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Abstract—Modern datacenters increasingly use flash-based
solid state drives (SSDs) for high performance and low energy
cost. However, SSDs introduce more complex failure modes
compared to traditional hard disks. While great efforts have
been made to understand the reliability of SSDs itself, it remains
unclear how the device-level errors may affect upper layers, or
how the services running on top of the storage stack may affect
the SSDs.

In this paper, we take a holistic view to examine the re-
liability of SSD-based storage systems in Alibabas datacenters,
which covers about half-million SSDs under representative cloud
services over three years. By vertically analyzing the error events
across three layers (i.e., SSDs, OS, and the distributed file system),
we discover a number of interesting correlations. For example,
SSDs with UltraDMA CRC errors, while seems benign at the
device level, are nearly 3 times more likely to lead to OS-level
error events. As another example, different cloud services may
lead to different usage patterns of SSDs, some of which are
detrimental from the devices perspective.

Index Terms—SSD, storage system, fault-tolerance

I. INTRODUCTION

Flash-based solid state drives (SSDs) have become an indis-
pensable component in modern datacenters due to its superior
performance and low power draw [1]. Various applications,
such as database transactions [2], social network [3] and
online shopping [4], have been empowered by SSDs-based
large-scale storage systems deployed in datacenters around the
world. Therefore, the reliability of such storage systems is
critically important.

However, maintaining high reliability in SSDs-based stor-
age systems remains challenging. First, at the device level,
SSDs can experience multiple types of unique errors [5]–[8],
which may not be completely remedied by Error-Correcting
Code (ECC) [9], [10] or redundancy provided at the higher
levels [11]. Second, at the higher levels, the storage stack
can suffer from other events such as incorrect configuration,
wrong maneuvering and software bugs [12]–[15]. Moreover,
the potential correlations among error events across different
levels remains unclear.

Great efforts have been made to understand the reliability of
SSDs itself [16]–[19]. For example, Schroeder et al. [18] study
the errors of flash chips and SSDs and discover interesting
correlations between errors and other factors (e.g., age, wear,
lithography). Hao et al. [19] study the performance instability
involving millions of drive hours, especially the device latency
in RAID groups. While these studies provide valuable insights
on the characteristics of SSDs, they do not directly reveal how
the device-level behavior may affect the system as a whole.

In addition, studies on hard disk drives (HDDs) based
storage systems are also abundant [20]–[24]. Apart from
understanding HDD errors in the field [20]–[22], researchers
have analyzed the failures in the vertical stack of storage
systems [23], revealing the correlation between HDD errors
and upper-level system failures [24]. However, since SSDs-
based systems is different from HDD-based systems (e.g.,
NAND program errors, trim support throughout the kernel),
their studies and findings may not be directly applicable to
SSD-based storage stack.

In this paper, we take a holistic view to analyze the error
events in large-scale SSD-based storage systems. Our study
covers approximately 450,000 enterprise SSDs from three ven-
dors spanning over three year’s deployment. We collect error
events from three levels: (1) at the device level, SMART [25]
logs drive status; (2) at OS level, the kernel and monitoring
software logs error events such as missing device or buffer IO
errors; (3) at distributed file system (DFS) level, we collect
Pangu1 Master’s and Servers’ logs, which includes information
about a failed IO request in the DFS. With these abundant
logs collected, we further analyze their correlations vertically
in the context of the entire storage stack. We summarize our
preliminary findings as follows:

• Over 20% of OS-level error events are caused by
incorrect manual operations. This finding suggests that

1Pangu is the distributed file system deployed at the datacenters in our
study



Model Capacity Lith. Age Rationale
1-B 480GB 20nm 2-3yrs Baseline
1-C 800GB 20nm 2-3yrs Capacity
1-L 480GB 16nm 1-2yrs Lith.
2-V 480GB 20nm 2-3yrs Vendor
3-V 480GB 20nm 1-2yrs Vendor

TABLE I: SSD Models. Lith.: Lithography; Each model is
named as (Vendor id)-Rationale.

Services SSD Models Setups Function
Block 1-B,C,L,2-V,3-V Hy/Mul Pers/Jour
NoSQL 1-B,L, 2-V,3-V Hy/Mul Pers/Jour
Big Data 1-B,C, 2-V Single Temp

TABLE II: Cloud Services. Hy: Hybrid Setup, Mul: Multi-
ple Setup, Pers: Persistent storage, Jour: Journaling, Temp:
Temporarily storing intermediate data.

more intelligent administrative automation is highly de-
sired for achieving high reliability. In practice, we deploy
a new strategy, called OIOP (One Interface One Purpose),
which successfully reduce the failure rates of “Wrong
Slot”, a dominant type of human errors.

• Certain cloud services may cause unbalanced usage of
SSDs. In our study, around 5% to 10% SSDs are under
unbalanced usage due to improper data placement and IO
pattern introduced at the higher levels, which may lead
to more error events at the device level and eventually
affect the system reliability.

• SSDs heavily affected by UCRC (UltraDMA CRC)
errors are 2.7x more likely to lead to OS-level error
events and root cause of error can be faulty intercon-
nection. UCRC error is often assumed to be benign since
it is automatically solved by simple retry at the device
level. However, our study shows that such device-level
event may be eventually affect the system reliability.

In this study, though we focus on analyzing datasets ex-
clusively from our internal storage systems, we are convinced
our analysis and findings should be able to reach a broader
audience beyond Alibaba’s engineers and administrators. First,
our fleet is using commercial and standardized hardwares in-
cluding SSDs, servers and interconnection components. Many
products are also deployed in other data centers serving
same or similar functionalities. Hence, administrators from
other data centers may also encounter same or similar issues.
Second, our software design shares general similarities with
other large-scale storage system such as HDFS and Google
File System. Software engineers and designers may adapt our
findings to avoid certain fault-tolerance vulnerabilities and
build stronger systems.

II. SYSTEM ARCHITECTURE AND DATASETS

A. System Architecture

Figure 1 shows the architecture of the SSD-based storage
system used in this study. The dotted squares highlight the
device, OS, and DFS levels.

Cluster Level (Distributed File System)

Node Level

Block Storage NoSQL Table Storage Big Data Analytics

Device Level (SSD)
Self-Monitoring, Analysis, and Reporting Technology (SMART)

Service

Operating System Logs System Monitoring Logs

Chunk Master Logs Chunk Server Logs

Fig. 1: Storage System Architecture. The each dotted square
indicates the scope of a level within the storage stack

The system includes around 450,000 SSDs spanning three
years of deployment. As shown in Table I, the SSDs cover a
spectrum of variability in terms of vendors, sizes, lithographies
and ages, which enables us to isolate factors contributing to
the errors in the storage stack.

Each node can have 1 (Single), 2 (Hybrid) or 12 (Multiple)
SSDs. SSDs in Single setup are used for storing temporary
data. SSDs in Hybrid setup are used for journaling incoming
writes. SSDs in Multiple setup are used for persistent storage.
A rack can have 16 to 48 nodes with the same setup. Each
service owns an exclusive set of Pangu clusters and each
Pangu cluster includes 12 to 18 racks. The system supports
three types of cloud services including block storage, NoSQL
storage and big data analytics as shown in Table II.

B. Datasets

Table III lists all events we collect from each level in
this study and their definitions. Note that the events can be
collected with different frequencies in different granularity
(last two columns).

C. Workload

In this study, we study three major services in our pro-
duction systems. NoSQL service is Key-Value storing system.
Block Service offers users with virtual Logical Block Address
(LBA) where user can treat the LBA as a block device. The
BigData Service provides analytic workloads similar to Map
Reduce where users’ data are stored in an appended-only
manner.

D. Error Checking and Correcting

To better understand our results in later sections, we further
explain three important device-level errors and their checking
logic using Figure 2.

End-to-End (E2E) Checking: E2E checking is a data
protection mechanism that offers host-end to device-end data
integrity checking. When a host reads a piece of data from the
device that fails the E2E parity checking, the SSD will report
this event as an E2E error in SMART. Note that host-side
software may correct an E2E error.

UDMA CRC Checking: This mechanism verifies the cor-
rectness of data transmission between the device and the host
in the Ultra DMA (UDMA) transfer process. If the data fails



Level Event Definition Freq. Gran.

DFS Read Error DFS cannot read the requested data on time Event ServerWrite Erro DFS cannot finish writing with replication on time

OS

Buffer IO Error A failed read/write from file system to SSD

Event SSD
Media Error Software detected actual data corruption
File System Unmountable Unable to load the file system on a SSD
Drive Missing OS unable to find a plugged SSD
Wrong Slot SSD has been plugged to the Wrong SATA slot

Device

Host Read Total amount of LBA read from the SSD

Daily SSD

Host Write Total amount of LBA write from the SSD
Program Error Total # of errors in NAND write operations
Raw Bit Error Rate Total bits corrupted divided by total bits read
End-to-End Error Total # of parity check failures between interfaces
Uncorrectable Error Total # of data corruption beyond ECC’s ability
UDMA CRC Error Total # of CRC check failures during Ultra-DMA(UDMA)

TABLE III: Events Collected in the Target Storage System. Freq.: Frequency, event logs can be updated daily (“Daily”)
or upon new events (“Event”); Gran.: Granularity, the event can be traced back to a server or an SSD.

Buffer Manager

DRAM Controller

… NAND …
I/F

H
O
S
T

ECC CheckingUDMA CRC Checking

End to End Checking
SSD

Fig. 2: SSD Error Checking and Correcting Mechanisms.
The braces mark the coverage of checking/correction logics

the checksum test, the SSD records the event in SMART and
trigger a retry. CRC checking only verifies the correctness of
data transmission.

ECC Checking/Correcting: At a write operation, the con-
troller encodes an ECC (e.g., BCH [10] or LDPC [9]) before
storing data in the NAND chips. Failing to write the data with
the ECC can result in a program error, which will be reported
by SMART. At a read operation, if the data read does not pass
the ECC check, the controller will report this as a raw bit error
and start to correct the data. Failing to correct the data would
be recorded as an uncorrectable error in SMART.

III. PRELIMINARY FINDINGS & IMPLICATIONS

A. Impact of Human Errors

We summarize the characteristics of the OS-level events in
Table IV. For each type, we calculate the percentage of occur-
rences and the fractions of affected drives for each SSD model.
Also, we list the corresponding repairing approaches (2nd to
the last column), which are adopted by system administrators
one by one from top to bottom until the issue is resolved. Note
that the logs only record the working fix. For instance, after
observing a Buffer IO Error, the file system volume on the
device is first checked and repaired using the local file system
checker FSCK (e.g., e2fsck for Ext4). If FSCK fails to repair
the file system, the administrator will replace the drive. Based
on the working repair method, administrators also derive the
most likely root causes of the events (last column).

Among nearly 10,000 OS-level events, we do not observe
a dominant type of events or a dominant SSD model which
experiences significantly more error events. However, by ana-
lyzing the root causes in more details, we have the following
finding:

Finding 1: Over 20% of OS-level error events are caused
by incorrect manual operations. As shown in Table IV, more
than 20% of events are caused by incorrect manual operations.
They include 20.0% incidents of plugging drives to the wrong
slots and 0.4% software configuration errors that cause file
system unmounted. Such error events can be manifested as
failure at DFS level. For example, a “Wrong Slot” event on
the master node of the DFS may prevent the whole DFS from
functioning properly.

Although it may be part of human nature to err, we believe
such human mistakes can be reduced by more considerate
hardware/software co-design. For example, in the case of
plugging drives to the wrong slots, a hardware slot is mapped
to a mount point in the file system tree in a strict 1-to-1
fashion, which can easily lead to errors if an unmatched drive
is plugged in and used by the system. It is possible to add
anther layer of indirection or using an alternative mapping
between hardware slots and system software to break the
strong dependency and enable more intelligent management of
drive replacement. In Alibaba, we deploy a simple but useful
strategy, called One Interface One Purpose(OIOP). In OIOP,
for each setup, each software functionality, such as Persistence
or Journaling as shown in Table II, is binded to a specific
SSD hardware interface including traditional SATA and latest
U.2/M.2. For instance, in the hybrid setup, the Journaling
SSDs are using the M.2 interface while the Persistence SSDs
use the normal SATA interface. This simple hack successfully
reduces the “Wrong Slot” failure rates. Our log shows that,
with OIOP, only 3 “Wrong Slot” occurrences in the fleet of
100K SSDs of 6 months deployment where the corresponding
average number is 47 previously.

B. Impact of Cloud Services

Host Read and Host Write are the most direct metrics about
drive usage. In Table V, we calculate the hourly average value



Event Type % of Fix
in Each Type

Fractions of Affected Drives
by Model (in ‰) Repairing

Procedures
Most Likely
Root Causes1-B 1-C 1-L 2-V 3-V

Drive
Missing

20.1% 3.76 3.84 2.54 1.92 3.94 Resetting Node Software
13.9% 2.63 0.66 0.84 2.83 2.90 Replacing Cable Unstable Connection
2.3% 0.48 0.40 0.13 0.47 0.21 Replacing SSD Failed Device

Unmoutable
File System

0.4% 0.06 0.08 0.02 0.05 0.21 Resetting Software Config
3.0% 0.42 0.44 0.22 1.34 0.90 Drive Repartitioning File System Corruption
4.0% 0.80 0.53 0.18 1.51 0.93 Replacing SSD Failed Device

Buffer
I/O Error

13.8% 3.37 1.29 0.91 3.35 1.02 FSCK checking Data Inconsistency
1.8% 0.36 0.05 0.15 0.71 0.19 Replacing SSD Failed Device

Media Error 6.0% 0.42 2.55 0.51 0.88 0.31 Data Checking Data Corruption
13.9% 3.00 3.04 2.33 4.67 0.93 Replacing SSD Failed Device

Wrong Slot 20.0% 4.36 4.10 1.82 5.32 1.35 Replugging SSD Human Error

TABLE IV: Summary of OS-Level Events . Repairing procedures are tried out one by one from top to bottom in each event category.
The logs only record the working fix. After the fix, the root cause would be derived empirically and logged as well.

Host Read Host Write
Avg.
Value
/Hour

Block 7.69GB 6.56GB
BigData 1.57GB 1.22GB
NoSQL 6.10GB 5.28GB

CV Block 35.5% 24.9%
BigData 1.8% 3.7%
NoSQL 3.2% 6.2%

TABLE V: Host Read and Host Write Comparison between
Services. CV: Coefficient of Variance, the ratio of standard
deviation to mean.

of Host Read and Host Write under each cloud service (row
2 to row 4). While it is expected that SSDs under different
services may have different usage due to the different I/O
patterns, we find that under one service, the usage of SSDs
may also differ a lot.

Finding 2: Certain cloud services may cause unbalanced
usage of SSDs. In Table V, we further measure the variability
of the two metrics of the SSDs under the same service using
the coefficient of variation (CV), the ratio of standard deviation
to mean. Intuitively, a higher CV indicates that the hourly host
read and hostly host write vary more across devices. We find
that the CVs of the block storage service (35.5% for write,
24.9% for read) are much higher than those of the NoSQL
storage service (3.2% for write, 6.2% for read) and the big
data analytics service (1.8% for write, 3.7% for read), which
implies that the usage of SSDs under the block storage service
are much more unbalanced.

Figure 3 further illustrates the distribution of host read
under the three services. Each dot in the line equals the
cumulative count of SSDs that have hourly host read falls into
a range along the X axis, with a step of 0.5GB/hr and starting
from 0.5. The majority of SSDs under both NoSQL and Big
Data Analytics services have similar values (i.e., one major
spike in the corresponding curve). On the other hand, the SSDs
under the block storage service shows diverse values (i.e., two
spikes far apart) as marked in the figure. The distribution of
host write is similar.

Such unbalanced usage of SSDs may lead to a number of
consequences. For example, our analysis indicates that, on
device level, overly used SSDs have 177.3% higher RBER and
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Fig. 3: Distribution of Hourly Host Read for three ser-
vices.Each dot along the line indicates the cumulative amount
of devices that fall into a range of 0.5GB/Hour. The arrows
mark the two far-apart usage spikes under Block service.

68.4% more program errors which indicate that those SSDs
are more likely to suffer from NAND read and write errors.
Further, on OS level, we discover that overly used SSDs are
39.4% more likely to encounter “Drive Missing” failure and
261.5% more likely to encounter “Media Error”. Therefore, it
is important to monitor the device-level events to identify the
unbalanced usage and improve the load balancing.

To understand the root cause of the unbalancing, we look
into the design of the block storage service. We find that the
unbalanced usage is caused by two factors: the data placement
policy and the user I/O pattern. First, to reduce the number
of affected users in case a node crash, the Block Storage
Service tends to map user’s logical blocks to SSDs on a limited
number of nodes. Consequently, each node under the service
hosts relatively few users’ data. Second, the I/O patterns of
different users vary a lot, which leads to a diverse usage of
SSDs under the service. Currently, we are redesigning the data
layout of our distributed file system. By using a share-log
structure system, users’ data are now more evenly allocated
across SSDs. Our test cluster demonstrates that the usage
difference would be less than 5% among drives.

C. Impact of “benign” SSD Errors

UCRC (UltraDMA CRC) errors occur when the data trans-
mission between the device and the host goes wrong, which
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Fig. 4: Concentration of UCRC Errors among different
SSD models. UCRC errors are only generated within 7% of
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Fig. 5: Concentration of UCRC Errors among different
workloads. UCRC errors are only generated within 5% of
the total SSD population.

is often assumed to be transient (e.g., caused by transient
environmental factors like unstable voltage) and benign (i.e.,
automatically solved by a simple retry). However, we find that
this may not be true. In our datasets, the devices affected
with UCRC errors are more likely in encountering OS level
failures. For example, devices that suffered UCRC errors are
having about two times higher failure rates in the “Drive
Missing” category. To quantitatively measure the impact and
analyze the corresponding root cause, we study UCRC errors
by understanding its distribution, its correlation with other
device level events and its correlation with OS level events.

Finding 3: UCRC error occurrences follow Zipf Law
Distribution. To start with, we study how UCRC errors are
distributed among different device models and workloads. As
shown with the horizontal marker in the Figure 4 and Figure 5,
almost all SSD UCRC errors are generated within 10% of total
population regardless of its model or workload. To be specific,
in the Figure 4, by plotting the Cumulative Distribution of
CRC errors per device in each model. For example, for model

1-B 1-C 1-L 2-V 3-V
Heavy 2.71% 0.87% 0.14% 1.79% 1.85%
Light 1.63% 1.39% 7.19% 0.26% 0.12%

TABLE VI: Categorization of SSDs affected by UCRC
Error Each percentage number indicates the fractions of a
certain model SSD in the group, either Heavy or Light

1-C (the lowest curve), 93% of devices do not report any
UCRC errors. However, the top 1% of 1-C model can have as
many as 200 UCRC errors per device.

Moreover, we observe that UCRC occurrences are not
well-balanced among affected drives. Rather, from the visual
inspection in the Figure 4 and Figure 5, the pattern of UCRC
errors seems following a Zipf Law distribution, where a
small group of SSDs is responsible for majority of event
occurrences. To quantitatively verify this assumption, we apply
the Kolmogorov-Smirnov test (K-S test) [26]. The K-S test is
used to measure the distance between an observed CDF (i.e.
UCRC distribution in our case) and an empirical CDF (i.e.
the Zipf Law distribution). If the result of the K-S test, known
as the p value, is smaller than a confidence threshold, we
can accept the hypothesis that the two CDF follow the same
distribution. In our experiments, we set confidence level to be
0.05, a common threshold, and we are able to fit each of the
UCRC CDF distribution from five models and three workloads
into a Zipf Law CDF with a p value less than 0.05. In short,
UCRC occurrence follows Zipf Law distribution.

As Zipf Law is a discrete Pareto’s Law (also known as
Power Law), we are able to further categorize the UCRC
affected drives by using the Pareto’s Principle (i.e. the 80/20
rule). First, we set up three exclusive groups, Heavy, Light
and None. Then, for each model, we rank the devices by its
numbers of UCRC occurrences in descending order and place
the devices into the Heavy group one by one until Heavy
group accumulates no less than 80% of all UCRC errors. Then
for devices which are affected by UCRC error but not in the
Heavy, we place them in the Light and place drives which do
not have UCRC errors in the None. Table VI demonstrates the
results of grouping. In the table, each percentage presents the
fractions of a certain model drives under Heavy or Light. We
observe the ratio varies from model to model. For example,
in 1-B, the majority of UCRC affected drives belong to the
Heavy group. While in model 1-L, only 2% (i.e. 0.14% out
of 7.33%) of UCRC affected drives is in Heavy group.

With the categorization, one question emerges: for SSDs
in the Heavy group, whether their UCRC errors regularly
generates or suddenly spurs. To answer this, we plot the
monthly average UCRC error occurrences for devices in Heavy
as shown in the Figure 6. The upper half of the Figure 6
demonstrates the average newly generated UCRC in the Heavy
group in each month since device initial deployment. We
observe a steady generation of UCRC errors in the Heavy
group. As UCRC error is generated during data transmission
(i.e. host read/write), we also plot the monthly average usage
load of devices in the Heavy group as shown in the lower
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Fig. 6: UCRC monthly occurrences in Heavy Group. The
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half of Figure 6. From visual inspection, there exist possible
correlation between usage load and numbers of UCRC errors.
However, it remains unknown whether the UCRC error is the
byproduct of other device level errors or independently occurs.

In summary, we find that the UCRC error occurrence follow
Zipf Law distribution. Less than 3% of the devices (i.e. the
Heavy group) contributes more than 80% of all the UCRC
errors. Such distribution is consistent among different models
and workloads. By definition, UCRC errors indicate the trans-
mission failure between device RAM and host RAM. While
transient factors (e.g., voltage spikes) could cause transmission
errors, the concentration among a few devices and repeated
occurrence along time suggest that many UCRC errors may
be caused by non-transient factors (e.g., faulty hardware). Such
regular and steady trend suggests that we cannot simply ignore
UCRC errors.

Finding 4: UCRC error occurrences are not correlated
with other device level errors. To further understand the
nature of UCRC errors, we conduct the the correlation study
between UCRC error and other device error events. Our goal is
to determine whether UCRC error correlates with other device
level events or independently occurs. We use Spearman Rank
Correlation Coefficient (SRCC) [27] to quantitatively measure
the correlation between CRC Error and other events. The
value of the SRCC metric ranges from +1 (most positively
correlated) to -1 (most negatively correlated). A near-zero
SRCC value implies that there is little correlation. ±0.5 are
the threshold of showing moderate correlation.

Figure 7 shows the SRCC between UCRC error and all
other six types of events (i.e., Host Read, Host Write, RBER,
Program Error, Uncorrectable Error and End-to-End Error) on
different SSD models (i.e., 1-B to 3-V). Note that Host Read
and Host Write are the usage of SSDs instead of errors. From
the figure, we can see that there is positive correlation between
UCRC error and Host Read/Host Write on all SSD models,
which verify our assumption in Figure 6. Intuitively, as UCRC
errors occur during the data transmission between the host and
the device, more usage of SSDs naturally lead to more UCRC
errors.

Moreover, we also observe correlation in RBER and Pro-

UCRC Group Heavy Light None All
Total 53 216 2942 3211

Resetting 2 74 1732 1808
Repl. Cable 41 98 1065 1204
Repl. SSD 10 44 145 199

TABLE VII: Distribution of UCRC affected SSDs in “Drive
Missing” Failure Row 2-5 shows the numbers of “Drive
Missing” SSDs in different UCRC groups. All is the sum of
Heavy,Light and None

gram Error as well. However, such correlation might be spuri-
ous as all error events can be the byproduct of SSD usage. For
example, more Host Write can lead to more Program Errors
and consequently more data transmission between device and
host which can cause more UCRC Errors. Therefore we can
not simply study the correlation without leveling the SSD
usage. Hence, we select a subset of SSDs where their usage
are about the same (i.e., 75TB for read and 50TB for write
within a ±3% variance). This subset covers around 71.2%
of the entire population, and enables eliminating the potential
superficial correlation among events caused by different usage.

Figure 8 shows the SRCC with the normalized usage. We
observe that the no device-level events can be considered
moderately correlated with UCRC error. Moreover, for each
type of errors, the SRCC values across different models
vary from positive to negative, and thus there is no obvious
correlation. In summary, we find out that UCRC error is
positively correlated with device usage (host read/write) but
not correlated with other device level error events.

Finding 5: UCRC is NOT necessarily a benign error in
the long run. For UCRC error, as plotted in the Figure 9,
the Heavy and Light have higher failure rates than None in
every category. The biggest difference can be seen in the
Drive Missing failure where the likelihood is 2.7x times higher
between the Heavy and the None. The much higher likelihood
in failure rate indicates that while UCRC error does not impose
an immediate threat, such as a data corruption, it may latently
signal the device status is unhealthy.

To further analyze possible root causes of the difference, we
first cross reference the repair logs with device level logs to
calculate how many SSDs that encountered “Drive Missing”
are also affected with UCRC errors. As shown in the first
row in the Table VII, there are three exclusive UCRC groups
Heavy, Light and None plus the All which is the sum of
three groups. In each group, we can see the numbers of SSDs
that have been repaired by different repairing procedures. For
example, in the Heavy group, row 3 shows 2 SSDs, which
encountered “Drive Missing” failure, have been effectively
repaired by using “Resetting”.

From the table, we discover that most (i.e. 41 out of 53,
77.4%) SSDs in the Heavy group have been successfully
repaired by replacing the interconnection cable. However, only
45.4% of SSDs in the Light and 37.5% of SSDs in the
None have been repaired by replacing cable. As UCRC is
transmission error, the difference leads to a hypothesis: the
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markers are threshold of moderate correlation.
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Fig. 9: Failure Rate of Node Level Error Event in each
SSD Group. Heavy: most affected SSDs, Light: SSDs have at
least 1 UCRC error but not in the Heavy group, None: SSDs
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steady generation of UCRC errors can be caused by faulty
interconnection between host and device.

To validate this hypothesis, we further study device level

Light
Before

Heavy
Before

New
UCRC

Steady
UCRC

Resetting 74 2 69 2
Repl. Cable 98 41 7 4
Repl. SSD 44 10 3 0

TABLE VIII: UCRC Re-occurrence after Repairing Column
2-3 shows numbers of SSDs that belong to the Light/Heavy
group before the corresponding repairing. Column 4 rep-
resents numbers of SSDs generate new UCRC errors after
repairing. Column 5 represents numbers of SSDs steadily
generate new UCRC errors after repairing.

logs those repaired SSDs. As shown in Table VIII, we sum-
marize the numbers of SSD that encounter new UCRC occur-
rences after repairing. For example, in Row 2, 74 and 2 SSDs
belong to Light and Heavy before the Resetting Repairing.
After the fix, 69 out of 76 (i.e. 74 + 2) have new UCRC
occurrences and 2 out of 76 still have steady generation of
UCRC errors.

By reading the table, we discover that, after replacing the
cable (Row 3), most SSDs have not encountered further steady
UCRC occurrences. After replacing both the SSD and cable
(Row 4), no SSDs encounter steady UCRC errors afterwards.
By correlating the effectiveness and the temporal relationship



of error occurrences, we believe that the steady occurrences
of UCRC errors can be caused by faulty interconnection. The
faulty parts can be both the cable between device and the host
or internal interface component inside the SSD.

IV. LESSONS AND DISCUSSION

In this section, we discuss some lessons learned during our
study and hope they will be useful for different parties: system
designers and data center administrators.

System Designers. First, when designing a SSD-based
storage system, we need to pay great attention to the charac-
teristics of SSDs. For example, while SSDs internally deploy
wear leveling technology to combat the wear out effects of
NAND chips, the unbalanced data placement policies in the
storage system work against the purpose. Hence, the wear
feature and higher price tag of SSD can turn a previously
acceptable trade-off into a unpleasant deal. As a result, it
would be wise to re-examine the relevant mechanisms and
policies of storage systems to cater the features of SSDs.

Second, we need an efficient and comprehensive logging
system that binds an upper level service request to all the
lower level software and hardware components that serves this
request. Recent studies work on efficient logging in distributed
systems have made a good progress [28], they do not provide
an efficient way to identify software/hardware faults once a
failure occurs.

Third, while it could be rather difficult to completely
eliminate human errors, it is possible for designers to adopt
specific architecture hacks and automation strategies to make
the system more foolproof.

System Administrators Software-based repairing proce-
dures such as Resetting can efficiently amend the OS level
device failure such as “Drive Missing”. However, failures
can be also caused faulty hardware components such as
failing cables. In this case, simply following the Software-
First routine procedures for repairing may not only waste
time but also masking failure instead of fixing them. In short,
understanding the root causes of failures is as important as
fixing them.

V. RELATED WORK

To the best of our knowledge, we are the first to examine the
errors and failures in the vertical stack of SSD-based storage
systems. Prior studies mainly focused on either the reliability
of SSDs at the device level or failures in the hard drive based
storage stack.

Three prior works focused on the low level errors of SSDs
by analyzing the error distribution, the inter-error correlations
and the root causes in the field. More specifically, Schroeder
et al. [18] examined ten SSD models widely deployed in
Google. They carefully studied the prevalence, correlation
and implication of device level read and write errors. Meza
et al. [16] conducted a similar study on SSDs in Facebook
and made several key observations including the failure rate
trend of SSDs, prevalence of read errors and correlations
between SSD failures and host DRAM usage. Narayanan et

al. [17] researched five enterprise SSD models deployed in
the Microsoft data centers. They identified failure symptoms
of SSDs and then ranked SSD SMART attributes that can
be used to predict an imminent device failure. These works
provide deep understanding of lower level errors of SSDs in
the field. Complementary to these studies, our work focuses
on a different perspective, i.e., understanding the errors and
failures on the entire stack of storage systems. Our findings
include distribution and correlation not only in at the device
level but also in the upper levels.

Another group of related studies is the reliability analysis
of hard drive based storage stack. These works studied storage
systems from two perspectives. First, several works target the
errors, failure trends and reliability at the disk level. They
measured the occurrence of checksum errors [20], analyzed
the correlation between SMART attributes and disk failures
[21], and discussed the implications behind the Mean Time
To Failure (MTTF) of hard drives. Other researchers took a
different perspective by studying the correlation between disk
errors and storage system failures at the higher level. Jiang
et al. [23] observed that, apart from disk errors, protocols
bugs and faulty physical interconnection can also incur storage
system failures. Bairavasundaram et al. [24] investigated
a specific type of disk errors, i.e., the latent sector errors,
and studied their trend and the root causes. Additionally,
they analyzed the correlation between such errors and the
reliability of the storage system design. In summary, these
works thoroughly reviewed the reliability issues in the hard
drive based storage stack. However, SSD and hard drives are
two intrinsically different devices with different corresponding
hardware interfaces and supporting software. Their findings
may not be directly applicable to SSD-based storage systems.

VI. CONCLUSION & FUTURE WORK

We have analyzed the error events across different layers of
large-scale SSD-based storage system. Our findings reveal that
the storage system stack can be viewed as an ecosystem. Er-
roneous behaviors from software/human/hardware can latently
or explicitly affect the other levels and reduce the reliability
of the system. Our analysis and findings can be helpful for
multiple parties including storage system designers, data center
administrators and hardware vendors.

In the future, we will further analyze the root causes,
error propagation paths and correlations of more error events
in the storage stack. It is expected such study will provide
valuable insights to help system developers and administrators
to rethink the system designs and operational procedures.
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