Fig. 2: A simplified example of the comparative analysis

from two user traces, with and without ABD manifestation.

The shaded API (ItemClick()) causes the unusual high energy

consumption.

useful information for developers to fix the ABD problem.

eDelta comparatively analyzes traces under different contexts

from different users (usually contains traces with and without

the ABD being manifested) to help developers pinpoint the

APIs with high energy deviation. We briefly introduce the

comparative analysis eDelta performs as follows.

Figure 2 shows a simplified example of the analysis. The

traces represent power consumption of those instrumented

APIs in the main thread of the reported app. The trace

represented by dotted line manifests an ABD, which can be

caused by various factors such as misconfiguration. The trace

represented by the solid red line does not manifest the ABD.

We can see that the instrumented API ItemClick() is attributed

with additional power in the trace with ABD manifested.

eDelta reports ItemClick() to maintain deviation through com-

paratively analyzing the thread-level power consumption from

different traces.

Cross-trace analysis is adopted for two reasons. First, it

relaxes the requirement that the collected traces must contain

the transition point from normal to abnormal, which is required

if a single trace is used for analysis. For eDelta, as long

as the traces impacted by the ABD and the traces without

ABD manifested are collected, meaningful results can be

generated through comparing the power consumption of action

instances in different traces. In contrast, existing solutions

(e.g., [3]) must rely on traces that contain the manifestation

point. Second, cross-trace analysis can make use of larger

amounts of data, because even those traces with no ABD

manifested can be used for comparison purpose. The more

data is used in the analysis, the more reliable information can

be reported to developers.

B. Online Tracking

eDelta dynamically collects the information across different

users under different contexts. Action Tracker and Utilization
Tracker are designed to record the runtime information from

different perspectives.

Action Tracker. Action Tracker records specific API calls

from the suspect app. To minimize the runtime logging

overhead, eDelta selectively instruments two types of API

calls, user-app interaction APIs and hardware related APIs. In

general, for modern smartphones the major power consuming

components (e.g., GPS [8]) are usually accessed via of a set

of APIs provided by the Android SDK framework (hardware
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related APIs) in the app code. Moreover, these components are

often triggered by certain user inputs (handled by interaction

related APIs). Guided by this rationale, we create a pool of

the selected APIs that need to be instrumented.

Table II shows the examples of commonly used APIs in

the pool. For each invocation of the instrumented API, action

tracker records the system timestamps at the start and end of

the API invocation, along with the API name. Specifically,

for callback functions related to user interactions, such as

onClick(), eDelta takes two time stamps at the entrance and

exit points of the callback function. For hardware-related

components, there often exists a pair of APIs to invoke the

component and to stop the component. For instance, Wake-

lock.acquire() and Wakelock.release() are used to activate and

deactivate a wakelock respectively. Thus, system timestamps

when these two APIs are invoked are treated as the starting

point and ending point of the corresponding action (e.g.,

Wakelock). This information is logged in the app action log.

Figure 3 shows an example action log when a user uses

the Facebook app. The number at the beginning of each line

shows the timestamp. “+” represents the entrance point of the

function and “-” represents the exit point of the function.

Moreover, name of the class in which the action is in-

voked is also recorded, such as “Lcom/facebook/katana/bind-

ing/AppSession”.

Category API Class Name Example APIs
Activity Life android.app.Activity onCreate, onStart,

Cycle Related (I) onResume, onPause, onStop, etc.

UI Related (I) android.View onClick, onLongClick,

onKey, onTouch, etc.

CPU (H) android.os.AsyncTask doInBackground, get, cancel, etc.

android.os.PowerManager partial wakelock, screen dim wake lock, etc.

Screen (H) android.os.PowerManager partial wakelock, full wake lock, etc.

Sensors (H) android.hardware.SensorManager getOrientation, registerListener etc.

Camera (H) android.hardware.Camera open, release, takePicture, etc.

Data Storage (H) android.preference.PrefManager getSharedPreferences etc.

WiFi (H) android.net.wifi.WifiManager WifiLock.acquire, createWifiLock, etc.

TABLE II: Categories and examples of APIs that are instru-

mented to gather action usage (H represents hardware related

APIs and I represents interaction related APIs).

108757 + Lcom/facebook/katana/SyncContactsSetupActivity; onClick 
108757 - Lcom/facebook/katana/SyncContactsSetupActivity; onClick 
109107 + Lcom/facebook/katana/service/FacebookService; onStart 
109108 + Lcom/facebook/katana/binding/AppSession; acquireWakeLock 
109112 - Lcom/facebook/katana/service/FacebookService; onStart 
111190 - Lcom/facebook/katana/binding/AppSession; releaseWakeLock 
113357 + Lcom/facebook/katana/FacebookActivity; onPause 
113358 - Lcom/facebook/katana/FacebookActivity; onPause 

Fig. 3: An example action log when a user uses Facebook

app. User interaction related actions (onPause(), onClick()) and

hardware related actions (Wakelock) are recorded.

Utilization Tracker. In order to estimate power consump-

tion of the app, utilization tracker periodically records the

utilization of system components (i.e. CPU, display, WiFi,

etc.). It monitors proc filesystem (procfs) to gather hardware

utilization assigned to the target app and provides the utiliza-

tion for each thread of the app, which allows eDelta to estimate

the power consumption of each thread individually. Thread

level utilization tracking limits to CPU activities. Moreover,

procfs reports how many CPU cycles are idling, which allows

eDelta to account for wakelock actions (a mechanism of power

management service in Android OS, which can be used to keep

CPU awake and keep the screen on).

Utilization tracker is implemented as a background service

on Android. The utilization tracking is limited only to the

suspect app identified by its PID, and its corresponding threads

identified by their TIDs. Thus, existence of multiple running

apps does not affect utilization tracking of the suspect app.

Timestamp of each sampling point is recorded to estimate

the power consumption of each instrumented API in Power

Estimator in Section III-C.

C. Offline Diagnosis

After collecting the runtime information, eDelta compara-

tively analyzes the traces to pinpoint the APIs with high energy

deviation. Offline diagnosis mainly contains two components

including Power Estimator and Deviation Analyzer.

Fig. 4: Workflow of identifying energy deviation and pinpoint-

ing ABD.

1) Power Estimator: Power Estimator feeds the utilization

values to a power model [8], [9], [12]–[16], correspond-

ing to the type of the smartphone, to calculate the power

consumed by each hardware component. It is important to

note that Power Estimator uses the hardware utilization to

generate power profile that contains power consumption of

each instrumented API at the thread level. Specifically, user

interaction related actions are attributed with the thread-level

average power between the starting and ending points of

the action. For hardware related actions, power consump-

tion is attributed according to their utility. In other words,

power consumption of a certain hardware component is at-

tributed to the corresponding APIs that access it. For in-

stance, average power of GPS between the time points when

LocationManager.requestLocationUpdate() and LocationMan-

ager.removeLocationUpdate() are invoked is attributed to the

LocationManager action.

2) Deviation Analyzer: Deviation analyzer reports the APIs

with high energy deviation to developers through comparative

trace analysis. It contains two main steps including trace
segmentation and action analysis.
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Action Examples Segmentation Vector
onCreate [I] <Display>
onClick [I] <Display>
LocationManager [H] <Display>
MediaPlayer [H] <Display>
PARTIAL WAKE LOCK [H] <GPS, Sensors, Audio, Network, Display>
SCREEN DIM WAKE LOCK [H] <GPS, Sensors, Audio, Network, Display>
FULL WAKE LOCK [H] <GPS, Sensors, Audio, Network, Display>

TABLE III: Example of APIs and segmentation vector (H

represents hardware related APIs and I represents interaction

related APIs).

T1 T2 T3 T4

<0,0,1,0, >
Wakelock=100mW

<0,0,1,0,0>
Wakelock=100mW

App goes to 
background

Audio in use
Wakelock.acquire() Wakelock.release()

T1' T2'
Wakelock=100mW

T3' T4'

<0,0,1,0,1>
Wakelock=100mW

<0,0,1,0,0>
Wakelock=100mW

<0,0, ,0, >

App goes to 
background

Audio in use

Wakelock.acquire()
(b) Trace 2

( ) Trace

Fig. 5: Example traces for wakelock action analysis. Vector

<GPS, Sensors, Audio, Network, Display> is adopted to sep-

arate traces into different execution segments. T1-T4 represent

different time stamps.

Trace Segmentation. As mentioned earlier, the collected

traces often contain different usage scenarios and need to be

separated into different segments for effective intra-segment

analysis. We observe that different usage scenarios often

access different types of system resources. For instance, when

a user reads an article with Facebook app, only the display is

used in most of the time. On the other hand, network is usually

utilized to retrieve data from remote servers when loading new

web pages. System resource usage is then adopted as a metric

for trace segmentation. The trace segments that maintain

the same resource usage type are considered as the same

segment. A usage vector is utilized to represent the resource

usage situation. In the vector, each bit shows the usage of

a corresponding component and is represented as a binary

variable. When a component is utilized, the corresponding bit

is set to 1, otherwise it is set to 0. For instance, <Display>
shows an example vector which represents the display usage

information of an app. Thus, a segment when an app is using

the display (the app is in the foreground) can be represented

as <1>. When the app is switched to the background (the

app is not using display), the corresponding segment can be

represented as <0>.

As discussed in Section III-B, eDelta instruments two types

of APIs including hardware-related APIs and user interaction

related APIs. For the analysis of these APIs (e.g., Location-

Manager, Media Player, onClick()), vector <Display> is used

to differentiate app execution segments. This is because usage

behavior of these components are often impacted by whether

the app is in foreground (uses display). For most apps, users

T1 T2

T1

T1

T2 T3 T4

T3

T3T2

<1>
LM=500mW

<0>
LM=0mW

<1>
LM=500mW

<0>
LM=500mW

<0>
LM=0mW

<1>
LM=500mW

<0>
LM=500mW

App goes to 
background

App goes to 
background

App goes to 
background

LM.request
LocationUpdate()

LM.remove
LocationUpdate()

(a) Trace 1

LM.request
LocationUpdate()

LM.remove
LocationUpdate()

LM.request
LocationUpdate()

(b) Trace 2

(c) Trace 3

Fig. 6: Example traces for LocationManager action analysis.

Vector <Display> is adopted to separate traces into different

execution segments. T1-T4 represent different time stamps.

interact with and retrieve information from them through the

display when they are in foreground (e.g., GPS is turned on

to render location information). The app is usually in the

sleep state when switched to background (e.g., GPS is turned

off). Thus, display is an important factor that impacts the app

behaviors. The action instances of a certain action under the

two segments ((1) <1> the app is in the foreground and uses

the display, (2) <0> the app is in the background and does

not use the display) are retrieved.

It is important to note that for the analysis of WakeLock

related APIs (e.g., PARTIAL WAKE Lock, etc), we treat

them in a different way. Vector <GPS, Sensors, Audio,

Network, Display> is adopted for trace segmentation. This is

because Wakelock is often used to prevent devices from falling

asleep during critical computation. Take networking and com-

munications for example, many apps frequently fetch data

from remote servers and present them to users. These tasks

typically should not be disrupted by device sleeping when

users are using the apps and expecting to see certain updates.

Wakelocks are needed in such scenarios. Thus, wakelock is

often correlated with other hardware components [17]. GPS,

sensors, audio, network and display are selected is based on the

observation that these five components are major components

on smartphones and are widely utilized in different apps [3].

The vector can be easily extended by adding other components

if needed. Table III shows the summary of example actions

(APIs) and the corresponding trace segmentation vectors.

For hardware related actions such as Wakelock and Lo-

cationManager, there often exists a pair of APIs to ac-

tivate and deactivate the corresponding components (e.g.,

LocationManager.requestLocationUpdate() and LocationMan-

ager.removeLocationUpdate()). Whenever the deactivating

API is detected in the collected trace, the segmentation vector

after that point is recorded and a marker action is added to

show that the corresponding action consumes 0 mW under

that segment. This is based on the rationale that developers

often use the APIs according to the usage scenario of the
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app. For instance, in some navigation apps, LocationManager

consumes about 500 mW when the app is in the foreground,

while it consumes 0 mW when the app is switched to the

background (LocationManager.removeLocationUpdate() is in-

voked and GPS is turned off). In this case, a maker action will

be added to show that the LocationManager consumes 0 mW

when the app is in the background.

Figure 5 shows a simple example of trace segmentation

in which two types of execution traces are collected. We

can see from trace 1 that a user uses audio at timestamp

T1. Wakelock is acquired at timestamp T1 to guarantee the

normal usage. At timestamp T2, the app is switched to

background. After a certain time period, the audio stops and

the wakelock is released at timestamp T3. Trace 2 shows

the same usage scenario without the Wakelock being released

(e.g., due to an exception). In this example, we focus on the

analysis of the Wakelock action. Thus, vector <GPS, Sensors,

Audio, Network, Display> is adopted for segmentation. As

shown in Figure 5, trace 1 is separated into three different

execution segments including <0,0,1,0,1>, <0,0,1,0,0> and

<0,0,0,0,0>. In this case, <0,0,1,0,1> represents the segment

when an app uses audio and display (in the foreground).

Action instances under different execution segments are treated

as different actions. For instance, in trace 1, the Wakelock

action (between Wakelock.acquire() invoked at timestamp T1

and Wakelock.release() invoked at timestamp T2) is divided

into two actions under two execution segments. The cor-

responding power is then attributed. They are represented

as WL=100mW<0,0,1,0,1> and WL=100mW<0,0,1,0,0> as

shown in Figure 5 (a). According to the above discussion,

after the WakeLock.release() API is invoked, a maker action

WL=0mW is added and the execution segment <0,0,0,0,0>
is recorded as the third action in trace 1. This shows that

the Wakelock action consumes 0mW under the execution

segment <0,0,0,0,0> in which the components in the vector

are not utilized. The three actions retrieved from trace 2

include WL=100mW<0,0,1,0,1>, WL=100mW<0,0,1,0,0>,

WL=100mW<0,0,0,0,0>.

Figure 6 shows another example of trace segmentation

which is performed for the analysis of LocationManager

action. According to Table III, vector <Display> is adopted

to separate a trace into different segments. We can see from

trace 1 that GPS is invoked at time stamp T1. The app

is switched to background at time stamp T2 and GPS is

released. After LocationManager.removeLocationUpdate() is

invoked, a maker action is added as LM=0mW<0> to show

LocationManager action consumes 0 mW when the app is

not using the display under certain traces. Thus, the action

instances retrieved from Trace 1 are LM=500mW<1> and

LM=0mW<0>. Figures 6 (b) and (c) represent the scenarios

that GPS is not correctly released and show the corresponding

action instances. After trace segmentation, action instances

under the same execution segments are obtained and sent as

input to Action Analysis. It is important to note that the APIs

with different parameters are treated as different actions.

Action Analysis. Action analysis is performed to help
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Fig. 7: Deviation analysis of Facebook app. Raw data repre-

sents the power consumption values of ten actions from 20 user

traces. Medoids represents the center of each cluster. Silhou-

ette score represents the validation of clustering analysis. The

more confident the data is separated, the higher the silhouette

score is.

developers pinpoint the APIs with high energy deviation.

Usually the APIs that exhibit deviation consume high power

in some traces (e.g., ABD is manifested) and relatively low

power in other traces (e.g., ABD is not manifested). As

shown in Figure 7, raw data shows the power consumption

of different actions in the Facebook application from 20

different user traces. We can see that the power consumption of

action instances of Wakelock<0,0,0,0,0> from different traces

can be clearly separated into two groups, while the power

consumption of the other actions cannot be clearly separated.

Thus, clustering analysis is adopted to group the power data

of each action (API) within the same execution segments into

two clusters, i.e., normal (lower value) and abnormal (higher

value) ranges. K-medoids Partitioning Around Medoids (PAM)

[18] is implemented to perform the clustering analysis, which

has more tolerance to noise and outliers.

In addition, Silhouette analysis [19] is performed to show

how confident the data set can be separated into two clusters.

The silhouette coefficient ranges from -1 to 1, where a larger

value indicates that the object is well matched to its own

cluster (cohesion) and badly matched to neighboring cluster

(separation). Average silhouette score over all data of the entire

data set is usually a measure of how appropriately the data

have been clustered. According to [19], silhouette coefficient

ranges from 0.71-1.0 indicates that a strong structure has

been found in a data set. So we use 0.71 as the threshold.

APIs with silhouette coefficients equal to or higher than this

threshold will be reported to developers. Developers then

can directly go to the pointed code segments to fix the

ABD problem. Figure 7 shows the silhouette coefficient (right

side of Y-axis) of different actions (APIs). We can see that

Wakelock<0,0,0,0,0> (when the app is in the background and

does not use other components) with a silhouette score higher

than the threshold will be reported to developers.

The action and power traces are also reported to help

developers further verify the ABD. Figure 8(a) shows the

power traces with and without the ABD manifested. The trace

with the ABD manifested represents approximately 100mW of

extra power usage while the user is not using the app. Figure

8(b) shows the power breakdown with the ABD manifested.
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Fig. 8: Chronological traces of Facebook (a) total app power

of traces (with same user inputs) with and without ABD

manifested. (b) component power breakdown of the trace with

the ABD manifested.

The wakelock is acquired at the beginning of the trace (around

second 2), and keeps using the idle CPU energy while the user

is not using the app. This leads to extra power consumption

and causes the ABD. With the reported API with high energy

deviation, the searching scope is reduced from 39,891 lines to

597 lines. After further investigating the pointed code segment,

we confirm that the wakelock is kept indefinitely if the user

does not log out. We can see that eDelta can efficiently reduce

developer’s searching scope of ABD root cause in their app

code through reporting the APIs with high energy deviation.

IV. EVALUATION

A. Experimental Methodology

We implement eDelta in Android 4.4. In our experiments,

power model scaling [9] is adopted to make the power data

collected from different smartphone models comparable. The

deviation analysis is implemented in Python and R (a software

environment for statistical computing [20]). Real-world phone

usage and power traces are collected from different users

under various contexts. We first discuss the overall results of

applying eDelta to twenty different apps. Due to the limited

space, we only present one case study in detail, followed by the

performance and power overhead. For more detailed analysis

of other cases, please refer to our technical report [21].

B. Overall Results

In this section, we discuss the overall results of applying

eDelta to twenty different apps. Table IV shows the results

when eDelta is applied to twenty ABD apps caused by

different issues [1] including no-sleep issue, loop issue, config-

uration issue and immortality issue. No sleep issue erroneously

does not allow at least one component of the phone to sleep,

resulting in unnecessary battery drain. Loop issue happens

where a part of an app performs periodic but unnecessary

tasks. Configuration issue represents the misconfiguration of

the application which results in high battery drain. Immortality

issue is a situation where a buggy application that drains

battery, upon being explicitly killed by the users, respawns

and continues to drain battery.

App Downloads Root Cause Code Reduction
Boston Bus Map 100k+ loop 89.4%

OwnCloud 500k+ loop 99.7%

Aagtl 50k+ configuration 96.2%

Sensorium 5k+ configuration 95.5%

Signal 140k+ configuration 99.1%

CommonsWare N/A immortality 87.1%

Facebook 1B+ no-sleep 98.5%

Open Camera 1M+ no-sleep 99.4%

droid VNC 500k+ no-sleep 96%

A Better Camera 1M+ no-sleep 95%

Binaural-Beats 50k+ no-sleep 97.4%

Ushahidi 50k+ no-sleep 93.7%

Sofia Navigation 5k+ no-sleep 97.9%

Osmdroid 50k+ no-sleep 89.2%

Geohashdroid 50k+ no-sleep 97.2%

Babblesink N/A no-sleep 86.2%

Traccar 50k+ no-sleep 92.5%

Tinfoil 500k+ no-sleep 93.6%

Pedometer 5k+ no-sleep 92.3%

FBReader 100k+ no-sleep 92.1%

TABLE IV: Apps used to evaluate eDelta. Code Reduction

means the percentage of code lines that can be reduced for

pinpointing the root cause of ABD.

We use code reduction as the metric to evaluate the effec-

tiveness of eDelta. Each app’s code reduction is calculated as
NEntire−NReport

NEntire
. NReport represents the number of byte-code

lines responsible for the APIs that eDelta reports through the

action analysis. NEntire represents the entire code lines. We

use byte-code lines because the source code of some apps is

not publicly available. The last column of Table IV shows

the code reduction of the corresponding apps. It shows that

eDelta can reduce the code needed for diagnosis for up to

99.4% (94.6% on average), which implies that eDelta can

significantly reduce developer’s effort to fix the ABD.

C. Case Study: Boston Bus Map
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Fig. 9: Deviation analysis of Boston Bus Map. Raw data

represents the power consumption of five actions from 38

different user traces. Medoids represents the center of each

cluster. Silhouette Score represents the validation of clustering

analysis.

Figure 9 shows the analysis result of the Boston Bus Map

(an open-source app for locating buses in Boston) from 38

different user traces. We can see that power consumption of

action AsyncTask<0> (when the app does not use the display)

can be clearly separated into two groups. The silhouette

coefficient is higher than the threshold. Thus, AsyncTask<0>
is reported to the developer to exhibit high energy deviation.

Figure 10(a) shows user traces with and without the ABD

manifested of Boston Bus Map, which shows a spike in power

between 24s and 30s (the user is not using the app). Figure
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Fig. 10: Chronological traces of Boston Bus Map ((a) Total

app power of similar traces with and without ABD manifested,

(b) Component breakdown while ABD is manifested).

10(b) shows the power breakdown of each component of the

trace with ABD manifested, showing an AsyncTask being

executed while the user is not using the app. Knowing that the

ABD could have been caused by the AsyncTask API (reported

by the clustering analysis), the developer can quickly go the

the identified region, which effectively reduce developer’s

attention from 2,007 lines to 213 lines of the app code.

D. Overhead Analysis

Power Overhead. We measure the power overhead of

eDelta on a Nexus One Phone. The average power consump-

tion of eDelta is 79.2 mW which accounts for 5.3% of the total

power. The power overhead is caused by both the utilization

tracker and the action tracker. eDelta’s app instrumentation

adds a small library, and typically 12 lines of byte code (13 if

additional Dalvik registers are needed) to each instrumented

API call. This increases app binary size by 4.32% on average,

which is negligible.

Performance Overhead. Mobile apps are built atop the

event-driven execution model to achieve interactivity. User

interactions are translated to application events. Each event

is registered with an event handler that is executed when

the event is triggered. Event latency is highly correlated with

user perceived performance. Thus, event latency reported by

Android framework is adopted as the performance metric.

Event latency of the instrumented version and original version

of apps in Table IV is measured. The average performance

overhead is 11.79%, which is moderate. Average event latency

of apps in Table IV is less than 16.23ms. According to [22],

users will not perceive a delay when the event latency is

less than 100ms while interacting with the app. Thus, the

instrumented version does not impact usage experience.

E. Discussion

eDelta pinpoints the APIs with high energy deviation. The

reported APIs can usually provide helpful information for de-

velopers to correct the ABDs that manifest under certain con-

texts (e.g., particular user inputs/configurations). The ABDs

that always manifest can be easily noticed by developers.

APIs with high energy deviation will not be detected under

the following scenarios: 1) ABD never manifests in all the

collected traces, 2) ABD is triggered before the trace starts

and remains throughout the entire trace for all the collected

traces. There exists no energy deviation among the traces

under these two scenarios. Thus, eDelta will not report APIs

with high energy deviation to developers. Since eDelta collects

traces from different users under various circumstances (e.g.,

particular user inputs/configurations), those scenarios did not

happen in our experiments.

V. CONCLUSION

In this work, we have presented eDelta, a framework that

assists app developers in pinpointing APIs with high energy

deviation, which usually have high probability to be relevant

to the abnormal battery drain. We have prototyped eDelta in

Android 4.4 and have evaluated it with different real-world

apps. Our results show that eDelta can effectively pinpoint

the APIs with high energy deviation which cause ABD.

Specifically, it reduces, on average, 94.6% of the amount of

code that the developers would need to search to fix the ABD

problem.
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