
Crash Consistency Validation Made Easy

Yanyan Jiang∗, Haicheng Chen†, Feng Qin†, Chang Xu∗, Xiaoxing Ma∗, Jian Lu∗
∗State Key Lab. for Novel Software Technology, Nanjing University, China
∗Dept. of Computer Science and Technology, Nanjing University, China

†Dept. of Computer Science and Engineering, The Ohio State University, United States
jiangyy@outlook.com, {chen.4800,qin.34}@osu.edu, {changxu,xxm,lj}@nju.edu.cn

ABSTRACT
Software should behave correctly even in adverse conditions.
Particularly, we study the problem of automated validation
of crash consistency, i.e., file system data safety when sys-
tems crash. Existing work requires non-trivial manual ef-
forts of specifying checking scripts and workloads, which is
an obstacle for software developers. Therefore, we propose
C3, a novel approach that makes crash consistency validation
as easy as pressing a single button. With a program and an
input, C3 automatically reports inconsistent crash sites. C3

not only exempts developers from the need of writing crash
site checking scripts (by an algorithm that computes edit-
ing distance between file system snapshots) but also reduces
the reliance on dedicated workloads (by test amplification).
We implemented C3 as an open-source tool. With C3, we
found 14 bugs in open-source software that have severe con-
sequences at crash and 11 of them were previously unknown
to the developers, including in highly mature software (e.g.,
GNU zip and GNU coreutils sort) and popular ones being
actively developed (e.g., Adobe Brackets and TEXstudio).

CCS Concepts
•Software and its engineering→ Software reliability;

Keywords
File system, crash consistency, software reliability

1. INTRODUCTION

1.1 Crash Consistency Validation
Quality and reliable software is expected to behave cor-

rectly even in adverse conditions. Unfortunately, adverse
conditions are relatively infrequent in practice and some may

1This work was done when Yanyan Jiang was a visiting stu-
dent at The Ohio State University. Chang Xu and Xiaoxing
Ma are the corresponding authors.

Application

File system/driver Logger

Input/workload

Generic oracle

Test amplification

Checker

Specified by developer

Generator

Bug report

Figure 1: The workflow of crash consistency valida-
tion. White background cells denote the workflow of
existing work [22, 29, 32]. In comparison, C3 intro-
duces generic oracle (blue), test amplification (red)
and avoids user-specified checker (dashed grey).

even be tricky that developers are not aware of their exis-
tence, leaving hidden “time bombs” in the software. Once
such adverse conditions are triggered, the consequences can
be entirely out of control–maybe as minor as a mobile-app
crash (caused by an uncaught exception [31]) or as severe as
causing billions dollars of economic cost (caused by a race
condition in the blackout in 2003 [12]).

In this paper, we focus on the particular issue of crash
consistency [26], which is an important property for any
software that persists data. Crash consistency requires the
application data (e.g., documents, data, and configurations)
to be recoverable even if the system crashes [23]. Crash
consistency is of significant importance because (1) as the
software becomes widespread, any issue will eventually be
exposed simply because of the Law of large numbers; and
(2) crash inconsistency may lead to severe consequences. It
would be shocking if your favorite document editor destroys
your paper draft when your pet accidentally hits the hard-
ware reset button at file saving.

However, developers oftentimes fail to provide crash con-
sistency, as they often lack of knowledge on the crash be-
havior of the file operations and their underlying file system.
Even experienced developers leave crash consistency bugs in
their mature software systems [32].

Crash consistency can be validated using semi-automatic
tools that simulate the crash behavior of a file system [22, 29,
32]. These approaches share a common workflow (Figure 1):
(1) the program under test (e.g., a database implementation)
is fed with test inputs or workloads; (2) the program execu-
tion’s file system or I/O operations are logged; (3) simulated

Table 1: Possible recovered crash sites of Ted text editor. A file is opened and saved once. Crash sites would
be more complicated if multiple files are saved for multiple times and specifying of what are correct is a
difficult task for its developer.

Category Original File Status Backup File Status Consistent? Explanation

C1
unmodified

N/A
X

save operation failed with
the undamaged original fileC2 corrupted

C3 unmodified
up-to-date X

recoverable failure with the
up-to-date backup fileC4 deleted

C5 deleted corrupted × data loss
C6 up-to-date N/A X the up-to-date original file

crash file system images (crash sites) are generated using the
log; and (4) each crash site is checked against a manually
specified checking script (e.g., the database’s ACID checker)
for crash consistency.

While being effective in disclosing crash consistency bugs
in data storage systems with well-defined crash semantics,
existing approaches heavily rely on developers’ manual ef-
forts, making them cumbersome to use in practice. To make
crash consistency validation easy, the first challenge (test or-
acle) is that existing techniques require developers to spec-
ify checking scripts to determine consistency of a crash site.
However, they have no idea of crash consistency and are
not trained for specifying such property. The second chal-
lenge (test input) is that the existing test inputs, usually
test cases for functional validation, may not be sufficient to
reveal crash consistency bugs.

1.2 How to Make it Easy?
In this paper, we propose the Crash Consistency Checker

(C3 for short) to automatically validate crash consistency
of application software. C3 makes crash consistency valida-
tion as easy as clicking one button. Given a program with
an input (usually a simple use case), C3 either certifies the
execution to be crash-consistent or reports an inconsistent
crash site for further inspection. We present the motivation,
the challenges, and the overview of C3 in Section 2.

To remove the manual efforts of writing checking scripts,
we devise a generic test oracle at file system level (instead of
application level) for validating whether a crash site is con-
sistent. We observed that developers usually expect the file
system snapshot after a meta-data operation (e.g., directory
operations, file close, and fsync) to be consistent. Accord-
ingly, we define crash sites that can be aligned with such
a consistent snapshot via simple recovery operations to be
consistent. The oracle fully automates the crash consistency
validation procedure, exempting developers from writing the
checking scripts that relates to the program semantics.

Automating the validation is not sufficient to reveal many
crash consistency bugs. We observed that a file system im-
plementation may enforce crash consistency by chance (e.g.,
truncate and overwrite a small file), causing both manual-
specified checking script and our generic oracle to miss a
crash consistency bug. Such bugs can only be manifested
by dedicated workloads (e.g., a sufficiently large input file),
which are difficult for developers to provide in practice.

To reduce the reliance on dedicated workloads, we further
propose test amplification that injects benign file system
synchronization operations in the middle of a program exe-
cution to break such accidental atomicity so that our generic
test oracle can disclose more crash consistency bugs. Tech-

nical details are discussed in Section 3.
We implemented C3 prototype tool, made it publicly avail-

able and open-source and hope it will help developers dis-
cover more crash consistency bugs early. Our C3 implemen-
tation adopts non-intrusive system call instrumentation and
virtual device that are transparent to the program and the
file system. Almost any program written in any language
running on any file system can be validated by our tool.
The implementation decisions are discussed in Section 4.

We conducted experiments on 25 popular open-source pro-
grams to evaluate the effectiveness and efficiency of C3. We
discovered crash consistency bugs in 14 subjects, where 11
were previously unknown (7 cannot be manifested without
our test amplification). All the bugs lead to severe conse-
quences (data loss or corruption). Some bugs are from highly
mature software (e.g., GNU zip, GNU coreutils sort) or from
popular ones under active development (e.g., GitHub Atom,
Adobe Brackets, and jEdit). Evaluation results also show
that C3 is easy to use and consumes affordable resources.
The evaluation is presented in Section 5.

Finally, we summarize the lessons learned in our exper-
iments and communications with the open-source commu-
nity in Section 6, followed by related work and conclusion
in Sections 7 and 8, respectively.

2. C3 IN A NUTSHELL

2.1 Two Motivating Examples
We demonstrate the challenges of crash consistency vali-

dation by two real-world crash consistency bugs discovered
by C3, both were previously unknown and have severe con-
sequences. Inconsistent crash sites can be manifested on a
typical Linux distribution with ext4 file system with default
settings, which represents a typical user’s environment.

2.1.1 Ted Text Editor
Productivity software manages user data such as docu-

ments, photos and settings. Such contents should be han-
dled with extreme care, as corrupting them can lead to catas-
trophic consequences. The following (simplified) file-saving
code is from the Ted text editor on Android, which has more
than 100K installations:

1 backupPath = path + ".tmp";

2 TextFileUtils.writeTextFile(backupPath,

content);

3 deleteItem(path);

4 renameItem(backupPath, path);

At a first glance, this code seems to be crash-safe: file
contents are first saved to a temporary file; the original file
is then deleted, followed by a renaming of the temporary file.
The developer expected that, whenever the system crashes,
at least one from the original file and the backup file will
remain in the file system.

Such expectation lays on the assumption that each file sys-
tem operation is processed in-order and immediately takes
effect. Unfortunately, this assumption is not valid as both
file system and device driver reorder requests for perfor-
mance. There is no ordering guarantee between the system
calls write (in TextFileUtils.writeTextFile) and unlink

(in deleteItem), causing the original file being deleted be-
fore the backup file contents are persisted. The file system
after crash recovery may contain a single corrupted file (0
byte), indicating a catastrophic data loss.

To ensure the ordering between such file system operations
in the example, one can either insert a file system flush call
(fsync) after the file contents being written or remove the
deleteItem line (ext4 file system on Android provides strong
consistency guarantee for renaming). Our patch is already
merged by the developers1.

This example demonstrates the challenge of automatically
deciding consistency of a crash site. In the example, even
the simplest use case has six categories of crash sites (Ta-
ble 1) and only one of them is inconsistent. Validating crash
consistency is a non-trivial task for software developers be-
cause (1) developers often do not master the knowledge of
crash consistency; (2) there can be many accesses to multi-
ple files and consistency should be defined for every poten-
tial intermediate state; and, (3) file system accesses can be
in libraries that are not well-understood. We address the
challenge by proposing a generic oracle for automated crash
site validation.

2.1.2 GNU coreutils sort
Sort is a command-line tool that prints input lines in

sorted order, which appeared in the first version of Unix
and is now provided by GNU’s core utilities.

Sort is mostly used by pipeline and redirection. However,
it still provides an option to write the results to a desti-
nation file (for backward compatibility of the old-time sort
that sorts a file in-place). The developer community also
considers sorting files in-place using sort data -o data a
valid option and this solution received the highest votes by
the viewers on StackOverflow2.

Unfortunately, the practice (or option) of overwriting the
source file for in-place sorting leads to potential data loss
when the system crashes. The destination file is first opened
and truncated to empty. If at this time system crashes or the
disk runs out of space, contents in data are permanently lost.
We reported this issue to the developers. They indicated
that a completely safe and portable solution is difficult to
work out (due to permission, owner, and hard-link issues)
and the bug is currently fixed by explicitly documenting this
dangerous behavior3.

Surprisingly, if the input file is of small size, this bug can-
not be triggered on the ext4 file system with the default set-
ting. In all possible crash sites of a profiling run, the data file

1https://github.com/xgouchet/Ted/pull/45.
2http://stackoverflow.com/questions/9117274.
3http://debbugs.gnu.org/cgi/bugreport.cgi?bug=22769.

C3

Program and test input

Crash consistency validation

CS

CS aligns with no ES

CS

CS

CS

...

ES

ES

ES

Crash site generation

Consistent file system
snapshot generation

Test amplification

Reported crash consistency bug

profile run

amplified
runs

I/O event logger

Bounded search File system snapshot

...

Figure 2: Architectural overview of our C3 approach.
Blue, red and green components are discussed in
Sections 3.1–3.3, 3.4 and 3.2, respectively.

is either unmodified or up-to-date, because the file system
implementation ensures the atomicity of a small-file over-
write. Neither manually-specified checkers nor our generic
oracle can detect the crash consistency bug, unless dedicated
workloads (e.g., large files) are provided.

This example demonstrates the challenge of reducing the
reliance on the dedicated workloads. Among all existing
approaches [22, 29, 32], only Alice [22] has a chance to detect
the bug without dedicated workloads. However, it relies on
the correct abstract model of file systems. Alternatively,
we address this challenge by test amplification that injects
benign events in the middle of program execution.

2.2 Workflow of C3

C3 adopts a methodology in crash consistency validation
similar to that of storage stacks [22, 29, 32], decomposing
the problem into three sub-problems:

1. (Test input) Find suitable inputs/workloads that can
reveal potential crash-inconsistent vulnerabilities.

2. (Crash site generation) Derive possible crash sites for
each test run.

3. (Test oracle) Validate each crash site’s consistency.
We explain the workflow of C3 in the following. The archi-

tectural overview of C3 is shown in Figure 2. The technical
details are expanded in Section 3.

2.2.1 Test Input
The validation procedure of C3 is driven by the software’s

functional tests/use cases which are easy to obtain. Re-
call that existing work use dedicated workloads to find bugs

https://github.com/xgouchet/Ted/pull/45
http://stackoverflow.com/questions/9117274
http://debbugs.gnu.org/cgi/bugreport.cgi?bug=22769

in storage stacks [22, 29, 32]. Such workloads are usually
overkill for validating application software because applica-
tions have much simpler file system access patterns than a
storage system (e.g., a database or a version-control sys-
tem). C3 also adopts test amplification to further reduce
the reliance on dedicated workloads because file system im-
plementation may keep atomicity of operations by chance
(Section 2.1.2).

2.2.2 Crash Site Generation
C3 takes the standard approach [29, 33] to generate sim-

ulated crash sites by intercepting I/O requests at runtime
using a virtual RAM disk. We formally define the semantics
of I/O requests and use this definition to derive all possible
crash sites based on the specification of Linux block layer.
Based on the observation that inconsistency can mostly be
manifested by dropping a small number of metadata blocks,
C3 uses a bounded-search algorithm to generate crash sites.
The algorithm enumerates the crash points and systemati-
cally drops a subset of the blocks, yielding crash sites to be
validated. Each crash site is mounted in the local file system
and validated by our generic oracle.

2.2.3 Test Oracle
The key idea of C3 generic oracle is to make the expec-

tation of software developers explicit, defining a set of con-
sistent file system snapshots. Our observation is that pro-
grams are usually crash-consistent if file system operations
has atomicity and persistence (otherwise the bug can be
manifested without system crash, which is out of our scope).
Accordingly, C3 collects file system snapshots after meta-
data operations (directory operations, file close and fsync)
and consider them to be consistent.

C3 certifies a crash site to be consistent if it has a small
editing distance to a consistent snapshot, i.e., it can be
transformed to a consistent snapshot via a series of sim-
ple recovery operations that do not involve out-of-thin-air
content creation. In other words, starting from such a crash
site, software users can easily fall back to a consistent state.
Realizing that exact computation of editing distance is in-
tractable, we adopt an alternative relaxed necessary condi-
tion that can be efficiently computed in C3.

3. VALIDATING CRASH CONSISTENCY
In this section, we provide in-depth discussion of C3 in

a slightly different order than its workflow. We first dis-
cuss the definition of expected file system snapshots (ESs)
and why they are consistent in Section 3.1, followed by how
to obtain crash file system snapshots (CSs) in Section 3.2.
Then, we show how to validate the consistency of a CS in
Section 3.3. Finally, we discuss the design of test amplifica-
tion in Section 3.4.

3.1 Defining Consistent File System Snapshots
When developers are manipulating user-generated con-

tents, they usually do have considerations of data safety
(e.g., Ted intentionally writes to the backup file). There-
fore, the gap between developer’s expectation and actual
implementation of file system consistency can lead to crash
consistency bugs. File systems only provide simple interface
for data management and do not have transactional seman-
tics. As a result, the highest level of file system consistency is
atomicity and persistence of system calls, as if each is issued

in-order and immediately persisted to disk. File system im-
plementations do provide such consistency semantics to its
users, assuming the system never crashes. However, such
consistency breaks at system crash because both file system
and device driver are allowed to buffer and reorder I/O re-
quests for maximized performance [22]. Unfortunately, this
phenomenon is not well-understood by the developers and
becomes the root cause of (unrealistic) expectations. For ex-
ample, Ted developers expected buffered data to be always
persisted to disk before file deletion takes effect but this is
unfortunately the case in the target platform’s file system
implementation (ext4).

Following this intuition, we assume that the program cor-
rectly handles crashes on a strongly consistent file system.
In other words, we assume that developers do not make ob-
vious data-safety mistakes that can be triggered without any
system crash, e.g., deleting original file before backup is writ-
ten4. Particularly, it is reasonable to believe that developers
have knowledge of the intermediate state after every meta-
data operation (directory operations, file close and fsync)
because these operations cause significant changes to the file
system state.

Therefore, we consider file system snapshots of such in-
termediate states to be “expected” reference snapshots (Ex-
pected Snapshots, or ESs). ESs serve as the basis of defining
consistency of a crash site. ESs are collected by a profiling
run in which system calls are intercepted. After each file
metadata operation, we pause the program and traverse the
file system to obtain its snapshot. Back to the Ted example
(Table 1), each of Categories 1, 3, 4, and 6 corresponds to
a consistent file system snapshot after meta-data operation:
program start (C1), close of backup file (C3), deletion of
original file (C4), and renaming (C6).

An ES consists of files in directories. We define an ES
to be a set of tuples {〈f1, c1〉, . . . 〈fn, cn〉}, where fi denotes
i-th file’s full path (e.g., /mnt/crashdisk/file.txt) and ci
denotes its contents. We flatten the tree structure because
crash consistency focuses on safety of file contents. A file fi
with contents ci = [b1, b2, . . . , bm] denotes that its size is m
bytes and j-th byte value is bj . The profiling run returns E ,
the set of all ESs.

3.2 Generating Crash Sites
To generate crash sites for validation, we do not actually

power off the machine. Rather, we take the standard ap-
proach of existing work [22, 29, 32] by keeping a log of I/O
requests performed by the program and synthesizing crash
sites at simulated crash points.

Physical disks are not required to process I/O requests in
their arrival order for performance, which is a major source
of crash inconsistency [7, 22]. When file system requires
ordering between operations, it invokes a disk barrier (indi-
cated by a REQ_FLUSH or REQ_FUA flag in a Linux block I/O
request) to flush pending requests to disk.

To capture the effect of all possible request ordering, disk
semantics is formalized as follows. A disk D is a mapping
from sector identifier to its actual stored data. For each
sector s ∈ {1, 2, . . .}, we use D(s) to reference its data. At
runtime, there is an internal queue Q of requests pending
to be flushed as well as auxiliary mappings U and V . U(i)
and V (i) denotes i-th request’s sector identifier and data,

4There can be data loss if the program is killed in the middle.

Algorithm 1: Crash snapshot generation algorithm

Input: A sequence of I/O requests {e1, e2, . . . , en} and
a search bound k

Output: A set C containing crash snapshots
1 C ← ∅;
2 for j ∈ {1, . . . , n} ∧ ej is not a barrier do
3 Let (D,Q = {ei, ei+1, . . . ej}, U, V) be the state after

performing {e1, e2, . . . , ej} ({e1, . . . , ei−1} are persis-
ted in D and events in Q are pending to be flushed);

4 for ` ∈ {0, 1, . . . ,min{k, j − i+ 1}} do
5 for P ⊆ {0, 1, . . . , j − i− 1} ∧ |P | = j − i− ` do
6 Dc ← D;
7 for s ∈ P ∪ {j − i} do
8 Dc ← Dc[U(i+ s) 7→ V (i+ s)];

9 if Dc /∈ C then
10 S ← mount(Dc);
11 C ← C ∪ {S};

respectively, and both are initially empty. A sequence of
write and barrier requests5 {e1, e2, . . . , en} are allowed to
be performed on a disk with the following semantics.

1. A write request W(s, d) to s-th sector with data d.
Rather than being immediately persisted, the request
is queued in Q. The notation A[x 7→ y] denotes map
replacing, i.e., A[x 7→ y] = A \ (x,A(x)) ∪ (x, y):

ei = W(s, d)

(D,Q,U, V)⇒ (D,Q ∪ {ei}, U [i 7→ s], V [i 7→ d])
.

2. A barrier request B ensures all write operations before
it to be persisted:

ei = B

Q = {ep, ep+1, . . . eq}
Dp = D

Dk+1 = Dk[U(k) 7→ V (k)] (k ∈ {p, p+ 1, . . . , q})
(D,Q,U, V)⇒ (Dq+1,∅, U, V)

.

Finally, at any system state (D,Q,U, V), we allow the
system to crash, yielding a set of valid crash disks Dcrash:

Q = {ei, ei+1, . . . ej}
Di = {D}

Dk+1 = Dk ∪ {D[U(k) 7→ V (k)] |D ∈ Dk}
(D,Q,U, V)⇒ Dcrash = Dj+1

.

This crash model describes the exact contract between a
disk driver and the Linux block I/O layer. It defines all pos-
sible outcomes of reordering (from a disk’s perspective, any
effect of reordering is equivalent to dropping a subset of re-
quests). Furthermore, our crash model assumes the physical
disk to be reliable, i.e., persisted data never corrupts. Oth-
erwise, unreliable physical disk (e.g., severe faults studied
in [33]) may lead to crash sites that cannot be recovered.

Algorithm 1 displays the crash site generation algorithm.
Exhaustively enumerating all crash sites [29] is too time-
consuming. Instead, we use a bounded-search algorithm
based on the observation [32] that dropping only a few of

5Reads do not affect contents in the disk and we do not
consider them in defining crash semantics.

critical I/O requests can manifest crash consistency bugs.
We accordingly enumerate the point of system crash (Line 2)
and those crash sites who drop at most k requests in the
pending queue Q (Lines 4–8). The search bound k is ad-
justable: if the time budget is limited, we can bound k to
be a small constant. A sufficiently large k is equivalent to
an exhaustive enumeration.

Generated disk images are mounted to the native file sys-
tem and further checked for crash consistency. A crash file
system snapshot (Crash Snapshot, or CS) is similar to an ES
described in Section 3.1: the crash snapshot S = {〈fi, ci〉}
denotes that file fi has a contents of ci.

3.3 Validating Crash Sites
The key insight of our general oracle is based on the fol-

lowing case analysis of a crash site S:
1. S is identical to a consistent ES S′ ∈ E . Our basic

assumption of ES implies that S is consistent.
2. We can transform S to S′ ∈ E by performing simple

recovery steps that do not involve out-of-thin-air con-
tent creation. An example is C2 of Table 1 where a
corrupted file may contain partial data and deleting
corrupted backup file yields a consistent state. If we
can obtain a consistent state from S regardless of pro-
gram semantics, S should be consistent.

3. Neither (1) nor (2) applies. In this case, non-trivial
recovery scheme is required to fall back to a consistent
state. If such scheme does not exist for general appli-
cation software, S is highly likely to be inconsistent.

This trichotomy yields a definition of crash consistency
based on the editing distance [21] that avoids both false pos-
itives (reporting a recoverable non-ES crash site as inconsis-
tent) and false negatives (failing to report inconsistent CSs).
Formally, for a crash site S = {〈fi, ci〉} to be consistent,
there must exists an S′ = {〈f ′i , c′i〉} ∈ E such that S can be
transformed to S′ using a bounded number of following edit-
ing operations (assume that 〈f, c〉 ∈ S, c = [b1, b2, . . . , bm]
and f ′ can be arbitrary file-name other than f):

1. Creation of an empty file: S ⇒ S ∪ 〈f ′,∅〉.
2. Deletion of a file: S ⇒ S \ 〈f, c〉.
3. Renaming of a file: S ⇒ S \ 〈f, c〉 ∪ 〈f ′, c〉.
4. Moving a consecutive segment of file contents: S ⇒ S\
〈f, c〉\〈f ′, c′〉∪〈f, [b1, . . . , bm, b′p, . . . , b′q]〉∪〈f ′, [b′1, . . . ,
b′p−1, b

′
q+1, . . . b

′
m′]〉, where [b′p, . . . , b

′
q] is a substring in

the contents of file f ′.
This definition echoes the trichotomy: a CS is consistent

only if it can be aligned with an ES with a small edit-
ing distance. Otherwise, a large or infinite6 editing dis-
tance indicates an impossible or highly non-trivial recov-
ery and we have sufficient evidence to report it as inconsis-
tent. Unfortunately, this particular version of editing dis-
tance is intractable. Interested readers can refer to our NP-
Completeness proof in Appendix A.

We discovered that a relaxed definition of alignment is
already sufficient for crash consistency validation and can
be efficiently computed. Particularly, we define a CS S to
be consistent if S can be transformed to an ES S′ with a
finite number of editing operations.

This relaxed definition is equivalent to the existence of
an injective mapping from every byte in the files of S to a
byte in that of S′, simply because an unbounded number of

6If it is impossible to transform a CS to an ES, the editing
distance is infinite.

editing operations allows bytes in S to be arbitrarily per-
muted, redistributed, and deleted. This relaxed property is
also much easier to check. Formally, S is consistent only if
there exists S′ ∈ E such that for every byte value σ,∑

〈f,c〉∈S′

∣∣∣{j | cj = σ}
∣∣∣ ≤ ∑

〈f,c〉∈S

∣∣∣{j | cj = σ}
∣∣∣.

This alternative definition of alignment naturally gives a lin-
ear time validation algorithm by comparing the number of
each byte value’s occurrences.

Finally, we argue that the relaxation is also effective in
crash consistency validation. First, whenever a CS cannot
be aligned with an ES in the relaxed definition, the editing
distance must be infinite. Therefore, as long as the editing
distance reports no false positive of crash inconsistency, so
does the relaxed definition. In theory, the relaxed defini-
tion may misclassify an actually inconsistent CS as consis-
tent, leading to potential false negatives. However, this is
expected to be rare in practice, as reporting crash inconsis-
tency only requires one witness and the relaxed condition
fails to detect the issue only if it reports false negative on all
CSs. There likely exists at least one inconsistent CS that is
largely corrupted (e.g., file contests are mostly corrupted),
so our relaxed condition tends to capture it and report the
crash consistency bug.

3.4 Amplifying Test Inputs
In the GNU coreutils sort example (Section 2.1.2), the

crash consistency bug cannot be manifested without dedi-
cated workloads because the file system implementation en-
sures small-file overwrite’s atomicity by chance. However,
such atomicity is not a guaranteed offer. If the file is suf-
ficiently large, we can observe inconsistent crash sites that
only contain partial data and cannot be aligned to any ES.

To exempt the need of dedicated workloads (e.g., huge in-
put files), we designed a test amplification approach. Recall
the root cause of the hidden bug is (not guaranteed) atom-
icity of consecutive operations, we break such atomicity by
injecting system-wide synchronization operation (sync) in
the middle of a program execution. Such operations are to-
tally benign, i.e., do not affect the application view of the
file system, but can manifest the inconsistent intermediate
crash sites.

Test amplification is conducted in a single separated pro-
gram execution called amplification run. In the amplifica-
tion run, we intercept system calls that may silently lead to
data loss (ftruncate and open, which are usually contained
in library code of which developers are not aware) and inject
a sync after each of them. The I/O request log collected for
the amplification run is used for further crash site generation
(Section 3.2) and consistency validation (Section 3.3).

In the GNU coreutils sort example, test amplification in-
jects a sync after the data file is truncated, yielding a CS
that contains only an empty data file, which cannot be
aligned to any ES and is correctly reported as a crash con-
sistency bug.

4. IMPLEMENTATION
We implemented our C3 approach as a prototype tool and

made it public and open-source7. Both the instrumentation
and the I/O requests logger in C3 are transparent to the

7Available at http://jiangyy.github.io/c3/.

1 @prepare

2 def init_setup():

3 prepare_init_file()

4 @run_program

5 def start_program():

6 os.system("brackets") # execute program

7 @delay(5.0)

8 def do_edit():

9 edit_document()

10 keypress(’ctrl-s’) # save document

11 keypress(’alt-f4’) # exit program

Figure 3: Simplified test script for the Brackets text
editor in which we found crash consistency bug.

file system. Therefore, C3 can validate software written in
any language, using any libraries, and running on any file
system. The idea of C3 can be also implemented on other
systems (e.g., by using a simulated iSCSI device [32]). The
rest of this section expands discussion of techniques used in
our C3 implementation.

4.1 Test Input
C3 runs the program multiple times using the same test

inputs. Test inputs are specified by test scripts, which are
based on a series of decorated functions in Python (Figure 3).
A test script provides means to specify (1) an initial file sys-
tem snapshot; (2) how to load the program; and, (3) actions
to be performed at program runtime. To further ease the
testing procedure, we also developed a simple record tool [16]
that captures system-level UI events and automatically syn-
thesizes a test script for GUI software.

For each amplification run, C3 instruments the program
using ptrace, intercepting the program’s control flow when-
ever a system call is about to execute. C3 injects a syn-
chronous sync call if a designated point is reached and then
resumes the program execution.

In this paper, we do not focus on how such inputs are
obtained. Even though the program may be large and com-
plicated, there usually are only a few places that interact
with the file system. We believe that simple use cases are
sufficient to reveal many crash consistency bugs and devel-
opers will have no obstacle providing test inputs that cover
all file system operations.

4.2 Crash Site Generation
C3 collects a I/O request log for crash site generation by

a virtual RAM disk driver, which is similar to eXplode [29].
Before executing the test script, the virtual disk issues an
ioctl call to the driver for capturing the initial snapshot
of the virtual disk. During the test script execution, the
virtual disk handles I/O requests like a normal RAM disk
and at the same time keeps an internal copy of all write and
barrier requests. After the termination of the test script,
these logged data are dumped back to user space via another
ioctl call and CSs are generated using Algorithm 1.

C3 can only validate consistency of file system snapshots
on the virtual RAM disk. Therefore, test scripts should
place files to be manipulated on the virtual disk. However,
the program may also modify files whose paths are hard-
coded to the local file system (e.g., /install/path/.config).

http://jiangyy.github.io/c3/

If developers also intend to validate crash consistency of such
files, they can create its shadow copy on the virtual disk and
replace the file in the local file system by a symbolic link.

4.3 Test Oracle
C3 collects a file system snapshot after each file system

metadata operation and considers such ESs to be consistent.
ESs are collected at a separate profiling run in which system
calls are instrumented by ptrace. ES cannot be obtained by
the virtual disk (file system calls do not take effect immedi-
ately). Rather, the file system itself always has its consistent
“current”view and C3 peeks the file system by a simple read-
only traversal of the file system. Furthermore, C3 does not
consider a file system snapshot that contains no data to be
consistent, such that we can detect bugs caused by devel-
oper’s accidental deletion of a file. Finally, the atomicity
of an ES collection is guaranteed via serializing file system
calls by ptrace and restricting the program to be the only
process that can access the virtual disk.

Each generated CS is mounted for crash consistency vali-
dation. A CS is scanned to obtain each byte value’s statistics
and these values are compared against those of ESs to decide
whether the CS is consistent. Though the time complexity
of consistency checking is linear, we still adopt fingerprint-
ing to further improve the efficiency of C3. We associate
each disk image (both CSs and ESs) with the hash finger-
print8 of its contents. ESs are de-duplicated according to
their fingerprints and the CSs that have been validated are
immediately skipped to reduce time cost.

4.4 Putting Them Together
C3 combines all techniques discussed in this section to re-

alize the workflow in Figure 2 and creates crash consistency
bug reports. C3 runs the program three times: a profiling
run to collect ESs and two test runs (a normal run and an
amplification run) to collect CSs for crash consistency vali-
dation. For each inconsistent CS, we calculate d to be the
minimum editing distance to an ES (in our relaxed defini-
tion, d denotes the number of bytes that cannot be aligned).
C3 reports the crash site that has a maximum d as the in-
consistent crash site for the program.

The reported crash site has the most bytes that cannot be
aligned and thus is most likely to be inconsistent. If it is in-
deed inconsistent (i.e., a true positive), developer can fix the
problem and run C3 again for further validation. Otherwise,
the CS cannot be transformed to an ES using simple recov-
ery operations, suggesting that a checking script is needed.

Furthermore, we only report an inconsistent CS when
d ≥ 32 to reduce false positives caused by a small degree
of non-determinism. An example is a program that writes
the timestamp into file’s contents. In this case, any CS in
the test run would not align with an ES in the profiling run
(i.e., d = 0) because timestamp in the CS and the ES are
distinct. If a CS is inconsistent, it has at least one sector
of data to be corrupted, which likely to yield more than 32
bytes of data (6.25% of a sector with the size of 512 bytes)
that cannot be aligned. Therefore, this treatment both re-
duces false positives and has negligible probability of missing
a truly inconsistent CS.

8We keep 160-bit SHA-1 fingerprints such that the proba-
bility of hash collision is negligible.

5. EVALUATION

5.1 Methodology
We evaluated the effectiveness, ease-of-use, and perfor-

mance of C3 using real-world software and typical use cases.
For effectiveness (Section 5.2.1), we study (1) whether C3

can discover crash consistency bugs in real-world software,
which is demonstrated by an empirical study of bugs found;
(2) whether test amplification is effective in detecting crash
consistency bugs, which is denoted by the percentage of bugs
that require test amplification to manifest; and, (3) whether
C3 reports false positives, which is presented by a qualitative
study. We also evaluated more subjects studied by Alice [22]
to compare the effectiveness of the C3 oracle with the manual
checking scripts.

For ease-of-use (Section 5.2.2), we study whether the man-
ual efforts to use C3 are minor. C3 only asks the developer
to specify a use case and the subsequent test amplification
and crash consistency validation is fully automated.

For performance (Section 5.2.3), we study whether the
cost of C3 is practically affordable. We measure the follow-
ing quantities for each run of C3: number of ES collected,
number of CS checked, and time consumed in each phase.

We evaluate C3 using 25 applications from two categories:
utilities for command-line use (e.g., make, gzip and indent,
10 in total) and productivity applications for editing user
generated contents (e.g., TEXstudio, Atom and Libreoffice,
15 in total). We select these applications because they ma-
nipulate file system data and are of significant popularity
based on authors’ experiences and Internet search results.

For each subject, we specify one typical use case (either
from the documents or from authors’ daily use) in the test
script format (Section 4.1). The use case represents the most
common usage of the software in which we believe the crash
consistency bug will have the most severe consequences. As
C3 is publicly available, developers can easily validate crash
consistency for any corner case test input.

For each use case, we validate its crash consistency by
C3. If C3 reports an inconsistent CS (C3 always outputs
the crash site with the most bytes that cannot be aligned),
it is manually analyzed by studying the source code and
the system call trace. True positives (i.e., crash consistency
bugs) are reported to the developers.

All evaluations were conducted on a commodity environ-
ment for software users: a virtual machine with two virtual-
ized Intel i5 CPUs and 2GB of RAM running Ubuntu Linux
14.04 (Kernel 4.2). The virtual disk is formatted with ext4
of default options, which denotes the most prevalent file sys-
tem setting. Developers can also validate crash consistency
under other file system settings by modifying only one line
in the C3 configuration.

5.2 Evaluation Results

5.2.1 Effectiveness
Bugs found. We summarize bugs found by C3 in Table 2.
Among 25 evaluated subjects, even if each subject is eval-
uated by one simple use case, C3 reported 14 inconsistent
crash sites (all have a sufficiently large editing distance d
exceeding the threshold). All crash sites are manually an-
alyzed with the system call traces in which we confirmed
the existence of data loss or corruption. Therefore, we sub-
mitted the bug reports for all 14 subjects and the developers

Table 2: Crash consisntecy bugs discovered by C3. Bug# denotes the bug/issue ID in the issue tracking
system. A bold bug# indicates a previously unknown bug. Amp. column indicates the bug can only be
manifested with test amplification.

Type Application LOC Language Version Bug# (tracker) Amp. Consequence d (bytes)

U
ti

li
ty

GNU make 39.0K C 4.1 46193 (savannah) Incorrect build 7.33K
GNU zip 47.3K C 1.6 22770 (debbugs) Data loss 5.04K

bzip2 8.12K C 1.0.6 N/A (email) Data loss 8.56K
GNU coreutils sort 4.65K C 8.21 22769 (debbugs) X Data loss 23.9K

Perl 801K C 5.22 127663 (perlbug) Data loss 17.4K
Shelve 0.23K Python 2.7.11 25442 (bug tracker) Corruption 907

P
ro

d
u
ct

iv
it

y

Gimp 522K C 2.8.14 763124 (bugzilla) X Data loss 188K
CuteMarkEd 21.8K C++ 0.11.2 285 (github) X Data loss 5.61K

TEXmaker 46.7K C++ 4.5 1553361 (launchpad) X Data loss 1.61K
TEXstudio 139.6K C++ 2.10.8 1693 (sourceforge) X Data loss 1.61K

Ted 3.7K Java 1.0 45 (github) Data loss 4.10K
jEdit 188K Java 5.1.0 3952 (sourceforge) Data loss 1.61K

GitHub Atom 55.8K Node.js 1.5.3 10609 (github) X Data loss 1.61K
Adobe Brackets 117K Node.js 1.5.0 12103 (github) X Data loss 1.61K

confirmed 8 as previously unknown bugs and 3 as previously
known bugs (e.g., the bug is fixed in the current development
branch but our validation is based on the latest stable re-
lease). The remaining 3 bug reports have yet received any
responses, but we believe they were also previously unknown
based on the search results in the bug/issue tracking system.

All bugs found by C3 have severe consequences like data
loss or corruption, which are analyzed as follows. In 12
out of 14 bugs (gzip, bzip2, sort, perl and all productivity
subjects), the user’s file or data can be completely lost after
crash. Furthermore, such bugs were triggered in practice.
For example, GitHub Atom users manifested the same bug
in another adverse condition: when the disk runs out of
space at the halfway of file saving. Gzip developers also
believe data loss had happened before, however, the bug is
not reported maybe due to its irreproducibility.

For the Python standard library Shelve, the bug leads to
corrupted database that cannot be analyzed. The library
provides three backends for data storage but C3 found that
none of them is crash-safe. One of such backends is GDBM
whose crash consistency bug is also discussed in [22]. Some
developers believe that a SQLite backend should be provided
for data safety.

For GNU make, we validated the use case of incremental
build of foo.c. The inconsistent crash site contains a cor-
rupted foo.o whose timestamp is up-to-date. If we proceed
with incremental build after system crash, foo.c will be ig-
nored. Such behavior leads to failed (e.g., fail to link a cor-
rupted build target) or erroneous build (e.g., corrupted file
packed into the package). Implications of these real-world
bugs are further studied in Section 6.

Finally, bugs reported by C3 also received positive feed-
backs from the open-source community. After we reported
the bug of gzip in the mailing list, the developers of lzip
(a functional equivalent of gzip) confirmed that lzip has the
same crash consistency bug.

These results evidently support that C3 is effective and
promising in crash consistency validation.
Test amplification. Column 7 of Table 2 shows that half
(7/14) of the bugs cannot be manifested without test am-
plification using simple test inputs.

An interesting case is TEXstudio, which (1) writes the
file contents to a temporary file; (2) opens the original file

with O_TRUNC; (3) unlinks the temporary file; and, (4) writes
the file contents to the original file. Surprisingly, the file
system implementation postpones the effect of unlink and
this seemingly-obvious data loss bug cannot be observed in
any possible crash site unless the file is huge. With C3’s
test amplification, we can discover the inconsistent crash
site that only contains a truncated file.

These results indicate that the test amplification is effec-
tive in exempting the need of dedicated workloads.
False positives. We did not observe any false positive in
the evaluated subjects. However, C3 may report false pos-
itives if the crash recovery requires non-trivial efforts, e.g.,
in validating databases [32].

Nevertheless, false positive may not be a big issue for soft-
ware developers because C3 reports inconsistent CS with an
explanation (the CS cannot be easily transformed to an ES).
By examining the CS and ES, the developer can quickly pin-
point the root cause of false positives and provide additional
rules to filter out actually consistent crash sites that is re-
ported by the generic oracle of C3.
Comparisons with manual checking scripts. We eval-
uated more subjects studied in Alice [22]. These crash con-
sistency bugs are discovered by manual checking scripts. We
ran them with C3 using simple workloads. For GDBM [1], C3

correctly reported a corrupted database file. For LevelDB [3]
and LMDB [4], C3 reported false positives–inconsistent snap-
shots that have a relatively small d ≤ 256. For the reported
crash sites, running the default database recovery will ob-
tain a consistent database. For SQLite [6], C3 considers it as
consistent and missed the durability bug because it relates
to the database’s semantics. For Git [2] and Mercurial [5],
C3 did not found crash inconsistency. The system call trace
study [22] suggests that crash may lead to corrupted data
(cannot be opened), but data is not actually lost and may
be recovered by an experienced user. These results are ex-
pected because C3 trades, to some degree, the effectiveness
of the tool (detecting more bugs by learning the semantics of
each application) for the easy-of-use of the tool (automating
the crash consistency checking procedure).

5.2.2 Ease of Use
We demonstrate that the efforts of using C3 are minor and

trivial for developers. To validate crash consistency, a devel-

0 6 12 18 24 30 36 42 48
0

2

4

6

8

10
µ = 18.4

lines of code of test input scripts

#
o
f

su
b

je
ct

s

Figure 4: Histogram of LOC of test input scripts.
Average LOC µ = 18.4.

oper only needs to provide C3 a test script (Section 4.1) that
consists of (1) an initial software setup, (2) arguments to run
the program, and (3) actions to be performed at runtime (for
interactive programs only). All such efforts are contained in
the test script. We show the statistics of test script LOC in
Figure 4. Even if we are end-users of the evaluated subjects,
writing such a short test script (5–43 with the mean of 18.4
lines of code) takes only a few minutes of work, which usu-
ally consumes less time than setting up the software from
scratch. The longest test scripts are GNU make (simulat-
ing an incremental build) and GNU patch (generating patch
files from two sets of synthesized files), which are 43 and 36
lines of code, respectively. Developers can also reuse their
existing test cases by executing them in the test script.

5.2.3 Performance
We show the performance evaluation results in Table 3,

which is conducted on a machine with limited computational
power. For all evaluated subjects, C3 finishes the entire pro-
cess in minutes, which is certainly affordable in a testing
environment.

There are two major factors that impact the performance
of C3: (1) taking file system snapshots to obtain an ES and
(2) generation and validation of CSs. The CS generation and
validation consumes the most of time but we still consider
such cost is affordable because applications often interact
with file system via limited patterns and a few test cases are
sufficient to reveal potential crash consistency bugs. Due to
the limitation of ptrace, C3 cannot precisely decide which
file system call is related to the virtual disk so ES are col-
lected on all possible system calls. The results show that
profiling slightly slows the program but this is only a minor
issue because the slowdown is transparent to the program
(as if the system call takes longer time to return). Profiling
runs of GUI subjects take longer time than command-line
subjects because we insert one-second delay between all con-
secutive GUI operations to ensure their completion.

6. LESSONS LEARNED
Handling file data demands caution. File system im-
plementations usually do not provide a strong atomicity and
persistence guarantee. Therefore, when user’s contents are
being erased (even if backup had been performed), the de-
veloper should be careful. Even experienced developers of
mature software made mistakes (e.g., sort and gzip) and
many “correct” solutions in our subjects (e.g., Vim and sed)

Table 3: Performance evaluation results. Values in
a row indicate #ES collected, #CS validated, profil-
ing run time (denoted as P.), CS validation time (de-
noted as V.) and total time (including initial setup,
three runs and CS validation), respectively. The
last row displays averaged number of all 25 evalu-
ated subjects.

Application
Amount (#) Time (minutes)
ES CS P. V. Tot.

GNU make 710 277 0.09 0.89 1.19
GNU zip 726 647 0.01 1.85 1.89

bzip2 724 846 0.01 2.68 2.71
GNU coreutils sort 716 578 0.03 1.86 1.96

Perl 718 929 0.01 3.10 3.13
Shelve 754 211 0.01 0.65 0.67
Gimp 3,648 3,168 0.33 9.76 10.74

CuteMarkEd 2,216 483 0.31 1.46 2.41
TEXmaker 1,384 423 0.33 1.30 2.30
TEXstudio 2,258 937 0.33 2.86 3.84

Ted 804 859 0.02 2.63 2.71
jEdit 1,486 1,038 0.16 3.57 4.05

GitHub Atom 14,627 1,201 0.59 3.87 5.65
Adobe Brackets 7,197 1,704 0.59 5.53 7.28

Average (all subjects) 2,176 1,166 0.22 3.70 4.21

are counter-intuitive or overkill.
Even worse, protecting data safety is much trickier than it

appears, because such data erasure may implicitly happen in
the underlying libraries of which the developer may not be
aware. For example, Python Pillow provides image.save()

for writing an image, which opens the file with O_TRUNC.
Using this function to change an image in-place is a crash
consistency bug9 and such a pattern is quite likely to occur in
an image editing software10. Furthermore, developers tend
to trust the crash consistency of a mature standard library,
which also may not be valid. An example is Python standard
library Shelve that uses GDBM as its backend by default,
which does not provide any crash guarantee.

Therefore, the rule of thumb is to handle file data with
care (e.g., adding extra flush and fsync to ensure the
persistence if performance is a secondary concern) or crash
consistency should be validated with tools like C3.

Library support matters. Relying on developers to han-
dle all corner cases is impractical. It also seems impractical
for libraries and file systems to provide strong consistency
guarantee: file operations still are the bottleneck of many
applications. Rather, libraries should provide means to pro-
tect data safety or explicitly document their behaviors or
guarantee. Only well-designed libraries can relieve the de-
velopers’ burden of considering file system crash behaviors.

Through the communications with the open-source com-
munity, we learned that many frameworks provide good so-
lutions to safely manipulate files. For example, Qt provides
QSaveFile and GTK provides g_file_replace to handle file
operations “in the safest way possible”. We also validated
these two libraries by C3 and we could not find an incon-

9We did not report this as a bug because Pillow offers no
crash safety guarantee.

10The most famous open-source image editing software Gimp
has a similar crash consistency bug in all versions before 2.9.

sistent crash site. Therefore, we strongly recommend devel-
opers to use libraries that explicitly document their safety
(and such safety can be easily validated by C3) in handling
file data.

On the more emerging platforms, however, there lack crash-
safe library support. In addition to the two aforementioned
Python examples, Node.js as a server-side language only pro-
vides a simple library for file system operations. This design
is valid because server programs usually persist data in a
database. However, when the application domain of Node.js
expands, such library becomes a weak link in crash consis-
tency. GitHub Atom developers found the crash consistency
bug difficult to fix because Node.js lacks a portable library
for safely saving a document.

Therefore, we recommend library developers to validate
crash consistency of API use cases with tools like C3 and
explicitly document whether a library function provides
crash consistency guarantee.

Crash consistency deserves more attention. A devel-
oper does not get rid of the crash consistency issue even if
the software has nothing to do with the file system. Re-
call the GNU make example (Section 5.2.1) in which crash
may lead to a corrupted objective file that has a up-to-date
timestamp. It is not GNU make developer’s responsibility
to fix the problem; rather, it is GCC that does not meet
crash-safety requirement of GNU make (timestamp should
not be updated until output file is persisted). Yet, GCC as
a compiler is not required to provide such guarantee. The
cascading effect of a minor crash inconsistency finally leads
to potentially severe consequences.

Even if GCC was crash-safe, GNU make allows arbitrary
scripts to be executed in objective file generation and no-
body can guarantee crash consistency for all of them. There-
fore, the only solution is to alert users of such issues and start
a build from scratch (e.g., by executing make clean) after a
system crash.

Finally, this example suggests that developers should re-
ceive more education on crash consistency. We believe that
the results and analyses presented in this paper will be a
wake-up call for general software developers to pay more
attention to crash consistency.

7. RELATED WORK
Software reliability in various adverse conditions have been

extensively studied. Examples are external system events
that access conflicting resources [8], combination of multiple
exceptional conditions [31], and reordered shared memory
accesses in a relaxed memory model system [13].

This paper focuses on crash consistency, the particular
adverse condition of system crash. As CPU and memory
state vanish after crash, crash consistency bugs are scoped
in the storage stack. The storage stack consists of layers of
abstractions (hardware interface, device driver, file system,
library, and database) and is finally used by the software.

At hardware level, the robustness of physical drives is
studied [27, 33]. At file system level, data consistency and
crash recovery are extensively studied [10, 14, 19, 26]. A file
system implementation can be validated by testing [25] or
model-checking [30].

However, even if the file system survives the crash, it does
not guarantee atomicity and persistence of each individual

file system call, leading to crash consistency bugs. Our pre-
vious work devised special workloads to exposure such bugs
in databases [32]. Seminal work Alice [22] and eXplode [29]
introduced general frameworks to validate crash consistency
for both system software and applications, which largely in-
spired our work. Alice focuses on modeling crash behaviors
across file system implementations and eXplode focuses on
systematic exploration of execution paths that contain ex-
ceptional control-flow. However, such techniques are not
sufficient to efficiently validate crash consistency of a wide
varieties of applications. The generic oracle and test am-
plification in C3 facilitate fully automated checking of crash
consistency and they are orthogonal to the technical contri-
butions of Alice and eXplode. One can integrate both the
generic oracle and the test amplification of C3 into Alice
and/or eXplode. Furthermore, Alice depends on the abstract
file system behavior model extracted from a profiling tool
that may not be sound (leading to false positives), while any
crash site reported by C3 guarantees to be valid and can be
manifested in practice. Recent work [9] studied crash consis-
tency models, which resembles memory consistency models,
to characterize and validate crash behavior of file systems.
Checking an application’s crash consistency against abstract
file system models is a promising future direction.

An alternative approach to crash consistency is providing
transaction among system calls, which can be achieved ei-
ther by operating system support [17, 24, 28] or by hardware
assistance [18, 20]. Finally, the ultimate solution to crash
consistency is a file system implementation that has provable
strong consistency guarantee (atomicity and persistence) for
each individual file system call. Such possibility has recently
been explored [11]. However, such work is still in its early
stage to be realized in performance-critical production envi-
ronments.

8. CONCLUSION
In this paper, we present C3, a novel approach for val-

idating the crash consistency of application software. The
generic oracle and test amplification facilitate the automated
validation of crash consistency for application software. Eval-
uation on real-world applications demonstrates the effective-
ness and efficiency of C3 in detecting crash consistency bugs.

We not only made C3 public and open-source but also pre-
sented valuable lessons learned from the bugs discovered by
C3 and the communications with the open-source commu-
nity. We hope the results in this paper will be a cornerstone
for further enhancement of software reliability in terms of
system crash.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for helpful comments

and suggestions. This work was supported in part by Na-
tional Basic Research 973 Program (Grant #2015CB352202),
National Natural Science Foundation (Grant #61472177,
#91318301, #61321491) of China, NSF grants #CCF-0953
759 (CAREER Award), #CCF-1319705, the CAS/SAFEA
international Partnership Program for Creative Research Te-
ams, China Scholarship Council (#201506190103), the pro-
gram for Outstanding PhD candidate of Nanjing University,
and the Collaborative Innovation Center of Novel Software
Technology and Industrialization, Jiangsu, China.

10. REFERENCES

[1] GDBM. http://www.gnu.org/software/gdbm/gdbm.
html.

[2] Git. http://git-scm.com.
[3] LevelDB. https://code.google.com/p/leveldb.
[4] LMDB. http://symas.com/mdb/.
[5] Mercurial. http://mercurial-scm.org.
[6] SQLite. http://www.sqlite.org/.
[7] Linux kernel block driver docs, 2005.
[8] C. Q. Adamsen, G. Mezzetti, and A. Møller. Systematic

execution of android test suites in adverse conditions.
In Proceedings of the International Symposium on Soft-
ware Testing and Analysis, ISSTA, pages 83–93, 2015.

[9] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy,
E. Torlak, and X. Wang. Specifying and checking file
system crash-consistency models. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS, pages 83–98, 2016.

[10] J. Carreira, R. Rodrigues, G. Candea, and R. Majum-
dar. Scalable testing of file system checkers. In Proceed-
ings of the ACM European Conference on Computer
Systems, EuroSys, pages 239–252, 2012.

[11] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich. Using crash hoare logic
for certifying the fscq file system. In Proceedings of
the Symposium on Operating Systems Principles, SOSP,
pages 18–37, 2015.

[12] E. C. R. Council. The economic impacts of the August
2003 blackout. 2004.

[13] C. Flanagan and S. N. Freund. Adversarial memory for
detecting destructive races. In Proceedings of the SIG-
PLAN Conference on Programming Language Design
and Implementation, PLDI, pages 244–254, 2010.

[14] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,
S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized
file system dependencies. In Proceedings of the Sym-
posium on Operating Systems Principles, SOSP, pages
307–320, 2007.

[15] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., 1979.

[16] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein.
RERAN: Timing- and touch-sensitive record and re-
play for Android. In Proceedings of the International
Conference on Software Engineering, ICSE, pages 72–
81, 2013.

[17] S. Kim, M. Z. Lee, A. M. Dunn, O. S. Hofmann,
X. Wang, E. Witchel, and D. E. Porter. Improving
server applications with system transactions. In Pro-
ceedings of the ACM European Conference on Com-
puter Systems, EuroSys, pages 15–28, 2012.

[18] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu. High-
performance and lightweight transaction support in
flash-based ssds. IEEE Transactions on Computers,
64(10):2819–2832, 2015.

[19] A. Ma, C. Dragga, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Ffsck: The fast file-system checker.
In Proceedings of the USENIX Conference on File and
Storage Technologies, FAST, pages 1–16, 2013.

[20] C. Min, W.-H. Kang, T. Kim, S.-W. Lee, and Y. I.
Eom. Lightweight application-level crash consistency
on transactional flash storage. In Proceedings of the
USENIX Annual Technical Conference, USENIX ATC,
pages 221–234, 2015.

[21] G. Navarro. A guided tour to approximate string
matching. ACM Computing Surveys, 33(1):31–88, 2001.

[22] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-
Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. All file systems are not created equal: On
the complexity of crafting crash-consistent applications.
In Proceedings of the Symposium on Operating Sys-
tems Design and Implementation, OSDI, pages 433–
448, 2014.

[23] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-
Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Crash consistency. Communications of the
ACM, 58(10):46–51, 2015.

[24] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn,
and E. Witchel. Operating system transactions. In Pro-
ceedings of the Symposium on Operating Systems Prin-
ciples, SOSP, pages 161–176, 2009.

[25] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Mad-
havapeddy, and P. Sewell. Sibylfs: Formal specification
and oracle-based testing for posix and real-world file
systems. In Proceedings of the Symposium on Operat-
ing Systems Principles, SOSP, pages 38–53, 2015.

[26] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems, 10(1):26–52, 1992.

[27] B. Schroeder and G. A. Gibson. Disk failures in the real
world: What does an MTTF of 1,000,000 hours mean
to you? In Proceedings of the USENIX Conference on
File and Storage Technologies, volume 7 of FAST, pages
1–16, 2007.

[28] R. P. Spillane, S. Gaikwad, M. Chinni, E. Zadok,
and C. P. Wright. Enabling transactional file access
via lightweight kernel extensions. In Proceedings of the
USENIX Conference on File and Storage Technologies,
volume 9 of FAST, pages 29–42, 2009.

[29] J. Yang, C. Sar, and D. Engler. Explode: A lightweight,
general system for finding serious storage system er-
rors. In Proceedings of the Symposium on Operating
Systems Design and Implementation, OSDI, pages 131–
146, 2006.

[30] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Us-
ing model checking to find serious file system errors.
ACM Transactions on Computer Systems, 24(4):393–
423, 2006.

[31] P. Zhang and S. Elbaum. Amplifying tests to validate
exception handling code. In Proceedings of the Inter-
national Conference on Software Engineering, ICSE,
pages 595–605, 2012.

[32] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillib-
ridge, E. S. Yang, B. W. Zhao, and S. Singh. Torturing
databases for fun and profit. In Proceedings of the Sym-
posium on Operating Systems Design and Implementa-
tion, OSDI, pages 449–464, 2014.

[33] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge. Un-
derstanding the robustness of SSDs under power fault.
In Proceedings of the USENIX Conference on File and
Storage Technologies, FAST, pages 271–284, 2013.

http://www.gnu.org/software/gdbm/gdbm.html
http://www.gnu.org/software/gdbm/gdbm.html
http://git-scm.com
https://code.google.com/p/leveldb
http://symas.com/mdb/
http://mercurial-scm.org
http://www.sqlite.org/

APPENDIX
A. INTRACTABILITY RESULTS

Theorem 1. Calculating editing distance (defined in Sec-
tion 3.3) is NP-Complete.

Proof. (sketch) We prove the NP-Completeness by a re-
duction from the bin packing problem. The bin packing
problem decides the possibility of packing n indivisible items
(each weights ai for 1 ≤ i ≤ n) into k bins (each weights w
and

∑
ai = k · w). Bin packing is NP-Complete, even for

the special case of k = 2 (partition problem) [15].
We reduce an arbitrary bin packing instance (a1, . . . , an,

k and w) to an editing distance instance constructed as fol-
lows: let the CS consists of n files named x1, . . . , xn, each
contains ai bytes of zero. Let the ES consists of k files named
y1, . . . , yk, each contains w bytes of zero. The bin packing-
problem has a solution if and only if the editing distance
from the CS to the ES is 2n− k.

To transform the CS to the ES, n meta-data operations
are required: k renamings (rename from x to y) and n − k
deletions (redundant files). Furthermore, contents in the
n − k deleted files should be moved to the k renamed files.
This gives a lower-bound of editing distance to be 2n− k.

If the editing distance is exactly 2n − k, each file per-
forms at most one content move operation (and moves its
all contents), which simulates the bin packing procedure to
obtain a valid solution. On the other hand, if there is a bin
packing solution, we simply move file contents in each of the
n− k files to their destinations, yielding an editing distance
of 2n− k, completing the proof.

Finally, one might argue that computing the exact value of
editing distance is overkill and any approximate or heuris-
tic algorithm may work well in practice. However, note
that contents in a file system snapshot can be many (e.g.,
107 ≈ 10M bytes of data), it would be extremely difficult
to scale such an algorithm that typically adopts dynamic
programming or linear programming related technique.

	Introduction
	Crash Consistency Validation
	How to Make it Easy?

	C3 in a Nutshell
	Two Motivating Examples
	Ted Text Editor
	GNU coreutils sort

	Workflow of C3
	Test Input
	Crash Site Generation
	Test Oracle

	Validating Crash Consistency
	Defining Consistent File System Snapshots
	Generating Crash Sites
	Validating Crash Sites
	Amplifying Test Inputs

	Implementation
	Test Input
	Crash Site Generation
	Test Oracle
	Putting Them Together

	Evaluation
	Methodology
	Evaluation Results
	Effectiveness
	Ease of Use
	Performance

	Lessons Learned
	Related Work
	Conclusion
	Acknowledgments
	References
	Intractability Results

