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Abstract—Abnormal battery drain (ABD) can negatively im-
pact the user experience of smartphone apps, by consuming an
unnecessarily high amount of energy and causing short battery
lifetime. Unfortunately, user reports on ABD are usually too
vague for app developers to precisely know how and when the
ABD manifests. Therefore, it is important to have a diagnostic
tool that can help app developers identify the ABD manifestation
point for root cause analysis.
In this paper, we propose EnergyDx, an automated diagnosis

framework that assists developers in pinpointing the functions
that either directly lead to or commonly coincide with the
manifestation of ABD. EnergyDx features a novel 5-step analysis
algorithm to distinguish the real ABD manifestation point from
the power transition points caused by normal phone usage. We
have prototyped EnergyDx in Android and evaluated it with 40
different real-world apps for diagnosing ABD cases caused by
various types of issues. Our results show that EnergyDx reduces,
on average, 93% of the amount of code that the developers would
need to search for the root causes of ABD.

I. INTRODUCTION

While the computational capacity of the smartphone has

improved significantly in the past few years, the battery

technique has not improved at the same pace. Thus, battery

life time has become a critical bottleneck for smartphones and

highly impacts the smartphone user experience.

Abnormal Battery Drain. One type of the software defects
that have been reported to trouble a large number of users

is abnormal battery drain (ABD) [1][2]. An ABD usually

consumes an unnecessarily high amount of energy and causes

undesired fast battery drain. ABD can be caused by different

issues (e.g., inefficient design, misconfiguration) resulting in

overusing system resources. The ABD problem not only

impacts end users, but also hurts the reputation of an app

through negative user reviews [3][4].

Although users can easily notice the symptom, they of-

ten cannot remember precisely when and how an ABD is

triggered. Most of the time user reports only describe the

phenomenon and may not be helpful for the developers to

even reproduce the ABD in the development environment [5].

Without insightful information, it is hard for developers to
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understand and fix the ABD problem. Thus, an automated
tool is sorely needed for app developers to diagnose the root
cause of ABD in their app code.
Existing Approaches are Insufficient. Existing approaches

of handling the ABD problems can be mainly divided into

two categories. The first category adopts dynamic approaches

[6], [7], [3], [8] that try to detect ABD based on user

traces collected at program runtime. For instance, eDoctor [3]

identifies which app causes the ABD problem by analyzing

the system resource usage information recorded at runtime.

Then it suggests the end users uninstall the identified app.

Though these approaches can effectively help users increase

their battery life time, the app-level information is often too
coarse-grained for developers to identify where causes the
ABD problem inside the app code. The second category adopts
static approaches that rely on the analysis of the app source

code without running the app [9], [10], [11], [12], [13], [14],

[15], [16], [17]. For instance, static dataflow analysis [9] is

adopted to check whether a wakelock is correctly acquired

and released in certain code paths, in order to detect a special

type of ABD. Though these solutions can provide developers

fine-grained information, they are usually limited to a certain

type of ABD (e.g., no-sleep). Thus, it is hard for them to
diagnose the ABD caused by other (possibly unknown) issues
(e.g., misconfiguration, looping). Hence, it is highly desired to
have a novel methodology that can help developers (instead

of users) diagnose the root causes of ABDs caused by various

(and sometimes unknown) issues.

Key Observation and Challenge. After receiving ABD

reports, developers usually hope to know the context informa-

tion about the ABD (e.g., how and when the ABD manifests)

in order to reproduce and diagnose the problem. To that

end, we observe that when an ABD manifests, the power

consumption of the whole app typically transits from low

(normal) to high (abnormal). The system events of the mobile

OS that are always invoked around the manifestation points

can provide developers insightful diagnostic information of the

ABD. Based on our investigation results, these events often

either directly trigger or are closely related to the ABD. For

example, when a user misconfigures the K9 Mail app [18], the

app starts to keep making connection with a remote server,

which abnormally consumes high power. Hence, identifying

the event of user configuration can provide key information for

developers to diagnose this example ABD (see Section III-B
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for more details). Therefore, it is important to accurately pin-

point this manifestation point and the closely-relevant events

in the user traces.

Unfortunately, it is non-trivial to identify the manifestation

point in real-world cases, because normal phone usage could

also cause similar transitions in power consumption. For

example, taking a picture can immediately transit the phone

power consumption to a higher level. Such a power transition

point can look similar to the manifestation of a real ABD.

In addition, the power consumption values can sometimes

be deceiving. For example, some long-running services (e.g.,

location, notification) can be executed concurrently with other

normal events, making those events appear to be consuming

more power than normal. Thus, how to distinguish the real

ABD manifestation point from normal power transition points

is a critical challenge.

Our Contribution. In this paper, we propose EnergyDx,

an automated trace-based diagnosis framework that assists

app developers in pinpointing the system events that are

always invoked around the manifestation of ABD. With the

reported event information, developers can directly go to the

corresponding code segments to fix the ABD problem.

EnergyDx focuses on a diagnostic methodology. After the

traces are collected from different users under various contexts,

EnergyDx starts the diagnosis that features a novel 5-step anal-

ysis algorithm. In particular, EnergyDx first employs a ranking

and normalization approach to remove the transition points

caused by normal usage. After that, we adopt outlier analysis

to differentiate the transition points caused by different issues

based on the amplitude of power variation. The events and the

corresponding callbacks within a certain range of the selected

manifestation points are then reported to developers in an order

based on their probability of causing the ABD. Developers can

then get the context information of the ABD and narrow down

their attention to the code segments called immediately after

those events, which greatly reduces the searching efforts.

Specifically, this paper makes the following contributions:

• We make a key observation that power consumption of an

app often transits from normal to abnormal when an ABD

begins to manifest, and the relevant events can usually

provide useful information for developers to fix the ABD.

• Based on the observation, we propose EnergyDx, an au-

tomated diagnosis framework that assists app developers

in diagnosing ABD by identifying the real manifestation

point and the relevant events.

• We have prototyped EnergyDx in Android. Our results

show that EnergyDx can successfully diagnose the ABD

caused by different reasons and can reduce, on average,

93% of the amount of code that the developers would

need to search for the root causes of ABD.

The rest of the paper is organized as follows. Sections II

and III introduce the design details of EnergyDx. Section IV

presents our evaluation results. Section V discusses the related

work. Section VI concludes the paper.

Fig. 1: Statistical analysis of event distance of 40 ABD cases.

II. DESIGN OF ENERGYDX

In this section, we first introduce the key observation that

motivates our design of EnergyDx. After that, we present the

design overview of EnergyDx.

A. Key Observation

As background, in mobile OS like Android, the app logic

is organized into activities. An activity contains widgets that

users can interact with, such as buttons and text boxes.

When users interact with widgets, Android OS and apps work

together to dispatch the related events to the correct widgets.

After that, the callbacks (e.g., onClick()) corresponding to

certain widgets are invoked to perform related tasks. As a

user interacts with an app, the activity can be in different states

during its lifecycle. Thus, the events related to user interaction

and activity lifecycle represent the main app logic.

We observe that the events that are always invoked around
the manifestation point of an ABD are often closely related
with the ABD root cause. ABD can be caused by complex

events related to user interaction or activity lifecycle and their

interactions. According to a report [19], many popular apps

(e.g., K9Mail, Tinfoil and Wallabag) and even the Android

framework sometimes failed to handle them correctly, resulting

in abnormal battery drain. An ABD usually manifests after the

occurrence of particular events in a particular code path. When

an ABD is triggered, power consumption of the app commonly

transits from normal (low) to abnormal (high).

To confirm our observation, we devise a metric named

event distance to quantitatively analyze the relation between
the ABD triggering event and the ABD manifestation point

(i.e., the power transition point). Event distance is defined as

the number of events (user interaction or activity lifecycle)

invoked between (exclusive) the real triggering event (i.e., root

cause) and the event that is closest to the manifestation point.

The shorter the event distance is, the manifestation point is

more closely related to the root cause.

We complete the statistical analysis of 40 real ABD cases

caused by different issues. Figure 1 shows the analysis result.

90th percentile of the analyzed event distances is 3 or shorter.

In an Android app, five events will typically be generated when

a user simply switches from one activity (user interface) to

another. Thus, the result shows that an ABD triggering event

is indeed near the manifestation point in most of the cases.

Manifestation points can lead developers to the events that are

closely related to the ABD. Then, developers can directly go

to the pinpointed code regions to fix the ABD problem.
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Fig. 2: Events around the manifestation point (sample point

238 in Figure 3). The 1st event (line 1) is the root cause event.

The 5th event (line 5) is the manifestation point, which may

not always be logged in the trace.

Fig. 3: Power trace of the K9 Mail ABD. The dotted square

represents the normal usage. The solid square represents the

power consumption when the ABD manifests.

Example. Figure 2 shows a trace of the K9 Mail app

as an example. We record the events around the man-

ifestation point when power consumption of the whole

app transits from normal to abnormal (the ABD begins

to manifest). The power transition is caused by a con-

nection attempt with the remote server, as represented in

the 5th line “Ljava/fsck/Socket;->connectV”. The connec-

tion is triggered by user’s misconfiguration of the ac-

count (see detailed discussion in Section III-B). As shown

in Figure 2, after the user changes the account config-

uration (“Lcom/fsck/k9/activity/setup/AccountSettings: onRe-
sume” is invoked) and returns to the message list (“Lcom/f-
sck/k9/activity/MessageList”), the ABD begins to manifest.

In this example, the root cause is the 1st event “Lcom/f-
sck/k9/activity/setup/AccountSettings: onResume”. The mani-
festation point is the 5th event, so the event distance is 3

because there are 3 events between the two (exclusively).

Sometimes, the manifestation event is not logged in the trace,
because it is not related to either user interaction or activity

lifecycle and thus not logged for the consideration of runtime

logging overhead. In those cases, the logged event that is

closest to the manifestation point is used instead. For example,

if the 5th event is not logged in Figure 2, the 4th event would

be identified as the manifestation point, which would still help

quickly find the root cause (the 1st event).

Figure 3 plots the power consumption of the K9 Mail ABD.

The x-axis is sampling time points. The y-axis is correspond-

ing power consumption. Figure 3 not only shows that ABD

manifestation causes power transition (around sample point

238), but also includes normal usage events that can also

generate power transition points. These spikes (0 to 150 points,

inside the dashed box) can generate misleading diagnosis

information because they are the power consumption when

Fig. 4: The design and workflow of EnergyDx.

a user is composing an email. Thus, it is challenging to

distinguish the ABD manifestation point from those transition

points caused by normal usage.

B. Design Overview

EnergyDx aims to identify the ABD manifestation points in

the collected traces. After that, EnergyDx reports to developers

the events that are always invoked when the ABD begins to

manifest. Though EnergyDx is not designed to directly identify

the specific API that drains the battery, it can pinpoint the

events closely related to the ABD. Developers can then check

only the pinpointed code regions, so the search space for the

root cause can be effectively reduced.

Figure 4 shows the system architecture and workflow of

EnergyDx, which can be mainly divided into the following

four parts. First, upon the report that a certain app causes

abnormal battery drain, the developers can first instrument

the app. It is important to note that, the developers are not

required to manually instrument every event and just need to

run the instrumenter (Section II-C) provided by EnergyDx. To

reduce the runtime overhead caused by logging, EnergyDx

only instruments the events related to user interaction and

activity lifecycle. These events are not fine-grained, yet can

sufficiently provide important diagnostic information. Second,

when users download and run the instrumented app on their

phones, instrumented events and utilization of system hard-

ware components are logged into event traces and utilization

traces, respectively. These traces are then transmitted to a

remote server, when the smartphone is in charge with WiFi,

which is a common practice to upload traces without impacting

the normal usage of smartphone [3]. Thus, the transmission

process does not impact the normal usage of smartphone.

Third, after receiving the traces, the EnergyDx manifestation

analysis (discussed in Section III) running on the back-

end server performs a novel 5-step analysis and catches the

manifestation points in the collected traces. Finally, EnergyDx

reports the events and corresponding callback functions that

are always invoked when the ABD begins to manifest. It is

important to note that the traces collected by EnergyDx are

preprocessed to remove any user identifies, such as phone

numbers or IP addresses in order to protect the user privacy.

Specifically, EnergyDx reports the events and their corre-

sponding callbacks that coincide with the manifestation of
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Fig. 5: A simple example of event log from K9 Mail.

energy anomaly to reduce developer’s search space of the

ABD root cause. Again, it is challenging to identify such

a manifestation point because some normal operations may

also cause power consumption increases. Second, it reports

the power and corresponding event traces.

TABLE I: Examples of events related to user interaction and

activity lifecycle.

Category API Class Name Example APIs
Activity Life android.app.Activity onCreate, onStart,

Cycle Related onResume, onPause, onStop, etc.

UI Related android.View onClick, onLongClick,

onKey, onTouch, etc.

C. Trace Collection

Two pieces of runtime information about the suspect app are

recorded: Event durations and system resource utilizations, in

order to estimate the online power consumption of each event.

Event Trace Collection. The event trace is collected

through instrumenting events related to user interaction and

activity lifecycle with the instrumenter provided by EnergyDx.

We create a pool of the events to be instrumented. Table I

shows the examples of common events in the created pool. The

input of the instrumenter is the Android application package

(APK), which contains all the Dalvik bytecode files and other

resources (e.g., images) for an Android app. After receiving

the APK file, EnergyDx first unpacks the APK file and disas-

sembles the Dalvik byte code files into assembly-like format.

Then it performs the instrumentation of the events related to

user interaction and activity lifecycle. After that, it compiles

the instrumented files back to Dalvik bytecode files and then

packages them back to a new APK file. When users run the

new APK files on smartphones, the durations of corresponding

events are recorded using system timestamps. Figure 5 shows

an example event trace, when a user uses the K9 Mail app. The

number at the beginning of each line shows the timestamp. “+”

represents the entrance point of the function and “-” represents

the exit point of the function of a certain event. Moreover,

the name of the class in which the event is invoked is also

recorded, such as Lcom/fsck/k9/service/MailService.
Utilization Trace Collection. In order to estimate the power

consumption of the reported ABD app, we adopt the method

proposed in [20] to implement a background service that

periodically records the utilization of system components (i.e.,

CPU, display, WiFi, etc.). Specifically, it monitors the proc
filesystem (procfs) to gather hardware utilization assigned to

the target app. The utilization tracking is limited only to the

suspect app identified by its PID due to the support for this

functionality provided by the Linux kernel. Thus, the existence

of multiple running apps does not affect utilization tracking

of the suspect app. A tracking period of 500 ms is used by

EnergyDx for a trade-off between power estimation accuracy

and runtime logging overhead. Based on our experiments, a

tracking period of 500 ms is sufficient to capture most energy

anomalies because they need to last long enough to cause

undesired battery drain.

III. MANIFESTATION POINT IDENTIFICATION

Manifestation analysis is the key feature of EnergyDx

that distinguishes the real ABD manifestation point from the

transition points caused by normal usage.

A. Manifestation Analysis Algorithm

Figure 6 shows the workflow of manifestation analysis,

which mainly consists of five steps.

Step 1: Power Estimation of Events. The power con-

sumption of each instrumented event (i.e., its corresponding

callback function) is estimated based on the collected event

durations and estimated app power consumption. Step 1 in

Figure 6 shows the event power estimation process. Four

example traces (e.g., E1 to E4) record the timestamps of

starting and ending points of three example events (square,

circle, triangle). Four power traces (e.g., P1 to P4) contain

the timestamp of each sample point and the corresponding

power consumption. Taking these traces as inputs, the power

consumption of each of the three events is calculated by

mapping each pair of power and event traces according to the

timestamps. The traces collected from different users in Step

1 of Figure 6 are then represented as a sequence of events

with their corresponding power in the chronological order.

Note that the power consumption estimated based on [20]

is that of the entire app (not just that of a single thread) during

the execution of this event. The estimation error is reported to

be less than 2.5%, which is sufficient to characterize the app
power transition. Power modeling is not a main contribution
of our paper, so other more fine-grained techniques (e.g., [21])

can also be integrated with EnergyDx. In addition, to handle

traces from phones with different hardware and software

configurations, power model scaling [22] is performed to make

their power data comparable.

Step 2: Event Ranking. Different events may have different
power consumption, according to their functionalities. For

example, retrieving data from a remote server consumes more

power than simply processing user inputs. Transition points

caused by raw power difference between different events can

generate misleading information. Thus, looking at the raw

power consumption of a single event instance is not correct.

For a certain event, we analyze different instances across

different traces and rank all the instances of the same particular

event across all the traces based on their power consumption.

As a result, the rankings can be used in the next step to

normalize the power consumption of each event instance to

its respective “typical” value, such that the normalized power

is comparable among different events.
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Fig. 6: The work flow of EnergyDx manifestation analysis includes 5 steps to identify real ABD manifestation points.

Step 2 in Figure 6 shows the 3 events (in the 4 traces

from Step 1) are ranked based on the analysis process. We

can see from Step 1 that the events represented by squares

consume higher power than those represented by circles during

normal use due to functionality difference. Thus, the power

transition points from circle events to square events in traces

1, 3 and 4 can generate misleading diagnostic information,

because circle events and square events consume different

amounts of power. However, after ranking, we see most of the

instances represented by squares have similar ranking. Only

the 7th instance of the square event from Trace 2 is ranked

much higher than the other instances of the event. This event

instance has a high probability to have been impacted by the

ABD. In contrast to squares, the instances of the circle event

are more evenly divided into two groups.

Step 3: Event Normalization. Based on the ranking infor-
mation, we use an event normalization scheme to remove the

transition points caused by the raw power difference between

different events. Again, this is to compare the event power

normalized to their respective “typical” value, such that the
power values are comparable among different events. For
a certain event, each instance is normalized to the power

value at the 10th percentile of instances across all the traces.
Specifically, given a trace, for any event instance i, on the axis,
its normalized power pnorm i is represented as pi

p10thpercentile
,

where p10thpercentile is the 10th percentile of the power

consumption of other instances of the same event. Using the

value at the 10th percentile as the base power is to reduce

the impact of power outliers generated by previous steps

(e.g., utilization tracking and power estimation). Moreover,

the selection of power value at the 10th percentile gives us

good experimental results, but this value can be adjusted for

different training sets. The rationale for using this normalizing

approach is that it eliminates the relative power consumption

differences among different values, but keeps the difference

among different instances of the same event. The instances

that have relatively low normalized power (e.g., around 1,

close to the base power) are invoked during normal usage.

Those instances that maintain high normalized power have a

high probability to have been impacted by the ABD.

After normalization, event instances in each trace are repre-

sented with normalized power (as shown in Step 3 of Figure 6).

We see traces 1, 3 and 4 (Step 3 in Figure 6) are now flat and

those transition points caused by power difference between

various events are removed. For trace 2, event instances

have low normalized power at the beginning. After the event

represented by the triangle is invoked, the normalized power

of the following instances increases to a high level, which

indicates a high probability of being impacted by the ABD.

Step 4: Manifestation Point Detection. This step detects
the ABD manifestation point based on the normalized power.

When the ABD manifests, the normalized power consumption

of the app transits from normal (low) to abnormal (high).

Thus, event instances located at the manifestation point should

show high power variation. In order to quantify the power

variation caused by each event, we devise a metric named

variation amplitude. The variation amplitude of the ith in-

stance Vi in a certain trace (based on the chronological order

of all event instances) is calculated as pnorm i+1 − pnorm i .

Moreover, if the normalized power keeps increasing from

the ith instance until the (i + n)th instance, Vi is calculated

as pnorm i+n − pnorm i . The intuition is that, in some real-

world cases, the power consumption of the app gradually

increases after the ABD is triggered and it will impact multiple

events during the power increasing process. Step 4 in Figure 6

shows the variation amplitude attribution process of each event

instance in the four traces. For traces 1, 3 and 4, normalized

power remains almost flat and the corresponding variation

amplitudes of those event instances remain at a low level. For

trace 2, there exists high power variation at the event instance

represented by the triangle as shown in Step 3. Thus, that

instance is attributed with a much higher variation amplitude

than the other instances.

Based on the variation amplitude of each event instance, we

select the manifestation points by performing outlier detection.

This is because most of the events keep their power flat and
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have low variation amplitudes during normal usage after event

normalization. It is likely that only the event instances around

the manifestation points have higher variation amplitudes.

Specifically, for a certain trace, we first retrieve the variation

amplitude of every event instance in the chronological order.

After that, for the retrieved data set, we calculate the lower

quartile Q1 (defined as the 25th percentiles) and the upper

quartile Q3 (defined as the 75th percentiles). Then we obtain

the interquartile range IQ defined as Q3 −Q1 . The event

instances whose variation amplitudes are larger than the upper

outer fence (defined as Q3 + 3 × IQ) are then selected as the
possible manifestation points. The parameters of the algorithm

(e.g., Q1, Q3) are decided through experiments which are

determined to select out the manifestation points and to

remove those noises generated by event power difference. As

shown in Step 4 of Figure 6, no outlier is detected in traces 1,

3 and 4. For trace 2, one outlier, which is marked with a red

dashed circle, is detected. The detected outlier is then treated

as the point where the ABD begins to manifest.

Step 5: Reporting Problematic Events. After the manifes-
tation points are detected, we take all event instances within

a certain range from the detected manifestation point (called

the manifestation window) as potential events related to the

ABD’s manifestation. This is based on the observation made

in Section II-A that the root cause of an ABD is normally near

the manifestation point. In addition, having a manifestation

window can result in two more benefits. First, it gives us

more events to associate with the ABD since the user might

need to do a few things in succession to make the ABD

manifest. Second, the window also provides developers with

more context information, such as what is happening when the

ABD begins to manifest.

In order to provide developers more insightful diagnostic

information, we sort the events within the manifestation win-

dow according to their relationship with the ABD, which is

measured with the following scheme. Based on the feedback

from online Android forum, through checking the numbers

of app downloads and the user ABD reports [5], developers

can normally estimate the percentage of users that have been

impacted by the ABD. The developers could also hire a group

of people to collect traces and find out this percentage with

app-level detection tools, such as eDoctor [3]. The events that

have impacted a similar percentage of users should have a

higher probability to be related to the ABD manifestation.

These events should thus be considered first.

Thus, to sort events, we calculate the percentage of traces

that a certain event in the manifestation window has impacted.

Specifically, if one event is within the manifestation window

of a certain trace, this trace is assumed to have been im-

pacted by that event. Step 5 in Figure 6 shows the events

in the manifestation window (assuming a size of 2 events

for example) and the corresponding percentage of traces they

have impacted. The events represented by the triangle have

impacted one out of the four traces (i.e., 25% of the collected

traces). As explained above, the traces are collected from

different users under different contexts, thus events within the

0 50 100 150

200

300

400

P
ow

er
 (

m
W

)

 Power

(a) Raw Power Consumption of Events (Step 1)

0 50 100 150
0

1

2

N
or

m
al

iz
ed

 
P

ow
er

 

Normalized  Power

(b) Normalized Power Consumption (Step 3)

0 50 100 150
-0.5

0

0.5

V
ar

ia
tio

n 
A

m
pl

itu
de BA

Manifestation Window

(c) Variation Amplitude (Step 4)

Fig. 7: Diagnosis process of K9 Mail. The power transitions

circled with dashes are not caused by the ABD.

manifestation window can contain the ones that trigger the

ABD and also those randomly generated during the users’

normal interaction. This percentage-based sorting process can

help filter out users’ normal events, which often impacts a

significantly different percentage of users from that provided

by the developer (percentage of users impacted by the ABD).

B. A Real-World Example: K9 Mail

Figure 7 illustrates the diagnostic process with a real-world

example: K9 Mail. Figure 7a plots the power consumption

of each event instance in the chronological order. Note that

the x-axis does not denote the exact execution time, but just

discrete events in the chronological order (i.e., Step 1). The

two parts circled with dashes represent the power transitions

caused by raw power difference between different events. The

events such as Checkmail consume more power than the others
due to their different functionalities (e.g., refresh the mail list

in this example). Thus, those power transitions are not real

manifestation points and should be eliminated.

Figure 7b plots the normalized power of each event after

Steps 2 and 3. As we can see, transition points caused by event

power difference are removed by event power normalization.

Figure 7c shows the variation amplitude of each event instance,

calculated based on the normalized power (Step 4). Points A

and B have high variation amplitudes due to high normalized

power variation caused by them. Based on the variation

amplitude of each event, transition point detection is then

performed. Figure 8 shows the detection result. Points A and B

in Figure 7c are detected as the manifestation points, because

they have similar variation amplitudes which are much higher

than the others in the trace. After that, we select the events

within the manifestation windows of the two points (Step 5).

The above process is automatically repeated for all the

collected K9 Mail traces. All the events that have impacted

any traces are sorted based on how many traces they have

impacted out of all the traces. Table II shows the first six events
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Fig. 8: Manifestation point detection process of K9 Mail.

TABLE II: Top K-9 Mail events reported by EnergyDx

Order, Event % Order, Event %

1, AccoutSettings: onResume 16.6 4, AccountSettings:onCreate 8

2, MessageList:onResume 16.6 5, MailService:onDestroy 8

3, K9Activity:onResume 16.6 6, MailService:onCreate 25

whose percentages are closest to the percentage value provided

by the developers (15% in this case). Among those events,

MailService is an Android service that runs in the background
to send and receive email. MessageList is an activity that

lists all emails to the user. AccountSettings is an activity that
allows the user to change preferences. Knowing that the energy

anomaly is associated with these three events, the search space

of the root cause can be effectively reduced from 98,532 lines

to only 161 lines of the app source code.

We now look into the pinpointed 161 lines for the ABD

root cause. By checking the event AccountSettings: onResume,
which is always invoked when the ABD manifests, we find

that the developers did not set a limit on the allowed number

of connections to the IMAP server. For instance, Gmail only

allows 15 simultaneous IMAP connections per account. As

a result, a user can change this setting in the AccountSettings
activity to a high number that exceeds the limit allowed on the

IMAP server and thus gets declined by the server. This wrong

setting makes the app periodically try to connect with the

server, which results in the undesired ABD. The information

reported by EnergyDx can indeed effectively help developers

reduce the search space of finding this real root cause. This

has been confirmed by the GitHub site of K9 Mail, which

shows that the developers have found and fixed this ABD.

IV. EVALUATION

We now evaluate EnergyDx with 40 downloaded apps. Table

III shows the corresponding information of each app.

A. Experimental Methodology

We implement EnergyDx in Android 4.4. The manifestation

analysis is implemented in Python and R [23]. Real-world

phone usage and power traces are collected from more than

30 different volunteer users with various smartphones. It is

important to note that EnergyDx does not depend on any fea-

tures particular to Android 4.4 and so has no problem running

on the newest version of Android. In order to evaluate the

effectiveness of EnergyDx, we apply EnergyDx to 40 different

ABD apps. The app selection is mainly based on the following

rules. First, some of the 40 apps (e.g., Facebook, K-9 Mail)

have been studied by other papers [3], [12]. We select these

apps to show EnergyDx works on these well known cases.

TABLE III: Apps used to evaluate EnergyDx.

ID App Downloads Root Cause Code
1 Facebook 1B+ no-sleep 98.5%

2 Boston Bus Map 100k+ loop 86.04%

3 K-9 Mail 5M+ configuration 99%

4 CommonsWare 10M+ no-sleep 85.2%

5 Open Camera 10M+ no-sleep 98.3%

6 Droid VNC 1M+ no-sleep 94.46%

7 Binaural-Beats 5M+ no-sleep 95.6%

8 Zmanim 100K+ no-sleep 96.5%

9 MonTransit 500K+ no-sleep 94.1%

10 Aripuca 100K+ no-sleep 96.2%

11 Conversations 10K+ configuration 96.6%

12 Ushahidi 50K+ no-sleep 91.6%

13 Sofia Navigation 50K+ configuration 96.5%

14 Osmdroid 5K+ no-sleep 87.3%

15 Geohashdroid n/a no-sleep 96.2%

16 BabbleSink 50K+ no-sleep 82.4%

17 Traccar 50K+ no-sleep 96.2%

18 Tinfoil n/a loop 92.4%

19 Pedometer 100K+ configuration 91.7%

20 FBReader 500K+ no-sleep 90.1%

21 Owncloud 100K+ configuration 97.3%

22 Sensorium 50M+ no-sleep 92.1%

23 Signal 500K+ loop 98.3%

24 Summit APK 500+ no-sleep 89%

25 ValenBisi 10M+ no-sleep 93.5%

26 Ulogger n/a no-sleep 85.7%

27 AAT 50K+ no-sleep 97.4%

28 Wallabag 1M+ configuration 98.57%

29 Tomahawk Player n/a no-sleep 89.9%

30 Call Meter n/a no-sleep 96.69%

31 Simple Note 50K+ configuration 98.8%

32 NextCloud 50K+ configuration 99.3%

33 ArtWatch 5M+ loop 92.3%

34 WADB 1M+ no-sleep 94.3%

35 MFacebook 500K+ loop 99%

36 Kryptonite 500+ no-sleep 97.2%

37 Flybsca 10K+ configuration 96.6%

38 Throughput n/a loop 98.3%

39 Piano n/a no-sleep 98.3%

40 Fitdice n/a configuration 93.7%

Second, other apps (e.g., NextCloud, MFacebook) are selected

because they are reported in online Android forums to have

abnormal battery drain. Also, we select those apps because

they cover the most common ABD root causes: configuration,

no-sleep and loop. Configuration ABD represents the case in

which an app is misconfigured leading to fast battery drain. No

sleep ABD does not correctly release certain resources. Loop

ABD triggers the app to periodically perform unnecessarily

tasks. According to the investigation in [2], the three issues

account for about 89.3% of all the causes.

B. Overall Results

The metric code reduction is used here to evaluate the

effectiveness of EnergyDx and is defined as
NAll−NDiagnosis

NAll
,

where NDiagnosis represents the number of code lines respon-

sible for the events that EnergyDx reports for developer to

diagnose, and NAll represents the entire code lines of the

app. Intuitively, the higher the code reduction is, the more

useful the diagnostic information provided by EnergyDx is.

The overall result shows that EnergyDx reduces, on average,

93% of the amount of codes that developers need to search for
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the root causes of ABD. Based on the fine-grained diagnostic

information provided by EnergyDx, we have been able to fix

the ABDs of all the 40 apps and got confirmed with the

developers, either by finding the same fixes in their newer

versions or getting acknowledged through communication with

them.

Comparison with Existing Approaches. As discussed

before, most existing approaches either try to detect which

app causes ABD or analyze the app source code to find

only a specific type of ABD (e.g., no-sleep). Thus, they

focus on different problems and are thus not comparable with

EnergyDx. However, in order to highlight the contributions of

EnergyDx, here we try to compare with two best-related state-

of-the-art studies: No-sleep Detection [9] and eDelta [10]. We

select No-sleep Detection as a baseline because they report

that many ABDs are caused by no-sleep bugs (e.g., wakelock

or sensors are not properly released) [9]. Of course, because

it is designed to find only no-sleep ABD by leveraging data

flow analysis in the source code, it cannot detect other types of

ABD. The second baseline, eDelta [10], is designed to detect

high energy deviation APIs in the app code by assuming that

the energy consumption of some APIs would rise above a

certain threshold after ABD manifestation. However, when the

ABD is caused by an API whose energy deviation is relatively

small (but might last long), eDelta is not able to detect it.

We compare EnergyDx with No-sleep Detection and eDelta

by applying all the three approaches to the 40 tested apps.

Note that both No-sleep Detection and eDelta are designed as

detection tools that are supposed to identify the root cause.

Hence, if they cannot detect the right root cause, these two

approaches cannot reduce the search space of the right root

cause. In that case, their code reduction would be 0%. In sharp
contrast, EnergyDx is a diagnosis tool that aims to provide

developers a list of possible events impacted by the ABD for

the developers to find the real root causes themselves. In our

results, No-sleep Detection is able to detect the root causes of

all the 21 apps that indeed have no-sleep ABD (i.e., 100% code

reduction). But for the other 19 apps without no-sleep ABD,

No-sleep Detection cannot provide any useful information and

thus has a 0% code reduction. Overall, its code reduction

is (100% × 21 + 0% × 19)/40 = 52.5%. Similarly, eDelta
is able to detect the ABD of 26 apps that have high-energy

deviation APIs, but has a 0% code reduction for the rest apps.

Overall, eDelta’s code reduction is 65%. Both are much lower
than that of EnergyDx (93%). Again, both baselines are not
exactly designed for ABD diagnosis. This comparison is just

to highlight the importance of ABD diagnosis.

C. Case Study with Typical Apps

In this section, we present detailed analysis when EnergyDx

is applied to apps with different ABD issues.

OpenGPS is an open-source app used to track a user’s

location [24]. Figure 9 shows the diagnostic process. Figures

9a, 9b, and 9c plot the raw event power, normalized event

power, and variation amplitude of each corresponding event as

a user interacts with the app. Figure 10 shows the transition
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Fig. 9: Manifestation point identification for OpenGPS.

Fig. 10: Manifestation point identification for OpenGPS.

points detection process according to the variation amplitude

of each event instance in Figure 9c. Two transition points are

detected (e.g., points A and B as shown in Figure 9c) in this

case. Those events within the manifestation windows (e.g.,

around A and B) are then selected. After that, we calculate the

percentage of users that have been impacted by each selected

event. According to the information (e.g., percentage of users

impacted by the ABD) reported by the developers, we sort

different selected events based on how close their percentages

are to the reported one.

After sorting the selected events, the first two events are

LoggerMap:onPause() and Idle(No display) (Table IV). Log-
gerMap:onPause() is an activity-lifecycle event that is invoked
when the current activity is switched to the background.

0 50 100 150 200 250 300
Sample Points

0

500

1000

P
ow

er
 (

m
W

)

With ABD Manifested
Without ABD Manifested

(a) Power consumption of the whole app.

0 50 100 150 200 250 300
Sample Points

0

200

400

600

P
ow

er
 (

m
W

)

GPS CPU Display

(b) Power breakdown when the ABD manifests.

Fig. 11: Power breakdown of OpenGPS when the ABD

manifests. GPS keeps consuming power in the background.
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TABLE IV: Events reported to developers and their corre-

sponding order (based on percentage) of the OpenGPS app.

Order, Event Order, Event
1, [LoggerMap: onPause()] 3, [LoggerMap:onResume()]

2, [Idle(No Display)] 4, [ControlTracking:onPause()]
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Fig. 12: Diagnosis process of Wallabag.

Idle(No display) is the event invoked when the app is in the
background. The two reported events show that the ABD

manifests when the LoggerMap activity is switched to the

background. With that diagnostic insight, the developers can

directly go to the pinpointed code region. After further inves-

tigating the source code, we find that the location service is

not correctly released in the LoggerMap activity. To illustrate
the root cause of the ABD, Figure 11 shows the power

breakdown of the app when the ABD manifests. The GPS

keeps consuming power even after the app is switched to the

background (e.g., display power is 0) without rendering any

information to the user. By using EnergyDx, the search space

is reduced from 5,060 to 569 lines of code, which effectively

reduces developers’ effort of fixing the ABD problem.

Wallabag is an open-source app [25] that allows users to
read their articles on both the mobile and web sites. Figures

12a, 12b, and 12c show the raw event power, normalized

event power, and variation amplitude of an example trace

of Wallabag, respectively. Figure 12b shows that there is a

large increase of the normalized event power (e.g., at the

point circled with dashes in Figure 12c). After that, the app

power consumption transits from normal (low) to abnormal

(high) and keeps at a higher level. Figure 13 illustrates the

manifestation point identification process. Point A (shown in

Figure 12c) is selected out as the manifestation point. Events

within the manifestation window (e.g., around A) are then

reported to the developers.

Table V lists the reported events. The first three events are

ReadArticle:menuDeleted, ReadArticle:onCreate and ReadAr-
ticle:onResume. These three events are always invoked when

Fig. 13: Manifestation point identification for Wallabag.
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Fig. 14: Power breakdown of Wallabag.

the ABD begins to manifest. ReadArticle is an activity that al-
lows a user to save and read their articles later. menuDeleted is
a button designed for users to delete the selected article. Figure

14 shows the power breakdown when the ABD manifests. As

can be seen, the app consumes high CPU power when the ABD

begins to manifest. With the provided information, developers

can directly go to the pinpointed code segments.

After further investigating the code, we find that when a

user tries to delete an article on the mobile client (i.e., event

menuDeleted) that has already been deleted on the server side.

The app keeps retrying to sync with the server, which causes

high battery drain. This is the reason why those three events

are always invoked when the ABD begins to manifest. With

the provided information, developer’s search space is reduced

from 21,424 lines to 306 lines of code.

Tinfoil is a social communication app [26]. The variation
amplitude attributed to each event is sent to the manifestation

point identification process. Figure 15 shows the diagnosis

result. Table VI lists the four reported events. The first two

are Idle(No Display) and FbWrapper:menu item newsfeed.

TABLE V: Events reported to developers and their correspond-

ing order (based on percentage) of the Wallabag app.

Order, Event Order, Event
1, [ReadArticle:menuDeleted] 4, [LibsActivity:onCreate()]
2, [ReadArticle:onCreate] 5, [BaseActionBarActivity:onCreate]
3, [ReadArticle: onResume] 6, [LibsActivity:onResume]

Fig. 15: Manifestation point identification for Tinfoil.

264

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 29,2021 at 13:06:42 UTC from IEEE Xplore.  Restrictions apply. 



TABLE VI: Events reported to developers and their corre-

sponding order (based on percentage) of the Tinfoil app.

Order, Event Order, Event
1, [FBWrapper:menu item newsfeed] 3, [FBWrapper:menu about]
2, [Idle(No Display)] 4, [Preferences:onResume]

Fig. 16: Code reduction compared with the baseline that

reports all the transition points.

Among them, Idle(No Display) is the event that indicates the
app is in the background. FBWrapper:menu item newsfeed
is the event that navigates a user to the interface of news

updating. After investigating the source code in the pointed

segment, we find that in the news updating interface (triggered

by the event FBWrapper:menu item newsfeed), the app keeps
communicating with the remote server and retrieves the new

information to render it on the interface for users. However,

when the app is switched to the background, the app still keeps

syncing with the server to render an invisible interface, which

causes the ABD. This information helps reduce the search

space from 4,226 lines to 236 code lines.

D. Comparison with Checking All Transition Points

In this section, we compare EnergyDx with a baseline

named CheckAll. The metric code reduction defined in Section
IV-B is adopted for the comparison. The baseline CheckAll

performs Step 1 of EnergyDx to estimate the power consump-

tion of each event. Different from EnergyDx, CheckAll does

not try to distinguish the real ABD manifestation point from

normal power transition points. Instead, CheckAll reports all

the events that are invoked around all the power transition

points to the developers. This comparison is to highlight the

importance of identifying real ABD manifestation point.

Figure 16 shows the code reduction of the 40 apps with

the two different schemes. The x-axis is the id of each app.

For example, app 3 is the K9 Mail app; app 28 is Wallabag;

app 18 is Tinfoil. On average, developers only need to search

168 lines of code with EnergyDx (code reduction 93%) for

the ABD root causes, but 1,205 lines with CheckAll (code

reduction 67%). For instance, for K9 Mail (app 3), with the

information reported by EnergyDx, the developer needs to

check only 161 lines. In contrast, with the information reported

with CheckAll, the developer would need to check 9,845

(61 times) lines of code. The reason is that through event

normalization, EnergyDx removes the transition points caused

by raw power difference between different events. Moreover,

through transition point differentiation, EnergyDx reports only

the events that are closely related to the ABD manifestation.

Fig. 17: Average power comparison of each app before and

after the ABD is fixed.

E. App Power Consumption Reduction

In this section, we compare the average power consumption

of each app before and after the ABD is fixed according

to the diagnostic information provided by EnergyDx. Figure

17 shows the corresponding result. The average app power

consumption has reduced by 27.2% after the ABD is fixed.

The decreasing percentage for different apps varies for the

reason that the ABD cases are caused by different issues which

overuse various hardware components and consume different

amount of power (e.g., GPS, CPU).

F. System Overheads

In order to not impact the smartphone users, the apps instru-

mented by EnergyDx should not have a much longer latency or

much higher power consumption. Note that the manifestation

analysis steps discussed in Section III are conducted on a

remote server and so their overheads do not affect the users.

Performance Overhead. According to the investigation in
[27], users will not perceive a delay when the event latency is

less than 100ms, during the process that a user interacts with

an app. Thus, event latency reported by the Android framework

is adopted here as the performance metric. For each tested

app, we measure the event latency difference between 1) the

original version and 2) the version instrumented by EnergyDx.

The average latency increase is 8.3%. Moreover, the average
event latency of all the instrumented apps is less than 9.38ms.

Thus, the performance overhead is moderate.

Power Overhead. We measure the power consumption

of EnergyDx on a Nexus 6 smartphone using a Monsoon

Power Monitor. The average power consumption of EnergyDx

is 32mW. This accounts for only 4.5% of the total power

of smartphone during the usage process, which is moderate.

The power overhead is mainly caused by: 1) the utilization

information collection and 2) the event information collection.

V. RELATED WORK

Our work is closely related to energy bug detection. There
has been a considerable amount of research in app bug

detection and diagnosis [7], [6], [3], [28], [12], [13], [14],

[15], [29], [16], [17], [30]. Existing research can be mainly

divided into two categories. The first category detects which

app causes ABD for end users [6], [7], [3], [8], while the

second category detects the APIs that have been misused in

265

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 29,2021 at 13:06:42 UTC from IEEE Xplore.  Restrictions apply. 



the source code for app developers [9], [10], [11], [12], [13],

[14], [15], [16], [17].

In the first category, eDoctor [3] clusters the resource usage

information during the app execution into different phases and

detects the abnormal app based on the clustering result. Oliner

et al. [6] design a collaborative approach to detect which app

has energy bugs and energy hogs. Though those approaches

can efficiently help end users differentiate the ABD app, the

reported app-level information is often too coarse-grained for

developers to pinpoint the root cause in the app code. In

contrast, EnergyDx provides detailed diagnostic information

to help developers reduce the search scope of the ABD root

cause.

In the second category, Pathak et al. [9] use data flow

analysis to detect whether a wakelock is acquired but not

correctly released in a certain code path. The solution is

designed for a particular type of ABD. GreenDroid [12],

[13] diagnoses energy problems in Android apps by detecting

whether corresponding sensors are not timely and correctly

deactivated. Though these solutions can provide developers

fine-grained information, they are usually limited to a certain

type of ABD (e.g., no-sleep). In contrast, EnergyDx can

diagnose ABD caused by various (and even unknown) issues.

eDelta [10] is designed to detect high energy deviation APIs

in the app code and requires fine-grained API instrumentation.

However, when the ABD is caused by an API whose energy

deviation is relatively small (but might last long) or an API

that is not instrumented, eDelta fails to detect the ABD in

these scenarios.

VI. CONCLUSION

In this work, we have presented EnergyDx, an automated

diagnosis framework that assists app developers in pinpoint-

ing the root cause of an ABD in the app code. EnergyDx

provides developers diagnosis information by identifying the

ABD manifestation point and reporting the events around the

selected point. These events can provide developers context

information (how and when the ABD manifests) about the

ABD and reduce the search space for the root cause. We

have prototyped EnergyDx in Android and evaluated it with

40 different real-world apps. Our results show that EnergyDx

reduces, on average, 93% of the amount of code that the

developers need to search for the ABD root cause.
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