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Abstract—Unintended smartphone rebooting and unexpected
shutdown (due to reasons like battery run outs, overheating, or
automatic app upgrades) is annoying. What can be even worse
is that a phone user has to restart, from the very beginning, the
apps he or she was using when the phone got rebooted, because
all the app states would be lost, especially when the number of
apps in use is large. Hence, a recovery service is sorely needed
for today’s smartphones where apps are becoming increasingly
complex. While checkpointing has long been used for desktop and
laptop computers, such whole-system state preserving techniques
cannot be applied to smartphones directly, due to the constraints
of smartphones on energy, delay, and storage space.
In this paper, we propose SmartCP, an intelligent check-

pointing methodology, in order to reduce the energy required
by a smartphone and the amount of efforts required by a
user to recover the app states after the smartphone restarts.
SmartCP selectively checkpoints the most important apps based
on the apps’ characteristics and predicted future usage, under
the resource constraints of the phone. We propose a novel
model that quantitatively analyzes the recovery energy and
efforts of each category of smartphone apps and formulate
selective checkpointing as a constrained optimization problem.
We prototype SmartCP on Android and evaluate it using real-
world traces as well as real user feedback. The results show
that SmartCP outperforms two alternative app selection schemes
by saving 28% more energy and 39% more recovery efforts on
average.

I. INTRODUCTION

Due to the recent widespread use of smartphones, a variety

of apps (such as Facebook and Amazon) have been developed.

These apps have enabled smartphones to conduct different

tasks that previously depend on a desktop/laptop in daily

lives [1]. However, compared with desktops, smartphones are

reported to have more unintended shutdown/reboot due to

reasons like battery run outs, overheating, or automatic app

upgrades [2], leading to a highly negative impact on the users’

experience. What can be even worse is that a smartphone user

usually has to restart, from the very beginning, the apps he or

she was using when the smartphone got rebooted, because all

the app states would be lost. This can be very frustrating.

It is important to note that although Android provides

backup service for apps, this service can only be used to

back up persistent app data, e.g., user configurations and

preference, and cannot back up any runtime app states. App

developers have to decide what data or states need to be

persistent during runtime, demanding lots of expertise. Unfor-

tunately, many app developers are inexperienced. For example,

26% of app developers have less than 2 years of developing

experience [3]. Hence, despite backup services, app states are

often insufficiently saved. As a result, upon a shutdown/reboot,

the user has to repeat what he or she did before to recover all

the app states, which requires non-trivial efforts from users

and extra energy of smartphone. Therefore, a light-weight and

developer-transparent recovery service is sorely needed for

today’s smartphones.

Application state preserving techniques such as hibernation

have long been used on desktop/laptop computers. During

hibernation, the states of all the applications (e.g., memory

contents, open file descriptors, and thread-specific descriptors

and signal masks) are saved to the hard drive before the

machine is shut down. Once the machine is powered back

on, everything can be resumed for the user to seamlessly

continue the work. Unfortunately, such techniques have not

yet been adopted for smartphones. The key reason is that

phones are traditionally regarded as just a communication

gadget (such as the feature phones ten to fifteen years ago). All

the apps of those feature phones, like contacts and calendar,

usually are very simple and do not have any states that

must be preserved upon a reboot. Due to their much simpler

designs, traditional feature phones also do not usually have

many unintended reboots/shutdown (e.g., those caused by the

software). However, as today’s smartphones are becoming

much more complex, in terms of both hardware and software,

the demand for state recovery is significantly increasing.

It is not easy to apply existing whole-system state pre-

serving techniques designed for desktops/laptops (such as

checkpointing [4]) directly to smartphones, due to the more

stringent constraints of smartphones on energy, running time,

and storage space. According to the data reported by Yahoo

[5], users have an average of 95 apps installed on their

smartphones, 35 of which are used (on average) every day.

Thus, multiple apps can often co-exist in the memory at the

same time. If we directly adopt the whole-system strategy

designed for desktop, i.e., checkpointing all the active apps,

it would cause a high delay and consume a large amount of

storage space as well as battery lifetime, leading to negative

impacts on the user experience. Even with improved hardware

of smartphone, naively saving the states of all the active apps

is still unnecessary or suboptimal. This is because states of

many active apps may be useless after reboot. Checkpointing

those apps simply leads to the waste of energy, storage space
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and wear-out of flash memory. Thus, we propose a strategy

called selective checkpointing that chooses only a subset of

smartphone apps for checkpointing before an undesired reboot

or shutdown. Such selective checkpointing introduces a key

research challenge: Which apps should be selected for check-

pointing? The limited resources should be given optimally to

the apps whose states are more valuable (i.e., the apps that

users would likely continue using after reboot and the ones that

would take more energy/efforts to recover if not checkpointed).

In this paper, we propose SmartCP, a light-weight and

developer-transparent selective checkpointing methodology

that features 1) a novel cost model to estimate the recovery

energy and efforts of each app, and 2) a constrained optimizer

that minimizes the total estimated recovery energy and recov-

ery efforts under given resource constraints. Based on collected

real user traces, we analyze the characteristics of different

smartphone apps. Two key observations are made to show that

some apps have a high correlation between their recovery ener-

gy/efforts and activity depth (i.e., activity transitions required

to reach the current state after launching the app), while other

apps rely more on the number of user interactions. Based on

such observations, we cluster apps into two different categories

and propose a novel model that quantitatively analyzes the

recovery energy and efforts of each category of apps. With

the recovery model, we formulate selective checkpointing

as a constrained optimization problem that minimizes the

recovery energy and reduce corresponding efforts under given

resource constraints. We implement a prototype of SmartCP

on the Android platform and evaluate it with real user traces.

The results show that SmartCP outperforms two alternative

schemes by saving 28% more energy and 39% more recovery

efforts on average. The overhead incurred by SmartCP is

negligible. Specifically, this paper has the following major

contributions:

• To the best of our knowledge, our work is the first effort

that proposes selective checkpointing for smartphones.

• We propose a novel model that quantitatively analyzes

the recovery energy and efforts of different categories of

apps, which are clustered based on their usage character-

istics.

• We formulate selective checkpointing as a constrained

optimization problem that minimizes the recovery energy

and reduces the efforts under given resource constraints.

• We prototype SmartCP and evaluate it with real-world

smartphone user traces as well as real user feedback.

The rest of the paper is organized as follows. We present two

key observations from app usage traces in Section II. Section

III discusses the design and implementation of SmartCP.

Section IV evaluates the performance of SmartCP with app

usage traces and users’ subjective test. We review the related

work in Section V. Section VI concludes the paper.

II. MODELING RECOVERY ENERGY AND EFFORT

Intuitively, we can estimate the “Recovery Energy/Effort

of a running app” using the amount of energy that the app

consumes before the reboot. However, users often exhibit

Fig. 1: Usage characteristics of 103 apps based on the number

of explored activities and the average number of intra-activity

interaction.

different behaviors between recovering an app and during

normal usage which requires different kinds of recovery efforts

and different amounts of energy. In order to understand users’

behavior on phone usage, we collected three weeks’ traces

from 11 users on their usage of 11 different smartphones with

5 different models. The traces contain 103 apps in 14 different

categories. Moreover, collected traces include three key types

of information relevant to user’s behavior on phone usage: 1)

activity 1 transition events when users interact with an app,

2) user input events, and 3) timestamps of user input events.

Based on the traces, we have two key observations as follows:

Observation 1: Different categories of apps require
different amounts of energy and different kinds of efforts
to recover the app states. From the collected usage traces,

we observe that for apps such as Angry Birds [6], users only

access one activity, but have a lot of intra-activity interactions

(e.g., touching, clicking, and swiping). For other apps like

Priceline [7], users usually explore multiple activities, while

the number of intra-activity interactions is relatively small. In

order to clearly understand the usage behavior, we represent

the usage characteristic of each app with the following two

features: 1) the number of activities a user explored, and 2)

the average number of intra-activity interactions. Clustering

analysis [8] is performed to group the apps into different

clusters. In addition, Silhouette analysis [9] is adopted to

determine the number of clusters. Figure 1 shows the clus-

tering analysis results of the collected 103 apps. We can

see that the apps can be mainly classified into three types:

1) low activity exploration, high intra-activity interaction;

2) low activity exploration, low intra-activity interaction; 3)

high activity exploration, low intra-activity interaction. For

simplicity, we group types 1 & 2 into one class, Interaction-
Intensive apps, since both types have low activity exploration.

Type 3 is classified into another class, Activity-Intensive apps.
Different categories of apps require different kinds of effort

to recover. For Interaction-Intensive apps (i.e., types 1&2),
users often need to take the same number of touch actions

to recover the app state. For Activity-Intensive apps (i.e., type
3), users need to follow certain activity transition sequence

(hard for a user to remember) and may spend time waiting for

the results from remote servers. Recovery energy is usually

1An activity is a core Android component, which is often represented as
a full-screen window that users can interact with. Within an activity, typical
GUI components are embedded that may transit the app from one activity to
another with user input events.
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Fig. 2: An example of the activity tree. Each vertex repre-

sents an activity user explored, while each edge represents a

transition from one activity to another.

highly correlated with the usage behavior. For Interaction-
Intensive apps, the energy is mainly spent on processing

user interactions, while the corresponding energy is mainly

spent on retrieving data and rendering new activities for

activity-intensive apps. Therefore, we differentiate these two

categories of apps when estimating their recovery energy and

corresponding recovery efforts.

Observation 2: Activity depth instead of the number
of activity transitions is more accurate to estimate the
recovery energy and efforts for type 3 apps. In this work,

we define the activity depth of an app as the least number

of activity transitions needed to restore the app state after

relaunching. Figure 2 shows an example of the activity depth

tree which is dynamically built as a user interacts with the

app. It represents the structure of the activities a user explored.

The vertexes represent the activities that a user has explored

and indicate the corresponding activity depths. Each edge

represents one activity transition. We can see that, in this

example, if the smartphone reboots when the user is at the

highlighted RoomCheckout activity (with a depth of 6), the

minimum number of activity transitions required for recovery

is 6. We observe that a user often switches back and forth

between different activities when he/she interacts with an

app. The activity depth fluctuates but the number of activity

transitions keeps increasing. Thus, activity depth is more

accurate to estimate the recovery effort and the corresponding

recovery energy for type 3 apps.

Summary of Recovery Energy and Effort: Recovery
energy and effort is highly correlated with usage behaviors. We

model the recovery energy and effort of a running app in the

following ways. Specifically, we estimate the recovery effort of

an interaction-intensive (i.e., types 1&2) app RInter using the

number of interactions and evaluate the corresponding energy

required to process the interaction events. We estimate the re-

covery effort of an activity intensive (i.e., type 3) app RActivity

using the activity depth and evaluate the corresponding energy

required to process the activity transitions.

III. DESIGN AND IMPLEMENTATION

A. Design Overview

Figure 3 shows the architecture and work flow of SmartCP.
The work flow mainly contains three phases.

Fig. 3: SmartCP consists of six parts: 1) App Monitor, 2)
App Classifier, 3) Shutdown Sensor, 4) App Predictor, 5) App
Selector, 6) Checkpointer. The work flow mainly contains

three phases.

Phase 1: One-time app classification. When a new app

is installed, App Monitor records the usage dynamics (e.g.,

activity transition and user input events) as the user interacts

with the app. App Classifier takes the information of the first n
times usage as inputs and classifies the app into two categories

(i.e., interaction-intensive or activity-intensive as described in

Section II). Note that the classification is a one-time action for

each newly installed app.

Phase 2: Touch-based information collection. After the
app is classified, interaction or activity depth is monitored for

interaction-intensive or activity-intensive apps, respectively.

Phase 3: On-demand selective checkpointing. When the

smartphone is in use, once a shutdown event is detected by

Shutdown Sensor, the remaining resources that can be used

for checkpointing are first retrieved. App Predictor is then

activated to predict the set of apps that might be reused

after rebooting. Then, App Selector selects a set of apps

to be checkpointed for minimizing the recovery energy and

reduce the efforts a user would need to take under the given

constraints. Finally, Checkpointer checkpoints the selected

apps to the phone flash memory. After the checkpointing, the

smartphone is allowed to reboot. After the phone is restarted,

Checkpointer recovers the states of the selected apps, such that
the user can resume what he was doing before the reboot.

The key design challenges of SmartCP are: 1) how to

retrieve the set of apps that are most likely to be re-used after

reboot, since the states of apps that users will not access in the

near future are often useless; 2) How to select the right apps to

be checkpointed to minimize the recovery energy and reduce

the efforts with limited resource. Hence, in the following, we

first introduce the design of App Predictor and App Selector.

We then discuss other components and related design choices.

B. App Predictor
App Predictor predicts the set of apps that have a higher

probability to be reused after the smartphone reboots. Given

the highly limited resources on smartphones, we build a

lightweight Naive Bayes classifier [10] for each app which

is based on Bayes’ theorem with independence assumptions

between different features. While other machine learning tech-

niques are available, we leverage the probabilistic models that

require less computation. This is especially important because

when a shutdown signal is detected there is limited time or

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 29,2021 at 13:08:32 UTC from IEEE Xplore.  Restrictions apply. 



resource for computation. The model infers the probability of

a target app (Appi) to be used again after reboot P (Appi|Ci),
given the context Ci and the prior probability P (Si). Si is a

binary variable to indicate whether app i will be used (Si = 1)
or not (Si = 0).

P (Appi|Ci) =
P (Si = 1|Ci)

P (Si = 1|Ci) + P (Si = 0|Ci)
(1)

where

P (Si|Ci) = P (Si)
m∏

j=1

P (Ci,j |Si) (2)

m represents the number of adopted features. When a shut-

down event is detected, App Predictor calculates the proba-

bility P (App1|C1), P (App2|C2), ..., P (Appn|Cn) and selects

the first n apps with the highest probability as the predicted

results, where n is a parameter that can be configured by users.
Unlike previous work [11] that predicts the next app that a

user is going to use, we predict a set of apps that will continue

to be used within a certain time frame. In this work, we choose

the following three context features (Ci,j): 1) time passed

from the last access, 2) activity depth, 3) current time. These

three features are chosen because they are the most indicative

factors for the prediction [12]. Time intervals between two

consecutive accesses of an app, activity depths and timestamps

are dynamically recorded to update P (Si) and P (Ci,j |Si) as
a user interacts with the app. The model is then constructed

and updated on a smartphone during the usage process.

C. App Selector
App Selector contains three main steps: 1) determining the

checkpointing cost, 2) retrieving resource constraints and 3)

selecting right apps to be checkpointed.

CP Cost Analysis. This step calculates the checkpointing

cost of a running app from three perspectives: storage, energy

and time delay. More specifically, the storage cost is for saving

the app’s runtime states, mainly including 1) the contents of

all memory regions, 2) a list of open file descriptors and the

positions within the files they are pointing to, and 3) per-thread

storage area descriptors and per-thread signal masks.

The time delay cost can be divided into two parts: inter-

ruption in the app execution (the checkpointing time) and the

time for the checkpoint data to asynchronously reach the flash

memory of the phone (the sync time). Furthermore, the check-

pointing time is determined by two factors: the application’s

resident memory size at the specific point and the number of

threads in the application [4]. The sync time only depends on

the resident memory size. To dynamically retrieve the time

required to checkpoint a certain app at runtime, we need to

model the relationship among the time delay cost, application’s

resident memory and number of threads. To this end, we use a

standard approach called system identification [13]. We infer

their relationship by collecting data on real smartphones and

establish a statistical model based on the measured data. The

model T = ax+by+1.349 is used to represent the relationship
among the time delay cost (T ), the number of threads (x),
and the application state size (y). Parameters a and b are

determined through the collected data. The more threads an

app contains and larger the app state size is, the more time

it takes for checkpointing. Furthermore, the energy cost is

proportional to the time needed for checkpointing an app.

When a certain event is detected, App Selector dynamically
retrieves the resident memory size and the number of threads

of a running app via the Linux proc file system [14]. Based

on such information and the statistical model, App Selector
calculates the storage cost, the energy cost, and the time delay

cost of checkpointing each app in the to-be-reused set of apps.

Constraint Retrieving. This step checks the resource con-

straints, including storage, energy, and time delay, that can

be used for checkpointing apps once a shutdown event is

detected. Specifically, we access the environment variables

to retrieve the currently available storage space. For re-

trieving the current battery level, we register a receiver to

receive the Intent.ACTION BATTERY CHANGED broadcast

message. Moreover, the difference among shutdown events is

considered and the time constraints are calculated accordingly.

App Selection. We formulate the app selection problem as

a constrained optimization problem. At a certain time point,

the total energy/efforts required to recover all the apps to the

states just before the shutdown/reboot is fixed. Thus, the more

energy/efforts can be reduced through checkpointing, the less

recovery energy is required and fewer recovery efforts the user

needs to take after the reboot. We maximize the amount of

recovery energy/efforts to be reduced through checkpointing

under different resource constraints. As battery life is still

an critical problem for smartphones, we first formulate the

problem to maximize the reduction of recovery energy through

checkpointing.

As discussed in Section II, the apps are divided into two

categories including interaction-intensive apps and activity-
intensive apps. Usually, a user interacts with apps in both

categories and each category requires different amounts of

recovery energy. To estimate the total recovery energy of the

smartphone, we assign different weights for apps in different

categories. This is because the energy required to process a

touch event (e.g., interaction-intensive app) is usually much

less than that of processing an activity transition which usually

spends on retrieving data from remote servers and rendering

it on the screen (e.g., activity-intensive apps). In this work,

we use average processing energy of a user interaction event

(EInter(i)) within an interaction-intensive app i and that of

an activity transition (EActivity(j)) within an activity-intensive

app j as the weights of apps in different categories. Thus, the

total recovery energy of all the running apps on a smartphone

at a certain time point can be defined as:

Etotal =

M∑

i=1

EInter(i)RInter(i) +

N∑

j=1

EActivity(j)RActivity(j) (3)

M and N denote the numbers of interaction-intensive and

activity-intensive apps, respectively.
Before we formulate the app selection process as an opti-

mization problem, we first define the following notations: Ei/j

is the energy consumption for checkpointing app i/j. Di/j is

the time required for checkpointing app i/j. Si/j is the storage
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required to save the checkpoint image of app i/j. Pi/j is the

priority of each app that can be determined by users according

to their preference. βi/j is a binary variable to indicate whether
app i/j should be checkpointed (βi/j = 1) or not (βi/j = 0).
The app selection problem can be formulated as shown in

Equation 4.

max{
M∑

i=1

βiPiEInter(i)RInter(i) +
N∑

j=1

βjPjEActivity(j)RActivity(j)}
(4)

Subject to one or more of the following constraints, de-

pending on the shutdown scenarios to be discussed in Section

III-D:
M∑

i=1

βi ∗ Ei +

N∑

j=1

βj ∗ Ej <= EThreshold (5)

M∑

i=1

βi ∗Di +

N∑

j=1

βj ∗Dj <= DThreshold (6)

M∑

i=1

βi ∗ Si +
N∑

j=1

βj ∗ Sj <= SThreshold (7)

We can see that it is a 0-1 multidimensional knapsack prob-

lem (MDKP). In order to reduce the computing complexity of

App Selector, we implement a heuristic algorithm [15] which

combines Linear Programming with an efficient tabu search to

approximately solve the multidimensional knapsack problem.

The heuristic solution has polynomial time complexity and

efficient approximation to the optimal. Moreover, the optimiza-

tion only considers the n apps that have highest probability

to be reused provided by App Predictor. The problem size

is drastically reduced and the computation time is saved and

bounded. The solution of the optimization problem will be

stored in βi and βj where 1 ≤ i ≤ M and 1 ≤ j ≤ N ,

which maximizes the recovery energy that can be reduced

through checkpointing while still meeting the related resource

constraints. The result will then be sent as the input to

Checkpointer.
From the system perspective, SmartCP selects the apps

to be checkpointed, in order to reduce recovery energy as

represented in Equation 4. SmartCP can be also utilized to

minimize the recovery efforts from users’ perspective with

different weights between the two categories of apps. In this

work, we use the foreground time as the weights between two

categories based on the observation that the more time a user

spends on an app, the more important that app is for the user.

Both the reduced recovery energy and recovery efforts will be

evaluated in Section IV.

D. Other Components
App Monitor tracks the intra-activity interaction events

(touching, clicking, swiping, etc.) and activity transitions of

the running apps. Such events capture the main characteristics

of the apps (i.e., interaction-intensive or activity-intensive).

Furthermore, the timestamps of these events is also captured

for assigning weights to apps in different categories.

TABLE I: Detect Different Shutdown Events

Event How to detect
Low Battery Instrument shutdownIfNoPowerLocked() in the class

BatteryService
Overheat Catch the BATTERY HEALTH OVERHEAT

event

Watchdog Instrument run() in class Watchdog
Process crash Catch the SIGSEGV signal

Recovery mode re-
quested

Instrument bootCommand in class RecoverySystem

Whenever a user has interaction with an app, an input event

will be generated and delivered to theWindowManager class in
Android. Therefore, we implement App Monitor by retrieving
the input events from WindowManager. Once an input event

is detected, our code queries the activity stack to obtain the

foreground activity and records the time stamp of that event.

It is important to note that App Monitor only tracks basic

usage information (e.g., touch, activity transition) and does not

record any sensitive data. Thus, it does not generate privacy

issue for app users.

App Classifier classifies apps into different categories ac-

cording to their usage characteristics, including 1) Number of

activities that the user has explored and 2) average number

of intra-activity input events based on the observations as

discussed in Section II. With the two features, we train a

kNN (k Nearest Neighbors) [16] classifier using the collected

usage information of the 103 apps (as shown in Figure 1)

belonging to different categories. When a previously unknown

app is installed and launched, App Monitor is invoked to track
the two features of the app. The average of first n times

usage information is then fed to the trained kNN classifier

for classification. Training phase of the classifier is completed

offline. After that, the model is used by different smartphones

and the classification process is dynamically completed on

the device. After the classification, interaction-intensive and

activity-intensive apps can use intra-activity interaction and

activity depth to estimate their recovery efforts, respectively.

Shutdown Sensor catches the unexpected shutdown/reboot
events whenever the following scenarios occur. Table I lists

the common events and the corresponding detection methods.

1) Low Battery or Overheating. When the battery level is

critically low or its temperature gets higher than a certain

threshold, the hardware sensors of the battery will raise

an alarm signal to Linux kernel, which further notifies the

BatteryManager class. Then BatteryService broadcasts a shut-
down message to all the running services and apps on the

smartphone. In this case, we have both the energy and time

constraints for checkpointing.

2) Reboot by WatchDog. This happens when a deadlock

in Android framework is detected or ANR (Application Not

Responding) of a critical service occurs. In this case, we

mainly use a time constraint for checkpointing.

3) Process Crash. Process crash happens when a fatal error,
e.g., an invalid pointer, is thrown by the Linux kernel. If crash

happens on the processes like zygote or systemserver that are
indispensable to Android systems, the OS has to reboot. In

this case, we mainly use a time constraint for checkpointing.

4) Recovery mode is requested. This scenario often occurs

when the user installs a system update. Before rebooting
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the phone for the update, some preparation task must be

done. After the preparation, the PowerManagerService class

is informed and it reboots the smartphone into the recovery

mode. In this case, we mainly use a time constraint for

checkpointing.

In addition, we may have an additional storage space

constraint if the phone is currently out of space. Moreover,

the checkpointing process can be effectively completed and

the app states can be efficiently saved in these cases.

Checkpointer is to save the states (including the process,

file system and the network state) of selected apps to the

flash memory on the smartphone and automatically recover

the apps’ states after rebooting the phone. In this work, we

implement our Checkpointer based on DMTCP (Distributed

MultiThreaded Checkpointing) [4], a transparent user-level

checkpointing package for distributed applications. Although

our implementation is based on the version of DMTCP ported

from Linux to the Android platform by K. Cheng [17], the

proposed selective checkpointing methodology can be applied

to other checkpointing tools such as CRIA (Checkpoint/Re-

store in Android) [18]. SmartCP is transparent to developers.

The apps do not need any modification.

E. Discussion
In this section, we discuss some practical issues of imple-

menting SmartCP.
How to handle the apps that have both high activity depth

and high intra-activity interaction? To handle such apps, we

can introduce one more category with these training data

points being added. When a new app is installed, it will

be classified with the revised kNN classifier. We do not

include such a category in the current prototype because we

do not observe any apps belonging to this category in our

experiments.

Why not take checkpointing only on the server side? For

apps like Amazon, it is true that certain states are already saved

on the server side. However, the client-side (local) checkpoint-

ing is still highly desirable for the following reasons. First,

not all the apps have the server side. Some apps only run

locally on smartphones and do not have communication with

remote servers. Second, users may not log into the app’s server

side until they get to a later stage, e.g., during the checkout

activity. In this case, the apps’ states rely on the client-side

checkpointing to preserve.

How to guarantee the consistency between our client-side
checkpoints and the server-side session states? If there is a ses-
sion state maintained on the server side of an app, it requires

coordination between our checkpointing mechanism and the

server-side session process. One option is to implement a

proxy service on smartphone that can automatically reconnect

the app to the server side based on the recovered state of an

app after rebooting the smartphone. To this end, we could

borrow the ideas from previous work [19], and we leave this

as future work.
IV. EVALUATION

In this section, we first introduce the experimental method-

ology and baselines, and then discuss each experiment.

Fig. 4: Saving on Recovery Energy with Different Schemes.

A. Experimental Methodology and Comparative Schemes
We implement SmartCP on Android 4.4.4 and use a Mon-

soon Power Monitor [20] to measure the energy overhead of

SmartCP. Two sets of real-world traces are adopted. First, we

collect the smartphone usage data from eleven volunteer users

for three weeks. The users have various backgrounds. Second,

we adopt the user traces released by Rice University LiveLab

[21], which include the traces of 34 users for a period of up

to fourteen months. Moreover, subjective tests based on 20

real users are conducted. We focus on the evaluation of app

selection instead of the checkpointing technique itself because

our contribution is mainly on app selection and we use the

same technique in [18] [4] for checkpointing after determining

which apps to select.

Comparative Schemes. We evaluate SmartCP’s effective-

ness and efficiency by comparing it with three alternative

schemes. The first one is MFU (Most Frequently Used),

which checkpoints a number of apps that have highest access

frequency among all the apps within the constraints. The

second is MRU (Most Recently Used), which checkpoints a

number of apps that have been most recently used among

all the apps within the constraints. The third scheme is a

theoretically-optimal but unrealistic scheme called Oracle,
which makes the selection of apps for checkpointing based

on the future usage (i.e., the usage after shutdown/reboot)

of the apps. We measure the performance of each scheme

using the Reduced Recovery Energy and Reduced Recovery
Effort metrics, which is defined as the percentage of recovery
energy/effort that can be reduced through checkpointing as

discussed in Section III-C, the larger the better.

B. Reduced Recovery Energy with Different Schemes
In this section, we compare the reduced recovery energy.

Comparison in all 11 users are conducted and Figure 4

shows the results from users A, B, C and D. We define

the reduced energy as follows. EManual All represents the

energy consumption required for a user to manually recover

the states of all the apps that he/she continues to use after

reboot. Through checkpointing, states of the apps selected by

different schemes can be saved and automatically restored after

the reboot. ECheckpoint and ERestore represent the energy

consumption of the checkpointing and restoring processes

respectively. Due to the resource constraints, sometimes not

all the apps that a user continues to use can be checkpointed.

Thus, EManual N represents the energy consumption required

for users to manually recover states of the apps that are not

checkpointed but continue to be used. Thus the percentage

of energy saving of a certain scheme can be represented as
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(EManual All−EManual N )−(ECheckpoint+ERestore)
EManual All

. Intuitively, if

more apps requiring high recovery energy are selected for

checkpointing, less energy is required for manual recovery.

Consequently, the reduced recovery energy is higher.

Figure 4 shows the reduced recovery energy under a 10s

time constraint. For each trace, two time points are randomly

selected to emulate the shutdown/reboot scenarios. We can

see that SmartCP performs much better than MRU and MFU.

This is because SmartCP selects the apps that require more

recovery energy according to model as shown in Equation 4.

The schemes MRU and MFU do not have this information

and their performance is not stable. We can see that for points

A1 and B2, the reduced energy of MRU and MFU is less

than or equal to 0. This is mainly caused by two reasons. The

first reason is that some apps selected by these schemes is in

the initial state which requires little energy to recover, thus

the checkpointing and restoring energy is larger than or equal

to the energy required to manually recover those apps. The

second reason is that users will not continue to use some of the

apps after reboot. The difference between SmartCP and Oracle

is mainly caused by the prediction error which is moderate.

C. Reduced Recovery Efforts with Different Storage Spaces
Recovery energy is important for smartphones, while re-

covery efforts are important for end users. In this section, we

compare the reduced recovery efforts with different storage

constraints. Comparison in all 11 users are conducted and

Figure 5 shows the results from users E, F, G and H. For each

trace, two time points are randomly selected (e.g., E1 and E2

for user A’s trace) to emulate the shutdown/reboot scenarios.

Figure 5 shows that SmartCP performs much better than

MFU and MRU under different storage constraints. For in-

stance, at point E1 in Figure 5a, SmartCP reduces 40% of the

recovery effort while MFU and MRU cannot effectively reduce

any effort. At this point, seven apps exist in the memory. The

recovery efforts of Half Brick, Amazon, Music are 0.59, 0.1,

and 0.4 respectively. The recovery efforts of the other apps

are negligible. In this case, SmartCP intelligently selects the

Music app to checkpoint. Half Brick is not selected because

the checkpointing cost exceeds the constraint. In addition, we

can see that for some time points (e.g., F1, G2) the advantage

of SmartCP under 100 MB storage constraint is higher than

that under 50 MB storage constraint. This is because more

apps exist in the memory at those points, when the constraint

increases, it allows more space for optimization. When the

storage space is large enough (e.g., 150 MB), most of the

apps can be checkpointed. As a result, the difference between

different schemes decreases.

D. Evaluation with Public Traces
In this section, we evaluate SmartCP using the traces

from Rice University LiveLab [21]. In this trace, app usage

information (such as the start time and duration of every app

usage) of 34 volunteers was recorded for a period of up to

fourteen months. We randomly select the usage traces of five

users from the whole data set. Since Rice traces lack of the

detailed information (e.g., activity and user interaction), we

assign the activity depth and amount of interaction events

to each app according to its usage characteristics. In each

trace, we randomly select a time point as the point that the

smartphone would reboot. Figure 6 shows the comparison of

reduced recovery efforts under different schemes with 20-

second time constraint for the five users. We can see that

SmartCP always performs better than MFU and MRU for

different users. This suggests that SmartCP is effective for

apps with different usage characteristics.

E. User-perceived Recovery Effort Reduction
Besides using traces, we have also evaluated the effective-

ness of SmartCP’s recovery effort model based on the feedback

from real users. In this experiment, SmartCP is installed on

the smartphones of 20 volunteers with different background

such as researchers, students and engineers. During the daily

usage, their smartphones are set to randomly reboot every

several hours. After the reboot, users are asked to rank

the apps they want to be checkpointed according to their

preferences. In the meantime, SmartCP calculates the recovery

efforts of the user-listed apps using Equation 4. Then, we

generate two app sequences. The first sequence represents the

users’ preferences on the apps. The second one represents

the apps ranked by SmartCP based on the reduced recovery

efforts. Pearson Correlation [22] is then used to measure the

correlation between the two sequences. The higher correlation

between the two sequences is, the more effective SmartCP is in

terms of modeling the recovery efforts perceived by real users.

Figure 7a shows the Pearson Correlation Coefficient analysis

among the reported cases. We can see that in 63% of the

cases, the coefficient is larger than 0.7, indicating a strong

positive correlation between the results from SmartCP and

those from users’ feedback. In 26% of the cases, the coefficient

is between 0 and 0.7, which represent moderate positive linear

relationship. Only 11% of the cases show negative relationship.

This suggests that the recovery efforts modeled by SmartCP

can effectively represent the real recovery efforts perceived by

a wide range of users.

Figure 7b shows the overlap between apps selected by users

and those selected by different schemes. At each shutdown/re-

boot point, users are required to generate the list of apps they

need to checkpoint according to their importance. n is defined

as the number of apps that can be checkpointed according to

the provided app list under certain storage constraint. m is

defined as the number of apps existing in both of the user-

selected list and the list selected by certain scheme. m/n is

then defined as the overlap ratio. We can see that the overlap

ratio of SmartCP is much higher than that of other schemes

in most cases. This suggests that SmartCP can intelligently

select out the apps that users really need in most scenarios.

F. System Overhead
We measure the overhead of SmartCP on a Galaxy Nexus

Phone. The memory overhead is 13.6MB which accounts for

0.45% of the whole smartphone. It is modest and remains

stable during execution. The CPU utilization is less than

1%. The power consumption from SmartCP is about 3mW
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Fig. 5: Comparison of reduced recovery efforts among different schemes for different users at various time points under three

different storage space constraints.

Fig. 6: Recovery effort reduction by different schemes under

a 20-second time constraint, evaluated using traces from Rice

University LiveLab [24].
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Fig. 7: (a) Correlation between the recovery effort modeled

by SmartCP and the recovery effort perceived by users. Corr

represents the Pearson Correlation Coefficient between the

two sequences. (b) Percentage of apps that matched user’s

preference among the maximum number of apps can be

checkpointed with different schemes.

when the user does not have interaction which accounts for

0.194% of the whole smartphone and 27mW when the user

interacts with a certain app which accounts for 1.04% of

the whole smartphone. The time for SmartCP to complete

the optimization and make the decision about which apps to

checkpoint is less than 91 milliseconds. Overall, we can see

that the overhead of SmartCP is modest.

V. RELATED WORK

Checkpointing is widely adopted in computer systems for

fault tolerance [23]–[25]. These generic checkpointing tech-

niques cannot be directly applied to smartphones due to the

limited resources available on smartphones. Moreover, generic

checkpointing is unnecessarily expensive for smartphones

since many apps are non-critical and thus may not need to

be checkpointed at all. Checkpointing on Android is also

studied [18]. For example, Hof et al. [18] extend the traditional

checkpoint-restart mechanisms in a manner that leverages the

characteristics of Android to save the core state of an app

for migrating apps between devices. With this approach, they

enable any app to become multi-surface. Thus, their purposes

are also different from that of SmartCP.

VI. CONCLUSION

In this paper, we presented SmartCP, a selective checkpoint-

ing methodology that features a novel model to estimate the re-

covery effort of each active app, and a constraint optimizer that

selects the most important apps for minimizing the estimated

recovery efforts and energy under given resource constraints.

We have built a prototype of SmartCP on Android and have

evaluated it using real-world traces under various constraints.

The results show that SmartCP has negligible overhead and

outperforms two alternative schemes by saving 28% more

recovery energy and 39% more recovery effort on average.
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